
Implementation of quantum algorithms

with Josephson charge qubits

Diplomarbeit
von

Norbert Schuch
aus

Temeschburg

durchgeführt am Institut für Physik I – Theoretische Physik
der Universität Regensburg

unter Anleitung von Prof. Dr. Klaus Richter

Dezember 2002

Contents

1 Introduction 3

2 Quantum computation 7
2.1 Quantum computers . 7

2.1.1 Quantum bits . 7
2.1.2 Universal quantum computation 9
2.1.3 Quantum circuits . 11
2.1.4 Error correction . 12

2.2 Quantum algorithms . 13
2.2.1 The Deutsch–Jozsa algorithm 13
2.2.2 Quantum algorithms using the Fourier transform 21
2.2.3 Grover’s database search algorithm 25
2.2.4 Hamiltonian simulation . 29

3 Josephson devices for quantum computing 31
3.1 Josephson charge qubits . 31
3.2 Coupling charge qubits . 36

3.2.1 Capacitive coupling . 36
3.2.2 Inductive coupling . 39
3.2.3 Coupling by Josephson junctions 40

3.3 Other Josephson devices as qubits 41
3.4 Experimental realizations . 42

3.4.1 Nakamura’s Josephson charge qubit 42
3.4.2 The Saclay qubit . 43

3.5 Summary . 45

4 Universal quantum computation and the XY interaction 47
4.1 One-qubit operations . 47
4.2 Building the CNOT operation . 49
4.3 Connecting distant qubits . 51
4.4 A natural gate for the XY interaction 53
4.5 Applications of the CNS gate . 54

4.5.1 The three-bit Toffoli gate 54

1

4.5.2 A five-bit error correcting code 56
4.5.3 Appendix to the CNS examples 58

5 Implementation of the Deutsch–Jozsa algorithm 61
5.1 Introductory considerations . 61

5.1.1 Motivation . 61
5.1.2 The key issue is the implementation of the oracle 62

5.2 Existing implementations of the Deutsch–Jozsa algorithm 63
5.2.1 Classification by operation sequences 64
5.2.2 Classification by monomials 66
5.2.3 Other implementation proposals 68

5.3 Extending the existing implementations 69
5.3.1 First idea: Just find the operation sequence 70
5.3.2 Better idea: Classify the oracles 71

5.4 Programmable networks for the oracle 73
5.4.1 Programmable networks 73
5.4.2 Implementing the programmable networks 80
5.4.3 Similar approaches . 87

5.5 Other applications
for programmable networks . 89
5.5.1 Grover’s algorithm . 89
5.5.2 The Toffoli gate . 90
5.5.3 The CARRY gate . 92

5.6 Complexity considerations . 93

6 Conclusions and outlook 97

A Formal equivalence of oracle representations 99

B Deutsche Zusammenfassung (German abstract) 103

Bibliography 107

Acknowledgements 117

2

Chapter 1

Introduction

It was widely believed for a long time that computer science, similar to mathemat-
ics, could be treated in a purely abstract way, without considering the underlying
physical implementation. In the 1960ies, Landauer [Lan61] and others proved
that any physical implementation of computers independent of its concrete real-
ization obeys some general thermodynamical bounds. Namely, each irreversible
operation leads to an increase of the entropy which has a lower bound imposed by
the laws of thermodynamics. From this, Bennett [Ben73] and others developed a
theory of classical reversible computation for which these bounds do not neces-
sarily hold and showed that a classical reversible computer was just as powerful
as a conventional one.

Subsequently it became clear that computer science and physics cannot be
treated as two independent fields. Since each computation is physical, physical
laws impose bounds on the power of computers, but new physical theories might
as well allow for new and more powerful ways of computation. In this regard, it
is interesting to note that classical computational models work in a way which
can be realized fully within the framework of classical physics.

The first idea suggesting that quantum mechanics could allow for more pow-
erful models of computation was given by Feynman [Fey82] who pointed out that
the simulation of a quantum mechanical system on a classical computer takes
an exponential amount of time, whereas the quantum mechanical system can
“simulate” itself in real time. Still, this concept was rather general, and it was
not clear at all how quantum mechanics could be employed to really speed up
computations.

In 1985, Deutsch [Deu85] proposed a simple computational problem for which
a quantum mechanical system (we use the term “quantum computer” from now
on) would give an advantage over any classical computer. Although Deutsch’s
original algorithm had some shortcomings it became evident that there exist tasks
where quantum computers can outperform classical ones. Later on Deutsch and
Jozsa [DJ92] found an extension to the algorithm giving exponential speed-up
over classical computers.

3

This discovery stimulated the research done in the new field of quantum com-
putation. In the following years, a number of new algorithms were discovered,
the most prominent of which are Shor’s quantum algorithm for factoring large
numbers in polynomial time [Sho94] and Grover’s algorithm for searching an
unstructured database [Gro96].

These perspectives for practical applications motivated the search for poten-
tial implementations of quantum computers. The basic requirement for a quan-
tum computer are controllable quantum mechanical two-level systems which can
be coupled in a controlled way. The first experiments were carried out with liquid
state NMR since these systems have favourable properties with respect to con-
trol and coherence. On the other hand, liquid state NMR has natural restrictions
counterstriking the aim to build scalable quantum computers.

Here, similar to classical computers, solid-state implementations seem to be
much more promising with respect to scalability. There exists a wide range of pro-
posals how to implement quantum computers using solid state devices, including
spins in quantum dots, nuclear spins, and mesoscopic superconducting systems.
In this thesis, we will consider a special kind of superconducting quantum bits,
the Josephson charge qubits.

For many implementations, the Deutsch–Jozsa algorithm has been used as a
first demonstration of the feasibility of quantum computation. In 1998, Collins
et al. [CKH98] showed that the implementation of the Deutsch–Jozsa algorithm
in fact could serve as a meaningful test of quantum computation since it makes
essential use of the key features of quantum computation, parallelism and en-
tanglement. They introduced a refined version of the algorithm which focuses
on these features. Moreover, they could show that only for more than two bits
the Deutsch–Jozsa algorithm really involves entanglement. Hence, only up from
there it can serve as a meaningful test for quantum computation.

Despite the discovery of more complex quantum algorithms, the Deutsch–
Jozsa algorithms still serves as a key test for the feasibility of quantum compu-
tation on a given hardware, also because of its relative simplicity. Meaningful
(i.e., three-bit) implementations have been given for liquid state NMR and for
Josephson junctions coupled by SQUID loops. On the other hand, it turns out
that no implementation has been given nor even proposed for more than three
qubits. One might think that this is because coherent quantum dynamics is not
feasible for more than three qubits. But in fact, quantum algorithms have been
implemented for up to seven qubits [VSB+01]. Therefore, it is natural to ask why
the existing implementations have not been extended to a higher qubit number.

In this thesis, we show how the Deutsch–Jozsa algorithm can be implemented
for more than three qubits. A special focus is put on the implementation using
Josephson charge qubits, thus perpetuating the three-bit implementation given
by Siewert and Fazio [SF01]. Still, most of our results are not limited to this
hardware. In contrast to the existing implementations which employ a classifica-
tion scheme in order to implement the algorithm, we choose a universal approach.

4

Thus, we avoid the problems which arise if one tries to extend these schemes, and
which seem to be the reason for the lack of implementations for more than three
qubits. This universal approach is straightforward to use and enables the imple-
mentation of Deutsch’s algorithm for all inputs on the same footing. Moreover, it
also has applications beyond Deutsch’s algorithm which includes the implemen-
tation of Grover’s algorithm as well as parts of Shor’s algorithm.

The work is structured as follows. In Chapter 2, we give an introduction to the
basic concepts of quantum computing and explain the Deutsch–Jozsa algorithm.
The chapter closes with an overview over some other quantum algorithms.

In Chapter 3, we present the hardware setup of the Josephson charge qubits
and show why it can be regarded as a quantum mechanical two-level system.
We then discuss various coupling schemes for charge qubits and outline their
advantages and disadvantages. The chapter closes with an outlook on other
superconducting quantum bits and an overview over experimental results.

Chapter 4 is intended to link the two preceding chapters. We show how the
unitary operations introduced in Chapter 2 can be generated using the Hamil-
tonians obtained in Chapter 3. Additionally, we derive a new operation which
is especially well suited for quantum computation with Josephson charge qubits
coupled by Josephson junctions. The main results of this chapter were published
in [SS02b].

Chapter 5 contains the central results of this thesis. We thoroughly discuss
the existing implementations of the Deutsch–Jozsa algorithm for three quantum
bits, thus clarifying their underlying principles, and demostrate that an exten-
sion of these implementations which bases on the same principles can hardly be
accomplished. This leads to the quest for a universal implementation. We there-
fore introduce the concept of programmable networks and give methods how these
networks can be implemented on different systems. Thereby, a special focus is
put on charge qubits with SQUID coupling. We show how these networks can be
used to implement Grover’s search algorithm and give some other applications
as well. The chapter closes with some considerations on complexity. Preliminary
results of this chapter have been reported in [SS02a].

Finally, in Chapter 6 we conclude and give an outlook on some interesting
ideas related with our results which could not be treated in this thesis. One of
these ideas is given in more detail in the appendix.

As general references, we refer the reader to Preskill’s lecture notes [Pre98b]
and the book by Nielsen and Chuang [NC00].

5

6

Chapter 2

Quantum computation

The purpose of this chapter is to give a brief introduction to quantum compu-
tation in general. We introduce basic concepts of quantum computing such as
quantum bits, quantum registers, operations, and universality. We also show
how quantum computations can be represented by quantum circuits in an easy-
to-handle way.

In the second part of this chapter, we try to explain why quantum computers
could give an exponential speed-up compared to classical ones. We thoroughly
discuss the Deutsch–Jozsa algorithm which will be the most important algorithm
for the rest of this work, and finally give a brief overview over some other quantum
algorithms.

Especially for this chapter Preskill’s lecture notes [Pre98b] and the book by
Nielsen and Chuang [NC00] may serve as general references.

2.1 Quantum computers

2.1.1 Quantum bits

Single quantum bits

In classical computation, the basic unit of information is one bit, which can have
two possible states, 0 and 1. Therefore, if thinking about computation based
on the principles of quantum mechanics, it is natural to take the corresponding
quantum mechanical system, i.e., a system with two basis states, |0〉 and |1〉. This
could be a spin, some atom in its ground or an excited state, the polarization
of a photon, etc. Such a two-level system is called a quantum bit or qubit—
because of the correspondence to classical computation, and because a two-level
system is the simplest quantum mechanical system and therefore the basic unit
of information in quantum information science.

Obviously, the first big difference between a classical bit and a quantum bit
is the fact that the classical bit can only be in one of the two states 0 and 1,

7

whereas the qubit also can take any superposition of the two states |0〉 and |1〉,
|ψ〉 = α|0〉 + β|1〉, where α, β ∈ C, |α|2 + |β|2 = 1. Therefore, a quantum bit
can obviously store more information1 than a classical bit. On the other hand,
we cannot access the information stored in a quantum bit directly: a quantum
mechanical measurement—projecting, e.g., onto the two basis vectors |0〉 and |1〉
—will only yield one bit of classical information.

As it is common in the description of spins in quantum mechanics, we will
use two-component vectors to describe the state of a quantum bit, i.e.,

|ψ〉 = α|0〉+ β|1〉 =
(
α
β

)

.

Unless mentioned explicitly, kets labelled with roman letters like |x〉 denote com-
putational basis states (i.e., |0〉 or |1〉), whereas greek letters like |ψ〉 will be used
for arbitrary states of the system. Since quantum mechanics is linear, the action
of some mapping is already defined by its action on the basis states.

In order to perform computations it is necessary to manipulate the (qu)bits
in a controlled way. Classically, the only nontrivial operation on a single bit
is the not operation exchanging 0 and 1. In quantum mechanics, at least in
principle any arbitrary unitary operation can be applied to the state since the
quantum mechanical time evolution is unitary. Of course, whether a certain
unitary operation can be applied or not crucially depends on the Hamiltonian of
the system. The relation between Hamiltonians and unitaries will be discussed
in Chapter 4.

Some of the most important matrices are the Pauli matrices together with
the identity matrix,

I =

(
1

1

)

; σx =

(
1

1

)

; σy =

(
−i

i

)

; σz =

(
1
−1

)

.

These matrices are unitary as well as hermitian and will be used most often
throughout this work. Note that in quantum computing matrices are given in
the {|0〉, |1〉} basis, i.e., the eigenvalue with respect to σz of the |0〉 state is 1 while
the eigenvalue of the |1〉 state is −1. The σx operation is the not operation for
qubits, but unlike in classical computation, there also exist infinitely many other
nontrivial operations.

Quantum registers

Still, one qubit does not make a quantum computer.2 Therefore, we combine
a number of quantum bits to a quantum register, as it is the case in classical

1Admittedly, this is put a bit fuzzy; we will not discuss information measures in this work.
This is rather meant qualitatively.

2This is not perfectly true though. As we will see with Deutsch’s algorithm, one qubit can
be sufficient to do certain tasks. Nevertheless, we would like to go beyond one qubit.

8

computation. Quantum mechanics now takes place in the product space spanned
by the basis states of the N qubits |x1〉 ⊗ |x2〉 ⊗ . . . ⊗ |xN〉. This means that
our computation takes place in a 2N -dimensional Hilbert space! Consequently,
we can apply any U(2N) transformation to the state of our register, at least in
principle.

We would like to add some remarks about the notations for N -qubit registers.
We will use equivalently the notations |x1〉⊗|x2〉⊗. . .⊗|xN〉 ≡ |x1〉|x2〉 . . . |xN〉 ≡
|x1 · · · xN〉 ≡ |x〉 ≡ |x〉. The states |x1 · · · xN〉, xi = 0, 1 are represented by
N -digit binary numbers (i.e., vectors). The order of the qubits in the ket is
chosen such that the first qubit is the leftmost, i.e., the most significant digit.
In case the register contains a binary encoded natural number and not only a
binary vector, we also denote the ket by the corresponding number, which then
can be read as a binary code, e.g., |19〉 instead of |010011〉. This correlates
with the use of |x〉 vs. |x〉 for registers which store numbers or binary vectors,
respectively. As in the one-qubit case, the states will be ordered ascendingly, e.g.,
{|000〉, |001〉, |010〉, |011〉, |100〉, . . . , |111〉}.

Entanglement

It is important to note that the step from one qubit to more qubits adds a new
resource (compared to classical computation) apart from the possibility of super-
posing states: entanglement. Quantum mechanical systems composed of some
subsystems usually cannot be described simply by giving the states of all the
subsystems separately. Some of the information about the state of the system is
shared between the subsystems, a phenomenon called entanglement. Entangle-
ment seems to be a key resource in quantum information and quantum compu-
tation [JL02]. Still, neither entanglement in general nor its role in the speed-up
observed in quantum algorithms is fully understood, although it seems that all
quantum algorithms which do not use entanglement can be reformulated such
that the speed-up can be obtained on a classical computer, too.

The classic example for an entangled state is the Bell state

|ψ〉 = 1√
2
(|00〉+ |11〉) .

Clearly, this state cannot be written as a product of two one-qubit states,

|ψ〉 6=
[

αA|0〉+ βA|1〉
][

αB|0〉+ βB|1〉
]

.

2.1.2 Universal quantum computation

As we have mentioned before, quantum computation requires complex unitary
transformations of the quantum registers which themselves can get very large.
Assembling each of these unitary transformations directly from the Hamiltonian

9

of the system (which has natural restrictions) is a tedious work. It would be
desirable to have a restricted set of basic building blocks and a prescription how
to assemble complex unitaries using these basic operations.

Such sets of operations which in principle allow for the realization of any
unitary operation are called universal sets. Again, the idea is taken from classical
computation: in classical computation, there are basic building blocks which
suffice to build any logic operation on any number of bits. (In fact, the so-
called nand gate which takes two inputs x and y and returns not(x and y) is
sufficient). In quantum computation, one can try to find such universal gates as
well. Since the space of unitary 2N × 2N matrices, unlike the space of classical
logical operations on N bits, is continuous, one might look for operations which
approximate any U(2N) arbitrarily well. Deutsch [Deu89] found that there is a
three-qubit matrix which is sufficient for this purpose. Later on, Barenco [Bar95]
derived a class of two-bit matrices each of which was universal, too, in the sense
mentioned above.

In a seminal work, Barenco et al. [BBC+95] could show in 1995 that any
unitary operation on N qubits could be generated exactly using one special (itself
non-universal) two-qubit operation together with the set of all one-bit operations.
Moreover, they could also give a couple of recipes how to generate a wide range
of important operations using their universal set of operations.

The considered two-bit operation was






1
1

0 1
1 0







,

which corresponds to the mapping

|00〉 7→ |00〉 , |10〉 7→ |11〉 ,
|01〉 7→ |01〉 , |11〉 7→ |10〉

of the basis states. It can be seen easily that this operation negates the sec-
ond qubit exactly if the first one is in the |1〉 state, and therefore is called the
controlled-not (cnot) gate. Alternatively, it is sometimes called the xor gate,
since it effectively maps

|x1, x2〉 7→ |x1, x1 ⊕ x2〉 ,

where ⊕ is the logical xor operation, i.e., the addition modulo 2.3

3A classical xor gate has only one output. But since quantum mechanical (i.e., unitary)
time evolution is reversible and the classical xor is not, this operation cannot be implemented
on a quantum computer. Actually, the theory of reversible classical computation developed in
the 1970ies [Ben73] is much more related to quantum computation, but discussing this would
lead to far.

10

It is interesting to note (and could be one of the reasons for the widespread
use of cnot in quantum computation) that the cnot operation can be viewed
as a classical computational operation since it does not mix the basis states nor
introduces any phases. Therefore, it can be handled much more intuitively than
operations being genuine quantum mechanical. For a proof of the fact that cnot

together with arbitrary one-bit operations is universal we refer to the original
work since it is quite lengthy and we will not need that result for the main results
of this thesis.

We mention that it has been proven recently that any arbitrary nontrivial
(i.e., entangling) two-qubit gate together with the set of all one-bit operations is
universal [BB01, BDD+02].

2.1.3 Quantum circuits

As mentioned in the last subsection, unitary transformations in quantum com-
puting will usually be built using one- and two-bit operations. This means that
the 2N × 2N -matrix of the N -qubit operation can be written as a product of
unitary operations where each factor is an operation on one or two qubits, i.e., a
direct (tensor) product of the operation with the identity operator on all other
qubits.

Consider the following (hypothetical) example for four qubits, where the Oi

are one-bit operations and the Ti are two-bit operations, I being the one-qubit
identity matrix:

T4 ⊗ I ⊗ I
︸ ︷︷ ︸

A

· I ⊗ I ⊗ T3
︸ ︷︷ ︸

B

· I ⊗ T2 ⊗ I
︸ ︷︷ ︸

C

· I ⊗ I ⊗O1 ⊗ I
︸ ︷︷ ︸

D

· T1 ⊗ I ⊗ I
︸ ︷︷ ︸

E

and compare it with the following diagram, where qubits are denoted by lines
and unitary operations by symbols on the lines they act on (in this case boxes):

D C B

x2

x3

x4

1x
E A

1T

O1
2T

3T

4T
.

Note that the operations in quantum circuits (that’s how these diagrams are
usually termed) are placed from left to right as they act on the initial state, which
means that they appear in the reverse order compared to the matrix notation.

The notion of quantum circuits has several advantages: not only they are
easier to read, they also make some properties of the unitary operations in product

11

space more obvious. For instance, I⊗I⊗O1⊗I · T1⊗I⊗I (i.e., the blocks D and
E) can be collected to T1⊗O1⊗I. This can be seen directly in the circuit notation,
as well as the fact that both operations therefore commute. Furthermore, circuits
make it easier to denote operations between distant qubits (although boxes might
be a bit unappropriate for that purpose).

Most of the symbols used in quantum circuits will be introduced when needed.
Single-qubit operations are often denoted by boxes with the name of the corre-
sponding matrix inside. Two special classes of one-bit operations are the rotations
around the z axis, which are obtained by switching on a σz Hamiltonian

Rz(φ) = e−iσzφ/2 =

(
e−iφ/2 0
0 eiφ/2

)

(2.1)

and the x rotations (obtained by switching on a σx Hamiltonian):

Rx(φ) = e−iσxφ/2 =

(
cos(φ/2) −i sin(φ/2)
−i sin(φ/2) cos(φ/2)

)

. (2.2)

In quantum circuits, we denote these operations by

φ[]zx and φ[]xx ,

respectively.
Finally, the symbol for the cnot gate is







1
1

0 1
1 0







=
x2

x1
,

where the qubit marked with ⊕ (the second one) is the one being negated and
the qubit marked with a dot is the one controlling the negation. Of course, there
also exists the other version of cnot, where the second qubit is the control bit:








1
0 · · · 1
... 1

...
1 · · · 0








=
x2

x1
.

2.1.4 Error correction

Much more than in classical computation, errors are a very serious issue in quan-
tum computation. Unlike in classical computation, where a bit flip is the only
possible error, quantum mechanical states can deviate continuously from their
nominal value. They lose their coherence by interaction (entanglement) with the

12

environment. This effect is called decoherence. We will not discuss decoherence
here; further reading can be found, e.g., in [PZ99].

Luckily, there exist possibilities to correct these errors. The main idea of
Quantum Error Correction is to encode the two states |0〉 and |1〉 of a single qubit
into two orthogonal states of k qubits, where k depends on the code chosen. The
two encoding states are entangled states of the k qubits. Thus, errors occuring
only locally on one or a few qubits (depending on the code!) can be detected
by indirectly measuring the qubits. By the measurement, small perturbations
of a single qubit are either projected back to the original state or extended to
a spin flip or something similar. The outcome of the measurement allows us to
discriminate the two cases and to apply correction operations when appropriate.
See [Pre98a], [NC00] or [KW02] for further reading on this.

Still, it should be noted that in order to get the error correction working, the
qubits have to fulfill at least some minimum requirements. Especially, the ratio
between the time τop = ~/E typically needed for one-bit operations (where E is
the typical eigenvalue of the qubit Hamiltonian) and the decoherence time τdec
has to be at least of order of magnitude 10 000 (see, e.g., [Pre98a] or [NC00]).
Consequentially, this ratio is a key requirement for a good qubit implementation.

2.2 Quantum algorithms

The second part of this chapter contains an introduction to quantum algorithms.
A special focus is put on the Deutsch–Jozsa algorithm, since it is the main topic
of this thesis.

2.2.1 The Deutsch–Jozsa algorithm

Deutsch’s problem

Take a Boolean function f : {0, 1} → {0, 1} on one bit. There are four possible
functions of this kind, namely

f0 ≡ (0, 0) ,

f1 ≡ (0, 1) ,

f2 ≡ (1, 0) ,

and f3 ≡ (1, 1) .

where we denote each f by the tuple (f(0), f(1)).
Obviously, two of the functions (f0 and f3) are constant while the other two

are not. Now imagine somebody prepared a black box where you could insert
a Boolean value x and the box would tell you about f(x) (see Fig. 2.1a). Your
task is to find out whether the f in the black box is constant or not. Obviously,
to solve this task you would need two queries to this black box.

13

Now the interesting thing is that a quantum computer can accomplish this
task with only one query to the black box (which, from now on, we will often
call the oracle, since it tells us about f).

Quantum oracles

In order to understand why—and how—this works, we have to do some prelimi-
nary work. (Well, we do not have to do this necessarily, but things will hopefully
seem less counter-intuitive that way.) In order to keep tasks comparable, first of
all we have to find out how to build black boxes which can be used in quantum as
well as in classical computers in an at least analogous way. Of course, we simply
could try to take the old black box from Fig. 2.1a and extend it such that it not
only takes bits but qubits as inputs and outputs, thus mapping α|0〉 + β|1〉 to
α|f(0)〉+ β|f(1)〉 (see Fig. 2.1b). For input states |0〉 and |1〉, this would include
the classical case, but it would as well allow for a quantum mechanical evaluation
of our black box. But, as a matter of fact, this mapping is not reversible, at least
not for constant f—whereas each quantum mechanical evolution has to be re-
versible. Therefore, we have to look for a—simultaneously classical and quantum
mechanical—implementation of our black box which is reversible.

A first step towards reversibility would be to additionally output the inserted
value x (see Fig. 2.2a). Furthermore, since reversibility clearly requires the con-
servation of the number of (qu)bits (non-quadratic matrices are never invertible),
we have to provide another state, which we initialize to 0 and which will be set to
f(x) by the black box (Fig. 2.2b). Finally, since the circuit must be reversible in
any case and not only in the case where the extra line is initialized to 0, we have
to find a way to make the oracle reversible for any initial value of the second bit.
In order to accomplish this, we can invert the second bit exactly if f(x) is one:
this gives f(x) if y = 0 and also preserves reversibility for y = 1. Mathematically,
this corresponds to mapping y to y ⊕ f(x) —a controlled-not operation!4

This implementation of our black box can now be transferred one-to-one to a

4. . . although the control condition is not necessarily the state of the first qubit. It is
therefore a more general kind of ‘control’.

B f
class

quantB f
b)

a)
x

x

f(x)

f(x)

Figure 2.1: a) Simple black box model
for the implementation of an one-bit
Boolean function f on a classical com-
puter. b) One-to-one transfer of a) to
a quantum computer, where |x〉 is |0〉 or
|1〉, thus defining the mapping on the ba-
sis. Still, for certain fs the mapping is
not reversible and therefore not quantum
mechanical.

14

 f
classO~

 fOquant

c) x

y

x xb)

 f
classO

x xa)

f(x)

x

y+f(x)

0 f(x)

Figure 2.2: Steps towards a reversible black
box for Boolean functions f . a) Black box
which returns the input, thus yielding re-
versibility in principle. b) Since bits cannot
be generated, a second input bit has to be
added, which returns f(x). c) The second
input bit has to warrant reversibility as well.
The resulting oracle c) can also be used in
quantum circuits.

quantum mechanical setup (Fig. 2.2c) and still remains reversible. We can use it
as a classical oracle if restricting the inputs to the ‘classical’ states |0〉 and |1〉,
but we can as well insert any superposition.

To reconsider Deutsch’s problem, it is clear that also in this setup two classical
queries to the oracle are needed in order to find out whether f is constant or not.

The Deutsch algorithm

In the following, we present the Deutsch algorithm which solves Deutsch’s prob-
lem with only one query. Nevertheless, we do not present Deutsch’s original
algorithm [Deu85] but the refined version by Cleve et al. [CEMM98]. The same
applies to the subsequent section about the Deutsch–Jozsa algorithm [DJ92].5

Consider the following quantum mechanical evaluation of f :

1. Initialize the first qubit (|x〉) to |0〉 and the second one to |1〉.

2. Apply a Hadamard transform to each of the two qubits. The Hadamard
transform is defined as

H =
1√
2

(
1 1
1 −1

)

.

3. Apply the oracle Of .

4. Apply another Hadamard transform H to the first qubit only.

5. Measure the first qubit in the computational basis {|0〉, |1〉}. If the system
is found in the |0〉 state, the function implemented in the oracle is constant.
In case the outcome is |1〉, it is not.

5Deutsch’s original algorithm only succeeded in half of the cases. Still, it returned a bit
telling whether it succeeded or not.

15

The whole procedure can be illustrated by the following quantum circuit:

Of
HH

H

0

1
1 : not const.
0 : constant

.

Before discussing some of the astonishing aspects of quantum algorithms
which can already be seen in this simple example, let us first check that the
algorithm really works. We will describe the state of our system as a product of
two kets, where the first ket represents the upper and the second ket the lower
qubit.

At the beginning, the register of our quantum computer is in the state

|ψinitial〉 = |0〉|1〉 .

The first Hadamard block maps |0〉 to 1√
2
(|0〉+ |1〉) and |1〉 to 1√

2
(|0〉 − |1〉):

|ψbefore Of
〉 =

1

2

[

|0〉+ |1〉
][

|0〉 − |1〉
]

=
1

2

[

|0〉
(

|0〉 − |1〉
)

+ |1〉
(

|0〉 − |1〉
)]

.

Then we apply the oracle. This maps each |x〉|y〉 to |x〉|y ⊕ f(x)〉, thus yielding

|ψafter Of
〉 = 1

2

[

|0〉
(

|0⊕ f(0)〉 − |1⊕ f(0)〉
)

+ |1〉
(

|0⊕ f(1)〉 − |1⊕ f(1)〉
)]

.

(2.3)
We now have two expressions of the form

|0⊕ a〉 − |1⊕ a〉 , (2.4)

where a ∈ {f(0), f(1)} is a Boolean value. So in case a = 0, the expression (2.4)
is

|0〉 − |1〉 = (−1)a
(

|0〉 − |1〉
)

and in case a = 1 (with 1⊕ 1 = 0)

|1〉 − |0〉 = (−1)a
(

|0〉 − |1〉
)

.

By inserting this into (2.3), we obtain:

|ψafter Of
〉 =

1

2

[

|0〉(−1)f(0)
(

|0〉 − |1〉
)

+ |1〉(−1)f(1)
(

|0〉 − |1〉
)]

=
1√
2

[

(−1)f(0)|0〉+ (−1)f(1)|1〉
] 1√

2

[

|0〉 − |1〉
]

.

16

Finally, we apply the second Hadamard transform H to the first qubit, which
yields the final state

|ψfinal〉 =
1

2

[(

(−1)f(0) + (−1)f(1)
)

|0〉+
(

(−1)f(0) − (−1)f(1)
)

|1〉
] 1√

2

[

|0〉 − |1〉
]

,

and one immediately sees that for f constant the amplitude for finding the first
qubit in the |1〉 state cancels out, while for f non-constant, the amplitude of |0〉
vanishes. Therefore, if f is constant we measure |0〉 in the first register with
certainty, otherwise |1〉.

The Deutsch–Jozsa algorithm

This algorithm actually does not only work for a function f defined on one qubit,
but for an arbitrary number N of qubits. Take a function f : {0, 1}N → {0, 1}
where it is promised that f is either constant or balanced. Here, balanced means
that the number of zeros and ones as outcomes of f is equal. (In the one-bit
case this is true for all non-constant functions.) In this case, the Deutsch–Jozsa
algorithm can tell us with one evaluation of f whether the function is constant
or balanced. Classically, this would require 2N−1 + 1 queries to the oracle in the
worst case.

The N -qubit Deutsch–Jozsa algorithm works exactly the same way as the one-
bit version does, except that we replace the upper line by an N -qubit register
|x1, . . . , xN〉 ≡ |x〉, so that the oracle now acts on N + 1 qubits as Of : |x〉|y〉 7→
|x〉|y ⊕ f(x)〉.

The N -qubit Deutsch–Jozsa algorithm is represented by the following circuit:

H

H⊗N H⊗NN0···0

1

0···0
else balanced

: constant

Of
. (2.5)

Here, the upper line marked with a bar and ‘N ’ denotes anN -qubit register. H⊗N

denotes the application of the Hadamard transform on each qubit separately, i.e.,
the outer product of N Hadamard transforms. Most often, we call it the N -
bit Hadamard transform, HN ≡ H⊗N . If unambiguous, we will sometimes even
denote it simply by H.

In order to show how the N -bit version of the Deutsch–Jozsa algorithm works,
we start with an alternative description of HN . The one-bit Hadamard transform
can be rewritten as

H : |x〉 7→ 1√
2

∑

y∈{0,1}
(−1)xy|y〉 .

Therefore, the outer product of N Hadamard transforms can be expressed as

HN : |x1, . . . , xN〉 7→
1√
2N

∑

y1,...,yN

(−1)x1y1+...+xNyN |y1, . . . , yN〉 .

17

With the abbreviation |x〉 ≡ |x1, . . . , xN〉, and by taking into account that the
sum in the exponent can also be taken modulo two, therefore defining x · y =
x1y1 ⊕ . . .⊕ xNyN , we can rewrite this as

HN : |x〉 7→ 1√
2N

∑

y

(−1)x·y|y〉 , (2.6)

where the sum is taken over all possible N -qubit basis states y.6

Having understood the N -qubit Hadamard transform—which is a product of
one-bit operations!—we start to check the Deutsch–Jozsa algorithm, as given in
(2.5):

|0 · · · 0〉 |1〉 H⊗N⊗H7−→ 1√
2N

[
∑

x

(−1)0·x|x〉
]

1√
2

[

|0〉 − |1〉
]

=
1√
2N

∑

x

|x〉 1√
2

[

|0〉 − |1〉
]

Of7−→ 1√
2N

∑

x

|x〉 1√
2

[

|0⊕ f(x)〉 − |1⊕ f(x)〉
]

(2.7)

=
1√
2N

∑

x

(−1)f(x)|x〉 1√
2

[

|0〉 − |1〉
]

H⊗N⊗I7−→ 1

2N

[
∑

y

∑

x

(−1)x·y(−1)f(x)|y〉
]

1√
2

[

|0〉 − |1〉
]

.

We now measure the first register. The probability amplitude for the |0 · · · 0〉
state is ∣

∣
∣
∣
∣

1

2N

∑

x

(−1)x·0(−1)f(x)
∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

1

2N

∑

x

(−1)f(x)
∣
∣
∣
∣
∣

2

,

which obviously equals one if f is constant and vanishes if f is balanced. There-
fore, whether the first register is in the zero state or not is a sufficient criterion
to distinguish constant and balanced functions f , so that the Deutsch–Jozsa al-
gorithm works.

The Collins–Kim–Holton version of the Deutsch–Jozsa algorithm

It is interesting to note that, after the evaluation of the oracle, we do no longer
care about the last qubit—which in the classical case is the only line carrying
information about the function f ! In fact, the last qubit is in the same state
after the application of the oracle as before. Particularly, the last qubit does

6The operation x · y is sometimes called the ‘outer product’ or even the ‘scalar product’ of
x and y, although it is not a scalar product.

18

not get entangled with the other ones. This is indeed very surprising.7 The
first to point this out with the Deutsch–Jozsa algorithm were Collins, Kim, and
Holton [CKH98]. From that, they concluded that the last (“auxiliary”) qubit
was actually not necessary for the speed-up in the Deutsch–Jozsa algorithm and
therefore could be omitted. To this end, they suggested the use of an “optimized”
oracle Uf acting only on the remaining N qubits. On these bits, it should work
the same way the old oracle did in the presence of the auxiliary qubit (see (2.7)),
i.e.,

∑

x

αx|x〉
Uf7−→

∑

x

αx(−1)f(x)|x〉 .

Directly speaking, Uf flips the phase of each basis state |x〉 conditionally upon
f(x). This means that it acts on the computational basis as

Uf : |x〉 7→ (−1)f(x)|x〉 ,

i.e., as a diagonal matrix with entries (−1)f(x). This type of oracle is sometimes
called an “f -controlled phase flip”. In contrast to the classical oracle Of , we
denote it by Uf .

By using this type of oracle, we can perform the Deutsch–Josza algorithm
exactly the way we did before, except that the auxiliary qubit can be omitted:

H⊗N H⊗NN0···0
0···0
else balanced

: constantUf .

The proof goes analogously except that the ancilla (a short name for an auxiliary
qubit) is missing.

Based on this, Collins, Kim, and Holton conclude that it actually is sufficient
to state the Deutsch problem with the reduced type of oracle: the exponential
speed-up in terms of oracle queries is still there, and the algorithm gets more
simple—its essentials become more clear, so to say. They especially point out
that in case someone wants to implement the whole Deutsch–Josza algorithm,
including the oracle, in order to show the suitability of a certain hardware setup
as a quantum computer, it is sufficient to realize this reduced version of the
algorithm. They argue that the main resource which has to be demonstrated in
this case is the ability of the system to handle entanglement, and therefore the
ancilla is not necessary for a proof of the feasibility of quantum computation on
the tested hardware.

Following the argument that entanglement is the key point to be demonstrated
by an implementation of the Deutsch–Jozsa algorithm, they also point out that
Uf actually does not involve entanglement at all for one or two qubits. For one

7Note that this does not mean that the oracle cannot entangle the last qubit with the others.
It is simply a matter of the initial state of the last qubit.

19

qubit, this is clear, and also for two qubits it can be checked easily that none
of the balanced functions involves an entangling operation—all the operations
can be written as products of σz and identity matrices. (In the same work,
Collins et al. give an argument why in the one- and two-qubit case we do not
necessarily get a speed-up compared to the classical case—the speed-up depends
on the choice of the representation of f .) They conclude that only up from
three qubits the implementation of the Deutsch–Jozsa algorithm can be regarded
as a demonstration of a system’s ability to handle entangling operations, which
is essential for quantum computation, and therefore as a demonstration of the
feasibility of quantum computation.

In the remaining part of this thesis, we will focus on Collins’ version of the
Deutsch–Jozsa algorithm without explicitly mentioning it every time.

On the practical meaning of oracles

At the end of the section about the Deutsch algorithm, we would like to counter
the prejudice that this algorithm is only of theoretical use or, even worse, is of
no use at all, since we have to construct the oracle and therefore already know

whether the function is constant or balanced.

Imagine we have some hard decision problem (i.e., a yes/no question) to solve.
For instance, we could have a travelling salesman problem (see, e.g., [Mer02]) and
the question is: ‘Is there a solution of the travelling salesman problem with length
< 5?’ Solving travelling salesman problems is usually very hard. Now imagine
we want to compare two slightly different instances of the travelling salesman
problem where the difference is, say, the position of one of the cities. But the
only thing we want to find out is whether there is some difference between the
two instances, i.e., whether one of the two instances performs better than the
other in the sense that only one of both has a solution with length < 5.

In order to find out about this, we write some algorithm (i.e., some logic
circuit) which takes one Boolean value (i.e., the switch between the two instances)
as an input and gives the solution for the decision problem ‘length < 5’ as a
Boolean output. We can therefore restate our problem: we have to find out
whether the one-bit Boolean function implemented by our circuit (note that we
know the circuit but not the function) is constant or balanced. Now assume that
the time needed for evaluating the circuit is very long (say, 24 hours8). The time
will not depend on the input switch since the sequence of operations is fixed. In
order to solve our task—finding out whether there is a difference between the two
instances of the problem—we would have to evaluate our circuit twice, once for
each input value of the switch.

8To state things like this is pointless, of course. Its only purpose is to make the reader feel
more comfortable. In fact, not the absolute execution time but the scaling behaviour is the big
advantage of quantum algorithms.

20

With Deutsch, however, this circuit only has to be evaluated once! In order
to understand this, it is important to know that any normal logic circuit can
be transformed into a reversible logic circuit without essentially changing the
compexity [Ben73], so that we can devise a reversible logic circuit doing the same
task as the classical one (except that it now acts on two lines as the oracle in
Fig. 2.2). This reversible logic circuit can also be built on quantum bits without
changing its effect on the computational basis states. Now, we can simply find out
whether the oracle is constant or balanced (i.e., whether there is some difference
between the two instances or not) by only evaluating the oracle once. We saved
a factor of two!

As already mentioned in a footnote before, this is not the full truth, since the
main point is not the execution time in a certain case but the scaling behaviour.
Nevertheless, we hope we could emphasize that using oracles in quantum algo-
rithms is not a purely theoretical construction.

In the next section, we present Shor’s algorithm which can be described in
terms of an oracle as well, and where in fact an oracle is known which makes this
algorithm to be a very useful one.

2.2.2 Quantum algorithms using the Fourier transform

The Deutsch–Jozsa algorithm belongs to the large class of quantum algorithms
based on the Quantum Fourier Transform, which includes the Bernstein–Vazirani
algorithm [BV93], Simon’s period-finding algorithm [Sim94], and Shor’s cele-
brated algorithm for factoring large numbers in polynomial time [Sho94]. Ki-
taev [Kit95] gave an alternative description of Shor’s algorithm as a solution to
the “Abelian stabilizer problem”. Subsequently, it has been shown that all these
algorithms share the same group theoretical background [Joz98, Høy99]; in fact,
they can all be derived from a general algorithm solving the “hidden subgroup
problem”. In this section, we will only be able to provide a brief introduction to
this field of algorithms.

The Quantum Fourier Transform

For a sequence x0, . . . , xm−1 ofm complex numbers, the discrete Fourier transform
y0, . . . , ym−1 of x0, . . . , xm−1 is defined as

yk =
1√
m

m−1∑

l=0

e2πikl/mxl . (2.8)

In analogy to (2.8), we define the Quantum Fourier Transform (QFT) on N
qubits (2N ≡ m) as the mapping (k, l ∈ {0, . . . , 2N − 1})

|l〉 QFT7−→ 1√
2N

2N−1∑

k=0

e2πikl/2
N |k〉 . (2.9)

21

This transformation is in fact unitary, and it can be realized by O(N 2) one- and
two-bit operations (see, e.g., [CEMM98]). The connection to the discrete Fourier
transform is found by applying the QFT to a superposition of states:

2N−1∑

l=0

xl|l〉 =
2N−1∑

l=0

xl




1√
2N

2N−1∑

k=0

e2πikl/2
N |k〉





=
2N−1∑

k=0




1√
2N

2N−1∑

l=0

e2πikl/2
N

xl



 |k〉 =
2N−1∑

k=0

yk|k〉 .

We thus find that the coefficients (yk)2N of the basis states after the QFT are
exactly the Fourier transformed of the coefficients (xl)2N before the QFT. The
QFT simply accomplished a discrete Fourier transform of the amplitudes of the
states.

As mentioned before, the QFT is also a main ingredient of the Deutsch–Jozsa
algorithm. To see why, consider the simplest case N = 1 of the QFT, i.e., a space
with only two elements. In this case, the QFT becomes

QFT1 : |l〉 7→
1√
2

1∑

k=0

e2πikl/2|m〉

which means that it maps

|0〉 QFT17−→ 1√
2

[

|0〉+ |1〉
]

and

|1〉 QFT17−→ 1√
2

[

|0〉 − |1〉
]

,

i.e., it is the Hadamard transform.
We thus see that the Hadamard transform is indeed the simplest case of

the Quantum Fourier Transform! In fact, the N -qubit Deutsch–Jozsa algorithm
performs an N -dimensional Fourier transform with two elements per dimension.
If we have a constant function, the 0 component of the Fourier tranform is the
only component which is not zero, in case we have a balanced function we only
have contributions of Fourier components different from 0. This is because the
contribution of all Fourier components except 0 to the mean value is zero, and
only the 0 component is responsible for a constant offset of the function. But the
balanced functions are in fact exactly the functions with mean value zero, and
the constant ones those with only 0 Fourier component.

Shor’s factoring algorithm

The Fourier transform can not only be used for finding the mean value of certain
functions. A much more common application of the Fourier transform is to detect

22

things like the periodicity of a function by analyzing the Fourier spectrum. In
fact, this in just what Shor’s factoring algorithm utilizes in order to quickly
factorize numbers.

Suppose we want to factor a large number N ∈ N. Classically, there is no al-
gorithm known which can do this in polynomial time (not even probabilistically).
Although this does not exclude the possibility that such an algorithm exists, none
has been found despite the hard work done on this throughout the past.

But in 1994, Shor [Sho94] could show that there exists a probabilistic quantum
algorithm which can accomplish this in polynomial time.

Before describing the algorithm, a few restrictions have to be pointed out.
The algorithm only can factor odd numbers and fails for prime powers, i.e., for
N = pα with p prime. Nevertheless, this is not a serious drawback, since even
numbers can be divided by two until the remaining part is odd, and the case
N = pα can also be excluded in polynomial time by taking the corresponding
roots. Therefore, we will assume that the number we want to factor is odd and
has at least two different prime factors.

In the following, we will give a brief survey of how Shor’s algorithm works.
Details on this, as the number theoretical background or the estimation of the
success probabilities, can be found in Shor’s original work [Sho94] or in the review
article by Ekert and Jozsa [EJ96].

Let N be the number to be factored. Now choose randomly a number a
coprime to N . Define the function

f : N → N (2.10)

x 7→ f(x) = ax mod N ,

and find the period r of f , i.e., the smallest r > 0 with f(r) = 1. Then, there is
a probability of at least 1/2 that r is even and that ar/2± 1 is no longer coprime
to N , so that we can find a nontrivial factor of N by calculating the greatest
common divisor gcd(N, ar/2 ± 1) of N and ar/2 ± 1 (this can be done efficiently
using Euclid’s algorithm [Euc]).

It can be shown that by recursive application of this method with a randomly
chosen a the probability of finding a factor (and, in fact, also of finding all the
factors) of N converges quickly enough in order to obtain a probabilistic method
to factor N with polynomial complexity.

This was known in principle before Shor presented his factoring algorithm.
The new thing he did was to devise how the period of f could be determined
polynomially, whereas classically (similar to Deutsch’s problem!) most of the
function values of f have to be calculated in order to find the period.

To this end, choose m such that N < 2m. Define the mapping Of on two
m-bit quantum registers |x〉 and |y〉 as

|x〉|y〉 Of7−→ |x〉| (y · (ax)) mod N〉 .

23

This mapping Of can be implemented efficiently, e.g., by repeatedly squaring a

modulo N in order to get a2
i

and multiplying this with y (mod N) iff the ith
bit of x is set. Recall that calculations like the ones above which can be done
efficiently classically can also be carried out efficiently on quantum computers.

Now start by initializing the two m-qubit registers to |0〉 and |1〉, respectively.
By Hadamard-transforming the first register, one gets

|ψ0〉 =
2m−1∑

k=0

|k〉|1〉 .

The application of Of (playing the role of the oracle) transforms this to

|ψ1〉 =
2m−1∑

k=0

|k〉|ak mod N〉 .

Now measure the second register. Thereby, the state of the second register col-
lapses to the measured value |y〉 (which lies in the range of f), while the first
register collapses to a superposition of all states |x〉 with ax mod N ≡ f(x) = y.
In fact, the first register only contains states with a distance equal to the period-
icity of f .9

Now, the task which remains to be done is to determine the period of the
marked states in the first register, i.e., the period r of f . To this end, it is of no
use to measure the first register, since this would collapse the state to one fixed
value x with f(x) = y, giving no information about the periodicity of f . This
means we have to find a more sophisticated method to determine the period.

Here, the Quantum Fourier Transform comes into play. By applying the QFT
to the first register, we get10 a state which consists of a superposition of all states
|x〉 with x = λ · 2m/r, where λ = 0, . . . , r − 1 is distributed equiprobably.11

Thus, the QFT transforms the r-periodicity of the marked states to a 2m/r-
periodicity and—and this is the crucial point—it removes the offset of the original
superposition.

If we now measure, we know some λ/r (the value we found in the regis-
ter). Since λ is chosen equiprobably, we then have a sufficient probability that
gcd(λ, r) = 1, in which case we can easily determine r.

We thus see that, with sufficiently high probability, we can find the period r
of f , which in course allows us to find a nontrivial factor of N with a probability
also high enough. For the proofs that the probability is indeed high enough so
that the algorithm stays polynomial, we once again refer to [Sho94] and [EJ96].

9This is not fully true, though. Since 2m is not necessarily a multiple of the period, we
will not have periodic behaviour at the boundaries. Nevertheless, it can be proven that, if m
is chosen large enough, this only gives a negligible error, and therefore will not influence the
result too much—recall that our algorithm only succeeds in a probabilistic manner.

10we omit the calculation
11Once more, this only works approximately if the function is not exactly periodic. See

Footnote 9.

24

2.2.3 Grover’s database search algorithm

A very different type of algorithm is Grover’s algorithm for searching an unsorted
database [Gro96]. Here, the task consists in finding one of serveral marked items
in a database, i.e., given a Boolean function f on N qubits, we want to find
some x ∈ {0, 1}N such that f(x) = 1. Classically, this is hard in case no infor-
mation about the structure of f is provided, since in that case one basically has
to search the database item by item. On the other hand, a lot of interesting
hard computational problems can be expressed this way. We only mention the
NP-complete problem n-SAT where the task is to determine whether a set of
logical or combinations of n different xis can be true simultaneously [Mer02].

As a matter of fact, Grover’s algorithm only gives a polynomial speed-up:
whereas classically O(N) steps are needed, Grover will succeed in O(

√
N) steps.

In Grover’s algorithm, the oracle of our database consists of a unitary matrix
flipping the phases of all “marked” states, i.e.,

|x〉 Uf7−→ (−1)f(x)|x〉 .

This type of oracle can be obtained from the classical oracle by the method
described in the section about the Deutsch–Jozsa algorithm. In contrast to the
Deutsch–Jozsa algorithm, the function f can be an arbitrary Boolean function
defined on N bits.

The key operation in Grover’s algorithm is the operation −HG0H. Here,
H is the Hadamard transform on the N qubits and G0 is Grover’s oracle for
f(x) = δx,0, i.e., it flips exactly the phase of the |0〉 state. (The minus sign has
only been introduced for convenience and is quantum mechanically irrelevant, as
it corresponds to a global phase.) Since G0 can be expressed as

G0 = I − 2|0〉〈0|

and H2 = I, one can simplify

−HG0H = −H
(

I − 2|0〉〈0|
)

H

= 2H|0〉〈0|H − I .

As we will see, only real coefficients to the basis states will appear in Grover’s
algorithm. Therefore, it is sufficient to analyze what happens to a state

|ψ〉 =
∑

y

αy|y〉 ,

where αy ∈ R, if we apply −HG0H.

25

The interesting component of −HG0H is 2H|0〉〈0|H. Applying it to |ψ〉
yields:

2H|0〉〈0|H|ψ〉 = 2H|0〉〈0|H∑x αx|x〉
= 2H|0〉〈0|∑x αx

1√
2N

∑

y(−1)x·y|y〉
= 2H|0〉∑x αx

1√
2N

∑

y(−1)x·y〈0|y〉
︸ ︷︷ ︸

=(−1)x·0=1

= 2H|0〉∑x αx
1√
2N

= 2 1
2N

∑

y(−1)0·y|y〉
∑

x αx

= 2
∑

y |y〉 1
2N

∑

x αx .

Observe that 1
2N

∑

x αx = 〈αx〉x, the mean value of all αx. It follows:

−HG0H|ψ〉 =
(

2H|0〉〈0|H − I
)
∑

y αy|y〉
= 2

∑

y〈αx〉x|y〉 −
∑

y αy|y〉

=
∑

y

[

2〈αx〉x − αy
]

|y〉 .

Thus, −HG0H maps the (real!) amplitude αy of each state |y〉 to 2〈αx〉x − αy.
Actually, this mapping has a visual interpretation—it simply mirrors the

amplitudes αy about the mean value 〈αx〉x of all amplitudes.12 With this in-
formation, we already can understand how Grover’s database search algorithm
works. Imagine we want to search a database with only one item marked, i.e., Uf

simply flips the sign of only one state |y0〉. Now initialize the N -bit register to
an equal superposition of all possible states, e.g., by first resetting it to |0〉 and
then applying the Hadamard transform.

We thus start with a state where all αy are equal. First apply the oracle Uf ,
which flips the phase of the marked state, i.e., αy0 7→ −αy0 . Then, by application
of −HG0H, all the amplitudes are mirrored about the mean value. This results
in an increase of |αy0 |2, whereas all other probability amplitudes are decreased.
After some iterations of Uf and −HG0H, we will finally have a state where a
measurement will most certainly yield the marked state.

The whole sequence for 4 qubits is illustrated in Fig. 2.3. Each bar belongs to
one αy. The solid line is the zero line, and the dashed line marks the mean value
〈αx〉x. We start with an equibalanced superposition and apply Uf and −HG0H
in turn. In our case, Uf flips the sign of α5. Since the −HG0H step flips the
amplitudes about their mean value, the mean value is not changed.

12The amplitude before had a distance of αy − 〈αx〉x from the mean value, and the new
amplitude 2〈αx〉x − αy has a distance (2〈αx〉x − αy)− 〈αx〉x = −(αy − 〈αx〉x) from the mean
value.

26

|
Uf
↓

|
−HG0H
↓

|
Uf
↓

|
−HG0H
↓

|
Uf
...

...
Uf
↓

|
−HG0H
↓

|
Uf
↓

|
−HG0H
↓

|
Uf
...

...
Uf
↓

|
−HG0H
↓

|
Uf
↓

|
−HG0H
↓

|
Uf
↓

|
−HG0H
↓

|
Uf
...

Figure 2.3: Visualization of Grover’s algorithm (see text).

27

At the beginning of the sequence, the amplitude α5 of the marked state indeed
does increase, while the other amplitudes decrease (respect that the square sum
of the amplitudes stays constant). After some iterations, though, an optimal ratio
is reached—this is where a measurement yields the right outcome with highest
probability—and then, the ratio gets worse. There is even some point at which
the amplitude of the unmarked states is higher than the amplitude of the marked
ones. Finally, the system starts all over—not exactly, though, as can be seen
from the figure as well.

We now give the analytic expressions for the αy, i.e., for the state of the
system in the course of Grover’s algorithm, in order to determine the number of
iterations after which the optimal ratio can be achieved. We only give the results,
though; the correctness of these results can be checked straightforwardly.

The state |ψk〉 after the kth application of the oracle and the flipping opera-
tion, −HG0H · Uf , where the oracle marks the state x0, is

|ψk〉 =
∑

x6=x0

1√
N − 1

cos((2k + 1)θ)|x〉+ sin((2k + 1)θ)|x0〉 , (2.11)

where θ is chosen such that sin2 θ = 1/N . From this formula, one can easily
see that in fact the ratio of the amplitudes of marked and unmarked states is
oscillating, and there is even some domain where the unmarked states are over-
represented.

In order to find the number of iterations when the ratio gets best, we assume
that N is large (since we are interested in complexity and thus in the asymptotic
behaviour). Then, θ ≈ sin θ = 1/

√
N , and the optimal ratio is reached for

cos(2k + 1)θ = 0, i.e., the first time for (2k0 + 1)θ ≈ 2k0θ = π/2. We thus find
that the number of iterations has to be

k0 ≈
π

4

√
N

or the next integer, so that the number of iterations and thus oracle evaluations
goes as O(

√
N), opposed to O(N) for the classical case.

It is clear in principle that this also works for finding one of a couple of marked
items. In this case, the number of iterations even gets lower! Nevertheless, in
all of these cases it is necessary to know the number of marked items in order
to measure at the right point. But there exists a method for first estimating
the number of marked items as well, thus allowing us to find marked items in
O(
√
N) even if we do not know their number. The details on this, as well as

a thourough overview over Grover’s algorithm and the proof why the speed-up
of O(

√
N) vs. O(N) is optimal for a very large class of search algorithms, are

dicussed in [BBHT98].

28

2.2.4 Hamiltonian simulation

A quite different—and somehow the most intuitive—application for quantum
computers is the simulation of quantum mechanical systems. In fact, Feynman
already pointed out in 1982 [Fey82] that quantum systems could simulate quan-
tum systems in linear time, whereas classical computers need exponential time
(actually, this was the first time it was noted that quantum computers could do
exponentially better than classical ones).

Although this seems clear and easy to understand, there are a few fundamental
problems: first of all, we have to emulate some unitary time evolution on a
system of qubits, thus rising the question whether the needed unitary can be
built in polynomial time. Secondly, since there is no possibility to read out the
full quantum state of the system after the simulation (which could be done on a
classical computer), we can only find out about certain properties of the system.
Particularly, we have to devise ways how to “distill” these properties so that we
can measure them.

Despite of these drawbacks, there exist some suggestions for algorithms cal-
culating properties of a physical system. As an example, we briefly present an
algorithm [AL99] for finding eigenvalues and eigenvectors of unitaries in polyno-
mial time (as a function of the number of qubits), thus providing an exponential
speed-up.

The problem can be stated as follows: given a time evolution U = e−iHt/~,
find eigenvalues and corresponding eigenvectors of U .

For this, the algorithm requires some initial vector |in〉 satisfying that |〈in|v〉|2
is not exponentially small for all eigenvectors |v〉 one wants to find. Then, we can
find some corresponding eigenvalue λv in a time proportional to 1/|〈in|v〉|2 and
to the inverse of the accuracy. Additionally, we will also obtain an eigenvector
|v〉 of λv with the same accuracy.

In order to see how this works, it is important to note that it is possible to
implement time-evolutions of local Hamiltonians in polynomial time on a quan-
tum computer. This does not imply that we also know how to generate U j in a
time polynomial in log j.

We start with a total of m+ l qubits, where the first register of m qubits will
be used for a QFT and the second register is the Hilbert space in which U acts.
Define M = 2m. We start with the state

|ψinitial〉 = H⊗m|0〉|in〉

=
1√
M

M−1∑

j=0

|j〉|in〉 ,

where |in〉 is the initial state mentioned above; we can find it by guessing or by
using classical approximation methods.

29

We now apply U j to the second register, where j is the value in the first
register. This can be done by controlled-U 2k

operations controlled by the k-th
bit of j, and thus needs a time proportional to M . We get the state

|ψU〉 =
1√
M

M−1∑

j=0

|j〉U j|in〉 . (2.12)

If we now rewrite the guessed state |in〉 with respect to the eigenstates |φk〉 (with
corresonding eigenvalues λk) of U , i.e.,

|in〉 =
∑

k

ck|φk〉 ,

then (2.12) can be rewritten as

|ψU〉 =
1√
M

M−1∑

j=0

|j〉U j
∑

k

ck|φk〉 (2.13)

=
1√
M

∑

k

ck

M−1∑

j=0

|j〉λjk|φk〉 . (2.14)

Since U is unitary, the eigenvalues can be rewritten as λk = eiωkj, and we find

|ψU〉 =
1√
M

∑

k

ck

[
M−1∑

j=0

eiωkj|j〉
]

|φk〉 . (2.15)

By applying a QFT to the first register, each superposition
∑M−1

j=0 eiωkj|j〉 is
transformed into a state |ω̄k〉, where ω̄k is ωk rounded to m bits. Thus, after the
application of the QFT, a measurement will yield the logarithm of the eigenvalue
ωk (with accuracy ε = 1/M) in the first register and a corresponding eigenvector
in the second register. (The probability for a certain eigenvalue λk is |ck|2 =
|〈in|φk〉|2 —that’s why we require this quantity not to be exponentially small.)

So finally we get an eigenvalue and eigenvector of U ∈ U(2l) with accuracy
ε = 1/M . The space required goes as m + l, which is exponentially better than
with a classical algorithm. Since for a large class of applications it is possible to
find an implementation of U in O(poly(l)) steps, the execution time scales with
the logarithm of the matrix size which gives an exponential advantage in time as
well. Moreover, the time required scales as M = 1/ε. In case we want to have an
exponential advantage with respect to the accuracy, too, we have to find a way
how to implement all U 2j

in a time polynomial in j.

30

Chapter 3

Josephson devices for quantum
computing

In this chapter we show how superconducting devices can be used as quantum
bits. Firstly, we introduce the hardware setup for a single qubit, derive the
Hamiltonian, and show why it can be regarded as a two-level system. Then,
we present different couplings and discuss their andvantages and disadvantages.
Finally, we report on some experiments with Josephson qubits. The chapter closes
with a short summary, resuming the results needed for the rest of the work.

As general references for this chapter we mention the book by Grabert and
Devoret [GD92] and the review article by Makhlin, Schön and Shnirman [MSS01].

3.1 Josephson charge qubits

Josephson
junction

����������������

����������������

island

capacitor

reservoir

V
Cg

CJ EJ

Figure 3.1: Hardware setup
under consideration. A su-
perconducting island is cou-
pled by a Josephson junction
to a superconducting reservoir
and capacitively to a voltage
source.

Consider the hardware setup in Fig. 3.1. A
superconducting island is coupled to a su-
perconducting reservoir via a Josephson junc-
tion. Furthermore, the island is coupled ca-
pacitively to a voltage source V . The Joseph-
son junction has the Josephson energy EJ and
the capacitance CJ , the coupling capacitance
to V is Cg.

The Josephson junction allows for the tun-
neling of Cooper pairs. If we work at tem-
peratures low enough to prevent quasiparti-
cle tunneling (i.e., the superconducing energy
gap is the largest energy in the system), only
Cooper pairs are present on the island. Due
to the Josephson tunneling, the net charge on
the island can change, i.e., there is some num-

31

ber n of excess Cooper pairs on the island. The quantum mechanical states with
different excess Cooper pair number |n〉 span a Hilbert space. By properly ad-
justing the hardware parameters, we can restrict the system to a two-dimensional
subspace, thus creating an artificial two-level system, the Josephson charge qubit.

Derivation of the Hamiltonian

The Hamiltonian of the system in Fig. 3.1 consists of two parts. There is one
contribution from the electrostatic energy of the system, and another one which
is due to the Josephson effect.

Firstly, we derive the charging energy. This can be done purely classical, as
long as one keeps in mind that charge can be transferred through the capacitor
CJ . The transfer mechanism itself is of no importance for the derivation, i.e.,
we do not have to know that this due to the quantum mechanical tunneling of
Cooper pairs.

����������������

��������������������������������

����������������

V

Cg

CJ
−Q J
QJ

−Q g
Qg

Figure 3.2: Classical
analogue of a charge
qubit.

To this end, consider the classical analogue of
the charge qubit given in Fig. 3.2. This system
obeys the following equations:

V =
Qg

Cg

+
QJ

CJ

(3.1)

q = QJ −Qg , (3.2)

where (3.2) defines the excess charge on the island,
i.e., the charge which has been transferred through
CJ .

The total electrostatic energy of the system is

Ech =
Q2
J

2CJ

+
Q2
g

2Cg

. (3.3)

Yet, Ech ≡ Ech(QJ , Qg) whereas in fact the variables are the transferred charge
q and the voltage V . In fact, Qg comes entirely from the voltage source and
therefore is not a variable at all, while following (3.2),

QJ = Qg + q , (3.4)

so that QJ is a sum of Qg and the variable q. (Note that this breaks the symmetry
between Qg and QJ . This is only possible since we know that the charge q has
been transferred through CJ and not through Cg.)

Things get more clear by studying the differential of Ech:

dEch =
Qg

Cg

dQg +
QJ

CJ

dQJ , (3.5)

32

and since by (3.4) dQJ = dQg + dq, one gets:

dEch =

[
Qg

Cg

+
QJ

CJ

]

dQg +
QJ

CJ

dq

(3.1)
= V dQg +

QJ

CJ

dq . (3.6)

This result can be understood easily. The first part is the change of the
electrostatic energy which is due to the voltage source, and the second part
describes the energy change if some charge dq is transferred through CJ , since
QJ

CJ
is the voltage of CJ .
As already mentioned, we would like to have the free energy Fch(q, V), while

(3.6) shows us that Ech ≡ Ech(q,Qg). But (3.6) also tells us that

Fch(q, V) = Ech(q,Qg)− V Qg (3.7)

is just the appropriate Legendre transform for our purpose.
By inserting the definition (3.3) of Ech, and by eliminating Qg and QJ using

(3.1) and (3.2), we finally find

Fch(q, V) =
q2 + 2CgqV − CgCJV

2

2(Cg + CJ)
. (3.8)

We want to investigate the quantum dynamics in the Hilbert space spanned
by the different charge states |q〉 of the island. This means that all parts of the
Hamiltonian (and hence also of the charging energy) which do not depend on q
only contribute a global phase to all states |q〉 of the island and therefore can
be neglected. Consequently, we only need to determine Fch up to terms constant
in q. Using this invariance, we find

Fch(q, V) =
(q + CgV)2

2(Cg + CJ)
. (3.9)

In the case of superconductivity, the charge q (which is the excess charge on
the island) is −2ne, where n is the number of excess Cooper pairs on the island
and e > 0. Defining the charging energy scale Ech and the ‘equilibrium number
of Cooper pairs’ n0 as

Ech =
4e2

2(CJ + Cg)
and (3.10)

n0 =
V Cg

2e
, (3.11)

respectively, we can rewrite the free charging energy as

Fch = Ech(n− n0)2 . (3.12)

33

The corresponding Hamiltonian is diagonal in the charge basis {|n〉}, with eigen-
values Fch(n).

This result means that the charging energy as a function of n0, i.e., the voltage
V , is a parabola for each different Cooper pair number |n〉 on the island, see
Fig. 3.3.

n=2 n=3

n0(V)
0 1 2 3

n=1n=0

Etot
Ech

4

Figure 3.3: Charging en-
ergy as a function of n0, i.e.,
V , for different excess Cooper
pair numbers n (dashed lines);
energy eigenstate of the full
Hamiltonian (solid lines).

Now we include the Josephson term into the Hamiltonian. For charge qubits,
we choose Ech À EJ À kBT . Thus, the Josephson effect only adds a small
off-diagonal perturbation to the charging part. Therefore, it influences the en-
ergy eigenvalues mainly at points of degeneracy, where it mixes the two charge
states (see Fig. 3.3).

The tunneling terms can be described as a sum of transitions |n〉 ↔ |n + 1〉
with the transition matrix element −EJ/2. This leads to the Hamiltonian

Hfull =
∞∑

n=0

[

Ech(n− n0(V))2|n〉〈n| − EJ

2
(|n〉〈n+ 1|+ |n+ 1〉〈n|)

]

. (3.13)

Restriction to a two-dimensional subspace

Restrict n0 to a range near some degeneracy point in Fig. 3.3 (the shaded area).
Without loss of generality we assume V = V0 + ∆V , where V0 = e/Cg and
∆V ¿ V . Then, n0 = CgV/2e ≈ 1/2. If initially the system is in some state
α|0〉+β|1〉, all states except of |0〉 and |1〉 have much higher energies and therefore
will not influence the dynamics of the system (note that Ech À EJ). This means
the system behaves as a two-level system—a qubit. The qubit Hamiltonian is the
restriction of (3.13) to the subspace spanned by {|0〉, |1〉}:

H′ = Ech
[
∑

n=0,1

(n− n0(V))2|n〉〈n|
]

− EJ

2

[

(|0〉〈1|+ |1〉〈0|)
]

. (3.14)

Using the notation introduced in the last paragraph, we see that n−n0(V) =
n−(1/2+Cg∆V/2e) = (n−1/2)−Cg∆V/2e. Consequently, (n−n0(V))2 contains

34

the quadratic terms (n − 1/2)2 = 1/4 (n ∈ {0, 1}) and (Cg∆V/2e)
2. Since both

expressions do not depend on n, they can be omitted, and the only relevant
contribution from (n − n0(V))2 to the Hamiltonian is −2(n − 1/2)Cg∆V/2e.
Using σz = |0〉〈0| − |1〉〈1| and σx = |0〉〈1|+ |1〉〈0|, the Hamiltonian reads as

H = −Ez(∆V)

2
σz −

EJ

2
σx , (3.15)

where Ez(∆V) = −Ech Cg∆V/2e.
We thus have created an artificial quantum mechanical two-level system. Fas-

cinatingly, this is a macroscopic quantum mechanical state, since it is generated
by the condensate of all superconducting electrons. The usability of this system
as a qubit was first suggested by Shnirman, Schön and Hermon [SSH97].

Controllable σx part

Josephson
junctions

magnetic
flux

������������������������������

������������������������������

V

Φ

Figure 3.4: Modified
Josephson qubit (cf. Fig. 3.1).
The Josephson junction has
been replaced by a SQUID.
By changing the flux Φ, the
Josephson energy EJ can be
controlled.

Our two-level system has a Hamiltonian with
a σz and a σx component, where the σz com-
ponent can be tuned. Although this would be
sufficient for applying any unitary operation
to the qubit, we would like to gain control over
the σx component, too. Therefore, we have
to find a way to make the Josephson energy
of the junction tunable. Luckily, there exists
already a simple1 way to accomplish this: in-
stead of using a simple Josephson junction,
we can replace it by a SQUID loop which is
threaded by a flux (Fig. 3.4) [MSS99]. This
flux can be used to adjust the Josephson en-
ergy properly, giving us full control over our
Hamiltonian. Thus, we finally find the fol-
lowing Hamiltonian for our Josephson charge
qubit:

H = −Ez(V)

2
σz −

Ex(Φ)

2
σx , (3.16)

where we replaced EJ by Ex.

Initialization and measurement

Two important requirements for quantum bits, besides sufficient control over the
Hamiltonian, are the possibility to initialize the qubit to some well-defined state
as well as to measure the qubit in some basis [DiV00]. In the following, we

1in a theoretical sense, of course!

35

mention the method also used by Nakamura et al. [NPT99]. Of course, there
exist more sophisticated schemes for measurement.

For the initialization, drive the system to V = 0, and let it relax into its
ground state. By suddenly switching the voltage to the working point, the qubit
is in the initial state |0〉.

For the read-out process, one similarly drives the system to V = 0. If the
system is in the |1〉 state, one can detect a Cooper pair by a probe connected to the
island. By repeatedly performing the initialization–computation–readout cycle,
one measures a current through the probe which corresponds to the probability
amplitude of |1〉.

Finally, we mention that a good measurement method already includes a
state preparation. After the measurement, the qubit is in one of two orthogonal
states—namely the one which was measured.

3.2 Coupling charge qubits

coupling
capacitor

����������������������������������

����������������
��	
	

�
�
�
��������������
�
�
�

��������������CJ ,EJ

Cg

V1 V2

Cg

CJ ,EJ

Figure 3.5: Two charge qubits coupled
capacitively. The coupling can be ex-
tended to a larger number of qubits, al-
though there are natural limitations by
the geometry of the system, thus making
it hard to couple one qubit to more than
a few other qubits. The qubit can be re-
placed by the SQUID version of Fig. 3.4.

In order to build powerful quan-
tum computers, it is not enough
to have control over the individ-
ual qubits. We also need some
coupling between the qubits in or-
der to entangle them. In this sec-
tion, we describe various proposed
couplings for Josephson charge
qubits.

3.2.1 Capacitive coupling

The simplest type of coupling is
the capacitive coupling [PYA+02].
To this end, we connect the
superconducting islands of two
charge qubits by a capacitor (see
Fig. 3.5).

The coupling Hamiltonian will clearly be diagonal, since the coupling energy
is given by the additional charging energy of the system. We can determine this
quantity by a circuit analogous to the one used for the single qubit, see Fig. 3.6.
To keep the calculation reasonably simple, we will assume that the two qubits
are identical, i.e., they have identical values for the capacitances CJ and Cg as
well as for the Josephson energy EJ .

36

−Q cplQcpl

Ccpl

V1

�
�
�
�

�
�
�
�

��������������

��������������

��������������

	�	�	�	
�
�
�

Q

−Q

Q

−Q

g,1

g,

J,

J,

−Q

Q

V2

C

C
Q

−Q
J

g

1

1

1

J,2

g,2

g,2

J,2

C

C

g

J

Figure 3.6: Classical circuit cor-
responding to the capacitively cou-
pled qubits. Cf. also Fig. 3.2.

The system obeys the following equations

V1 =
Qg,1

Cg

+
QJ,1

CJ

(3.17)

V2 =
Qg,2

Cg

+
QJ,2

CJ

(3.18)

V1 =
Qg,1

Cg

+
Qcpl

Ccpl

+
QJ,2

CJ

(3.19)

q1 = QJ,1 −Qg,1 +Qcpl (3.20)

q2 = QJ,2 −Qg,2 −Qcpl . (3.21)

Here, q1 and q2 are the excess Cooper pair charges on the two islands.
We proceed analogously to the derivation of the one-qubit charging energy.

We have

Ech =
Q2
J,1

2CJ

+
Q2
J,2

2CJ

+
Q2
g,1

2Cg

+
Q2
g,2

2Cg

+
Q2
cpl

2Ccpl

, (3.22)

which leads to the differential

dEch = V1dQg,1 + V2dQg,2 +
QJ,1

CJ

dq1 +
QJ,2

CJ

dq2 . (3.23)

(We eliminated the dQJ,is using (3.20) and (3.21). As a “side effect”, the dQcpl

contribution vanished.) The expression can be understood the same way as the
one-qubit differential (3.6): the first two terms arise due to the work done by
the voltage sources, the other two give the energy change due to Cooper pair
tunneling.

From the differential dEch, we see that we get the free energy by the Legendre
transform

Fch(q1, q2, V1, V2) = Ech(QJ,1, QJ,2, Qg,1, Qg,2)− V1Qg,1 − V2Qg,2 . (3.24)

After a lengthy calculation, we find (up to constants which do not depend on
the qis):

Fch =
(q1 + CgV1)

2

2(Cg + CJ)
+

(q2 + CgV2)
2

2(Cg + CJ)
+
Ccpl ((q1 + CgV1)− (q2 + CgV2))

2

2(Cg + CJ)(2Ccpl + Cg + CJ)
. (3.25)

37

With Ech from (3.10) and the definitions (cf. (3.11))

Ecpl =
(2e)2Ccpl

2(Cg + CJ)(2Ccpl + Cg + CJ)
(3.26)

=
Ccpl

2Ccpl + Cg + CJ

Ech

n0,i(V) = CgVi/2e , (3.27)

and the number of excess Cooper pairs on the ith island

ni ≡ qi/(−2e) , (3.28)

this corresponds to

Fch = Ech
[

n1 − n0,1(V1)
]2

+ Ech
[

n2 − n0,2(V2)
]2

+

+Ecpl
[

(n1 − n0,1(V1))− (n2 − n0,2(V2))
]2

.
(3.29)

The first two parts are the contributions we already found in (3.12) for the single
qubits, and the third part is the contribution from the coupling.

As for the single qubits, we assume we are working near n0,i(V) ≈ 1/2,
i.e., we now define ∆Vi by n0,i(V) = 1/2 + Cg∆Vi/2e. Once more, we rewrite
(ni − n0,i(V)) = (ni − 1/2)− Cg∆Vi/2e, and use the fact that the squares of the
two terms do not depend on n ∈ {0, 1}. We find

Fch = −2
[

(Ech + Ecpl)
Cg∆V1
2e

− Ecpl
Cg∆V2
2e

](

n1 −
1

2

)

−

−2
[

(Ech + Ecpl)
Cg∆V2
2e

− Ecpl
Cg∆V1
2e

](

n2 −
1

2

)

− (3.30)

−2 Ecpl
(

n1 −
1

2

)(

n2 −
1

2

)

The first and the second line are the one-qubit parts of the Hamiltonian
(except for the Josephson term). The energies have been shifted compared to
the one-qubit case (3.15). Now, for the ith qubit, Ez,i depends on both voltages,
Ez,i(∆V1,∆V2) = −(Ech + Ecpl)Cg∆Vi/2e + EcplCg∆Vj/2e (j 6= i). Nevertheless,
if Ccpl ¿ (Cg + CJ), the one-qubit energy shift is rather small.

Finally, the last part of (3.30) yields an interaction Hamiltonian

Hint = −
Ecpl
2







1
−1

−1
1







= −Ecpl
2
σz ⊗ σz . (3.31)

38

Thus, we have obtained a ZZ coupling between the qubits.
As a matter of fact, the capacitive coupling is not tunable, so that all the

qubits are coupled all the time. On the other hand, capacitive coupling of charge
qubits is relatively easy to achieve—in fact, it will appear in any setup, since
there will always be some capacitance between the qubits.

The problem of fixed interactions can be overcome by techniques used in liquid
state NMR, where the coupling is also of the ZZ type and cannot be switched.
These techniques are well developed [LCYY00], but they require EJ À Ecpl. Since
the coupling energy must be larger than the thermal noise, we need Ech À EJ À
Ecpl À kBT , so that we have to work at very low temperatures, and only have a
very weak coupling.

3.2.2 Inductive coupling

�������������������������� ��������������������������E(1)
J

V2V1

E(2)
JL 1Φ 2Φ

Figure 3.7: Josephson charge
qubits with inductive coupling. The
coupling is accomplished by a joint
harmonic oscillator degree of free-
dom, which can be switched on by
tuning the two Josephson energies
correspondingly.

As we have seen in the previous section,
a tunable coupling is highly desireable.
It could be operated much more easily
and would allow for fast two-bit opera-
tions.

The first scheme for the tunable cou-
pling of Josephson charge qubits was
proposed by Makhlin, Schön and Shnir-
man [MSS99]. They suggested to couple
the qubits by a joint harmonic oscillator
(see Fig. 3.7). By tuning the Josephson

energies E
(i)
J , the qubits can be brought

to resonance with the inductor L, thus
yielding a coupling Hamiltonian

Hcpl = −
∑

i<j

E
(i)
J E

(j)
J

EL

σ(i)y σ
(j)
y ,

where

EL =
(h/2e)2

(π2L)

[

CJ
(
C−1g + C−1J

)−1

]

.

We thus have a tunable σyσy coupling, which indeed is equivalent to the ZZ
type interaction we found for the capacitive coupling. In contrast to the capacitive
coupling, the inductive coupling is tunable; moreover, it allows for easy coupling
of distant qubits.

Nevertheless, there are also some disadvantages with this coupling: first of
all, since the coupling is switched by the product of the Josephson energies which
also determine the σx part of the Hamiltonian, we cannot switch on solely one

39

interaction: we will always have a σx one-particle Hamiltonian for the two qubits
involved in the coupling.

The second drawback is that this type of interaction does not allow for si-
multaneous execution of more than one interaction: since the amplitude of the
interaction between i and j is determined by E

(i)
J E

(j)
J , it is impossible to activate

the interaction for two distinct pairs of qubits alone.

Finally, the coupling constant depends on the total capacitance of the system.
In fact, it turns out that it scales as 1/

√
N , which makes it impractical for large-

scale quantum computers.

3.2.3 Coupling by Josephson junctions

������
������
������

��
��
����������������������������

�������������������������� ��������������������������
����������������������

V1 V2

������������������������	�	�	�	�	�	�	
�
�
�
�
�
�

EJ,cpl

cplΦ

Figure 3.8: Josephson
charge qubits coupled by
Josephson junctions. The
coupling is accomplished
by another SQUID loop,
thus giving independent
control over each coupling
separately.

A third method how to couple Josephson
charge qubits has been proposed by Siewert
et al. [SFPS00]. In their proposal, the coupling is
accomplished by a SQUID loop, too, thus giving
an additional degree of freedom (the flux in the
SQUID) which allows for an independent con-
trol of each coupling separately (see Fig. 3.8). If
we assume that the Josephson energy EJ,cpl of
the coupling is much smaller than the charging
energy and thus does not influence the two-level
property of the qubit, the coupling Hamiltonian
can be written as

Hcpl = −
EJ,cpl

2

[

|0〉〈1| ⊗ |1〉〈0|+ |1〉〈0| ⊗ |0〉〈1|
]

,

desribing the Josephson tunneling of the excess
Cooper pair from one qubit to the other. This
can be rewritten in terms of Pauli spin matrices
as

Hcpl = −
EJ,cpl

4

(
σ(i)x σ

(j)
x + σ(i)y σ

(j)
y

)

for each pair (i, j) of coupled qubits. Compared to the capacitive or inductive
coupling, we get an XY interaction Hamiltonian instead of the ZZ interaction
we had before.

The coupling by Josephson junctions provides an independently tunable cou-
pling, i.e., we can switch each coupling without any effect on the other couplings
or the one-bit Hamiltonian. A drawback of this coupling is the fact that—similar
to the capacitive coupling—we have to face geometric restrictions so that we
will not be able to provide coupling between arbitrary qubits in most cases. A
coupling only between nearest neighbors seems much more likely.

40

Another problem with the capacitive coupling is the capacitance of the cou-
pling junction: we have to design the Josephson junction such that the capac-
itance and therefore the capacitive coupling constant is small compared to the
Josephson energy of the junction, so that the capacitive coupling is only a small
perturbation and thus can be neglected to a good approximation.

The energy scales in this case are as follows: Ech À (EJ , EJ,cpl)À (kBT, Ecpl),
where EJ,cpl and Ecpl are the Josephson and the capacitive energy of the coupling
SQUID, respectively. Alternatively, one might want to have Ecpl À kBT , such
that the effect of the capacitive coupling can be corrected.

In the remaining part of this thesis, we will mainly focus on the coupling by
SQUID loops as a concrete realization. Thereby, we will neglect the capacitance
of the coupling junctions and only consider a controllabe XY type interaction
Hamiltonian. The geometrical restrictions will result in the assumption that only
nearest neighbors can be coupled, thus leading to either a linear or a circular setup
of qubits with only nearest neighbor coupling.

3.3 Other Josephson devices as qubits

Of course, Josephson charge qubits are not the only devices which can be used
as superconducting qubits. Recall that, for the charge qubits, we assumed that
the charging energy was the dominating energy in the system. On the other
hand, it is also possible to build a circuit where the Josephson energy dominates.
In this case, the variable conjugated to the charge, the phase difference across
the Josephson junction—which is proportional to the flux—would be the genuine
choice for a basis, and no longer the charge of some island.

���
���
���
���

EJ Φex

Figure 3.9: The rf-
SQUID, the simplest
Josephson flux qubit.

This type of qubit is called flux qubit [CL83,
MOL+99]. The simplest possible version is shown
in Fig. 3.9. It consists of a superconducting loop
interrupted by a Josephson junction and threaded
by some external flux Φex. The total Hamilto-
nian consists of three contributions: one from
the Josephson coupling, one magnetic contribu-
tion due to the self-inductance of the loop, and
finally the charging contribution:

H = −EJ cos (2πΦ/Φ0) +
(Φ− Φex)

2

2L
+

Q2

2CJ

. (3.32)

Here, Φ is the flux in the loop, and 2πΦ/Φ0 = ϕ is the phase difference across
the junction. The charge Q is conjugate to Φ, and Φ0 = h/2e is the flux quantum.
L is the self-inductance of the loop, and CJ is the capacitance of the junction.

Thus, in the flux basis, our Hamiltonian is a Schrödinger operator with a
potential energy consisting of the Josephson tunneling term and the inductive

41

0 π⋅Φ0 2π⋅Φ

Φ
0

ex

Φ

Figure 3.10: Effective potential V (Φ) in
the Hamiltonian (3.32). The solid line
shows the Josephson part of the potential,
the dashed line the magnetic contribution.
Φex is the external flux, and Φ0 is the flux
quantum.

term, as shown in Fig. 3.10. Clearly, by choosing L sufficiently large, and Φex ≈
Φ0/2, this yields a double-well potential. At sufficiently low temperatures, only
the two lowest states in the two wells contribute to the physics of the system.
We thus get a reduced two-level Hamiltonian with a σz part governed by the
asymmetry of the well, i.e., Φex − Φ0/2, and a σx part which depends on the
tunneling amplitude between the two wells, i.e., the height EJ of the barrier.
Similar to the charge qubit, we can make the σx part controllable by replacing
the Josephson junction by a SQUID loop.

So in fact, our two-level system is constituted by the flux in the loop which
fluctuates around the external flux Φex. There are various more sophisticated
suggestions for flux qubits [MOL+99], aiming to make them less susceptible to
external noise. Also, there exists proposals for qubits residing in the domain
between charge and flux qubit, i.e., with comparable charging and Josephson
contributions to the energy. We will present one of them in the next section.

3.4 Experimental realizations

3.4.1 Nakamura’s Josephson charge qubit

The first experimental result demonstrating the feasibility of controlled coherent
quantum dynamics with Josephson charge qubits was presented by Nakamura
et al. [NPT99]. They built a single qubit with the junction implemented as a
SQUID loop (Fig. 3.4) and showed that it could perform coherent oscillations
(i.e., Rabi oscillations).

In his experiment, Nakamura initially biased the system to a point far from
degeneracy, so that it could relax to the |0〉 state. Then, he applied a gate voltage
pulse of length ∆t to the gate. The voltage was chosen to drive the system to the
point of degeneracy. Thus, during the time ∆t the system could evolve coherently
with a period depending on the Josephson energy (and thus on the flux). At the
end of the pulse, the system was driven back to the initial state, and by the current
flowing through a probe junction they could detect whether the qubit was in the
|0〉 or in the |1〉 state.2 In order to get a measurable current, an array of pulses
was applied, with the time between the pulses much longer than the relaxation

2In fact, the probe junction was one of the sources of systematic errors in this experiment,
since it was connected to the qubit all the time. Single electron transistors (SETs) would

42

Figure 3.11: Nakamura’s experimental setup. (The figure is taken from the
e-print version of [NPT99].)

(i.e., measurement) time Tr. The measured current is thus proportional to the
probability amplitude of the |1〉 state. They applied pulses between 80ps and
450ps and could observe coherent oscillations. They also could measure EJ(Φ)
indirectly via the oscillation period, verifying the law EJ(Φ) = EJ(0) cos(πΦ/Φ0)
very well (Φ0 is the flux quantum). With a flux yielding a period of the Rabi
oscillations of about 100ps, they could observe coherent evolution for up to 2ns.
This, of course, is by far not sufficient for quantum computation. Nevertheless,
there is a lot of space left for improvement, especially concerning the measuring
device, as already mentioned before.

The experiment was carried out at T ≈ 30mK ≡ 3µeV, the charging energy
was e2/2CΣ = 117± 3µeV. Here, CΣ is the total capacitance of the island. The
superconducting gap was ∆ = 230± 10µeV, and the Josephson energy EJ about
50µeV.

Recently, Pashkin et al. [PYA+02] presented experimental results demonstrat-
ing coherent osciallations in two capacitively coupled charge qubits.

3.4.2 The Saclay qubit

The most promising implementation of a superconducting qubit up to now is the
“quantronium” of the Saclay group [VAC+02]. In their experiment, they studied a
Josephson qubit with EJ ∼ Ech, i.e., neither n nor the phase ϕ across the junction
are good quantum numbers. Nevertheless, the ground and the first excited state
form a two-level system at n0 = 1/2. The quantum state is manipulated by
applying microwave pulses to the gate.

The main new point about the Saclay qubit is the readout: the single junc-

provide a possibility to switch the measurement device on and off [MSS01].

43

tion of the island has been split into two identical junctions in order to form
a superconducting loop. The different states of the island are discriminated
not by the charge n of the island but by the supercurrent in the loop. This
is achieved by entangling the system with the phase of a large Josephson junc-
tion (EJ,large ≈ 20EJ,small). The readout can be accomplished by applying a pulse
to the parallel combination of the junctions, thus changing the current in the
large junction, which then can be read out.

Figure 3.12: The Saclay qubit (The figure is taken from the e-print version
of [VAC+02].)

The experiment was carried out at a temperature of about 15mK. EJ ≈
75µeV, Ech ≈ 58µeV. The period of the Rabi oscillations was about 50ns, and the
observed decoherence time was 0.50µs. Since the precession period of the system
was only about 60ps, this corresponds to about 8000 free coherent oscillations.
Still, the time scale for operations manipulating the state of the circuit is of the
order of the Rabi frequency, so that this ratio—which is the relevant one—is
much lower.

44

3.5 Summary

We briefly summarize the results of this chapter which are necessary for the rest
of this work.

We will investigate qubits with a two-qubit Hamiltonian

H = −Ez

2
σz −

Ex

2
σx , (3.33)

where Ez and Ex can be controlled independently for each qubit.
For the interaction Hamiltonian, we will mainly focus on the XY interaction

H = −Ecpl

4

[

σx ⊗ σx + σy ⊗ σy
]

. (3.34)

The interaction range will be set to the “minimum requirement”, i.e., we will
only assume couplings between nearest neighbors, where the qubits are arranged
in a line or in a ring.

45

46

Chapter 4

Universal quantum computation
and the XY interaction

In the preceding chapter, we have seen how one can build qubits, i.e., quantum
mechanical two-level systems, using Josephson devices. Especially, we derived ex-
pressions for the single qubit Hamiltonian as well as for the coupling Hamiltonian
between the qubits. It also became apparent that—depending on the physical re-
alization of coupling—there often exist physical restrictions on the pairs of qubits
which can be coupled directly.

In Chapter 2, we discussed quantum computation and quantum algorithms.
Thereby, the basic building blocks were unitary multi-qubit operations. We noted
that there exist so-called universal sets of gates which allow for the construction
of arbitrary multi-bit operations. One special set consists of the cnot operation
(between all pairs of qubits) together with arbitrary one-bit operations.

This chapter is intended to link these two chapters. We demonstrate how
the universal set mentioned above—cnot and arbitrary local unitaries—can be
generated using the Hamiltonians derived in Chapter 3. Especially, we give hints
how to efficiently overcome the natural restrictions concerning the coupling of
the qubits.

Main results of this chapter (esp. Sections 4.2, 4.4 and 4.5) have been pub-
lished in [SS02b].

4.1 One-qubit operations

It this section, we show how arbitrary one-bit operations can be assembled using
the one-bit Hamiltonian of the Josephson charge qubit. Recall that the local
Hamiltonian (see (3.16)) was of the form

H = −Ez

2
σz −

Ex

2
σx . (4.1)

Here, both Ez and Ex can be controlled independently.

47

This Hamiltonian directly provides two classes of operations, namely the x
rotations,

Rx(φ) = e−iσxφ/2 =

(
cos(φ/2) −i sin(φ/2)
−i sin(φ/2) cos(φ/2)

)

,

and the z rotations,

Rz(φ) = e−iσzφ/2 =

(
e−iφ/2 0
0 eiφ/2

)

.

In the following, we show that any local unitary U ∈ U(2) can be generated
using two z and one x rotation. To this end, we first note that it is sufficient
to take U ∈ SU(2)/{−1, 1}, since any unitary matrix is equivalent to some U ∈
SU(2) up to a global phase factor (which is physically irrelevant), and for the same
reason two matrices in SU(2) which only differ by a factor of −1 are equivalent.

Now it is well known that SU(2)/{−1, 1} is isomorphic to SO(3), the group
of rigid-body rotations in three dimensions, by identifying a rotation around the
axis ϕ about an angle of |ϕ| with the SU(2) matrix exp [−iϕ · σ/2)].

As one can easily check, the mapping given above exactly identifies Rz and
Rx with the rotations about the z and the x axis, while an arbitrary unitary U
gives some arbitrary rotation (all of this neglecting global phases). But it is well
known, e.g., from classical mechanics, that rotations in three dimensions can be
described as a z rotation, an x rotation and another z rotation, where the rotation
angles are the so-called Euler angles. Thus, we see that x and z rotations—and
therefore our one-bit Hamiltonian (4.1), which is capable of generating those
rotations—are sufficient to generate any arbitrary one-bit operation.

To state this in more detail, every matrix U ∈ U(2) has a (not necessarily
unique) decomposition

U = e−iϕ





e−i(α+β)/2 cos θ/2 e−i(α−β)/2 sin θ/2

−ei(α−β)/2 sin θ/2 ei(α+β)/2 cos θ/2





= Rz (α− π/2)Rx (θ)Rz (β + π/2) .

To give an example, the Hadamard transform

H =
1√
2

(
1 1
1 −1

)

has the following possible values for α, β and θ:

α || π | 0 | −π | 0
β || 0 | −π | 0 | π
θ || −3π/2 | −π/2 | π/2 | 3π/2

48

leading to the following two possible sequences for the Hadamard transform:

H = [π/2] [π/2] [π/2]z x z
= [π/2] [π/2] [π/2]z x z .

4.2 Building the CNOT operation

In this section we illustrate that, depending on the available coupling termHi,j , it
is more or less difficult to generate the cnot operation. We also provide explicit
constructions.

We focus on three different types of interaction, two of which we can construct
for Josephson charge qubits. The third type is added for reasons of completeness,
since it fits well to the two other types.

Firstly, there is the ZZ interaction

HZZ
i,j (E

ZZ
i,j) = −

EZZ
i,j

4
σ(i)z σ

(j)
z ,

which, beyond by inductively coupled Josephson charge qubits, can also be re-
alized for Josephson flux qubits [OMT+99]. Secondly, the JJ or Heisenberg
interaction

HJJ
i,j (E

JJ
i,j) = −

EJJ
i,j

4

[
σ(i)x σ

(j)
x + σ(i)y σ

(j)
y + σ(i)z σ

(j)
z

]
,

which basically appears in systems where spins are coupled by the exchange
interaction, for example spins in quantum dots interacting via a tunnel junc-
tion [LD98], nuclear spins in phosphorus-doped silicon devices [Kan98], or spin-
resonance transistors [VYW+00]; and finally the XY interaction

HXY
i,j (EXY

i,j) = −
EXY
i,j

4

[
σ(i)x σ

(j)
x + σ(i)y σ

(j)
y

]
.

In addition to Josephson charge qubits coupled by Josephson junctions, this type
of coupling has also been proposed for quantum dot spins coupled by a cav-
ity [IAB+99] and for nuclear spins interacting via a two-dimensional electron
gas [MPG01].

For the ZZ-interaction, the cnot operation is indeed the natural two-bit
operation since

exp

[

−iHZZ
i,j (E

ZZ
i,j)

π

EZZ
i,j

]

= eiπ/4







1
−i
−i

1







49

is equivalent to cnot up to one-bit operations [Mak00], e.g., by

≡
H π/2]z

π/2]z

[

[







1
−i
−i

1







H
.

As opposed to this, the Heisenberg interaction does not yield the cnot operation
directly, while

exp

[

−iHJJ
i,j (E

JJ
i,j)

π

EJJ
i,j

]

= eiπ/4







1
0 1
1 0

1







corresponds to the swap operation, which simply swaps two qubits. We denote
it by the following symbol:

swap ≡ .

We will consider the swap operation in more detail in the next section. Since the
swap operation cannot entangle two qubits (although it is a genuine two-qubit
gate!), one has to use alternative ways to produce cnot, e.g., via the square
root of swap (briefly denoted by

√
swap) which can be obtained by applying

the Heisenberg Hamiltonian only for a time 0.5π~/EJJ
i,j . Then, cnot can be

generated [LD98] via

=
]z[π

SWAP√
[π/2]z[π/2]x[π/2]z

[π/2]z
SWAP√

[π/2]x[π/2]z
.

However, here
√

swap has to be applied twice: the cnot gate cannot be con-
structed by applying a HJJ

i,j -based gate only once [Mak00]. The converse is true
for the construction of the swap operation using the ZZ interaction: while cnot

can be obtained in one step, swap requires two two-bit operations.
In [Mak00] it is also shown that the XY interaction Hamiltonian HXY

i,j can
neither generate the cnot operation nor the swap operation by applying an
XY -based gate only once. Nevertheless it is sufficient to build a cnot gate. An
appropriate “elementary” two-bit gate is the iswap operation which is obtained
by applying HXY

i,j (EXY
i,j) for a time t = π~/EXY

i,j :

iSWAP :=







1
0 i
i 0

1






= exp

[

−iHXY
i,j (EXY

i,j)
π

EXY
i,j

]

.

50

It has been noted before that this gate is useful in order to generate more complex
quantum operations [SF01, KBDW01, EWD+01].

By applying the iswap gate twice, the cnot operation can be constructed

=
[π/2]x

iSWAP
[π/2]z

[π/2]z
iSWAP

[π/2]x

[π/2]z
. (4.2)

We mention that in complex circuits the length of this sequence can be reduced
by noting that the “outer” one-bit operations partially cancel out with preceding
or subsequent one-bit gates.

Of course, also the swap operation can be built with iswap gates, e.g., by
the following sequence:

=
[π/2]x

iSWAP iSWAPiSWAP
[π/2]x [π/2]x

. (4.3)

We mention that there exists also a proposal how to build the cnot gate by
using

√
iswap [IAB+99].

Recently, the close relation between the three types of Hamiltonians and the
corresponding two-bit operations has been demonstrated rigorously [VHC02].

4.3 Connecting distant qubits

In the preceding section we showed how the cnot gate can be obtained using
various interaction types, including those we found for the Josephson charge
qubits. Still, this gives us these interactions only for those qubits which are
coupled physically. As pointed out in the hardware chapter, in some setups we
will not be able to couple each qubit to more than a few other qubits due to
physical restrictions. On the other hand, our universal set of operations has to
contain cnots between all pairs of qubits.

This problem can be solved—at least formally—by showing that in fact it is
sufficient to have cnots only between some pairs of qubits as long as all qubits
are connected by some “path” of cnots. This is true, for instance, if all the
qubits are arranged in a line or in a ring with only nearest neighbor coupling.

To this end, we reconsider the swap operation which already appeared in the
previous section. The swap operation is of the form

swap =







1
0 1
1 0

1






≡ ,

51

mapping (αA|0〉+βA|1〉)(αB|0〉+βB|1〉) to (αB|0〉+βB|1〉)(αA|0〉+βA|1〉). Thus,
the swap operation simply exchanges the two qubits A and B, or, to be more
correct, their states. From this, it is also clear that the swap operation is not
capable of entangling two qubits, although it is a real two-bit operation in the
sense that it cannot be replaced by an outer product of local unitaries.

In the last section, we gave methods how to construct the swap gate for some
of the mentioned interaction types. As we want to take a more formal point of
view in this section, we note that since cnot and local unitaries form a universal
set of operations, there has to be a way how to to use them to construct swap.
In fact, swap can be constructed using cnot alone:

= . (4.4)

Now reconsider our problem: while we only have cnot between some pairs of
qubits, we would like to construct a cnot between two arbitrary qubits A and
B. Since our minimum requirement was that there is some connection between
these two qubits, it follows that we can find a chain of coupled qubits, connecting
A and B. In this chain, we start by swapping A and/or B with some qubit it
is coupled to, using the sequence given above. By repeated swapping, we can
make A and B nearest neighbors. Then, the cnot operation between A and B
is carried out and the swapping is reversed. This is illustrated in Fig. 4.1.

A

B

≡

A

B

Figure 4.1: Coupling of dis-
tant qubits. Consider the fol-
lowing setup with 8 qubits
and nearest neighbor cou-
pling. By successive swap-
pings, a cnot between distant
qubits can be accomplished.
The swap operations can be
constructed using cnot ac-
cording to (4.4).

Although this method gives us a tool to overcome restrictions in the coupling
of the qubits, this workaround is rather unsatisfactory, since it will increase the
number of operations considerably, especially in systems providing only nearest
neighbor interaction. In fact, each operation could generate an overhead of as
much as O(N) operations in a system with N qubits.

52

4.4 A natural gate for the XY interaction

In the following section, we reconsider theXY interaction. As we have seen, it can
be used to generate a two-qubit gate which (together with single-bit rotations) is
sufficient for universal quantum computation. However, neither cnot nor swap

can be realized directly by using the interaction part of the Hamiltonian only
once, in contrast to the ZZ and the Heisenberg interaction. Now we ask whether
there exists a “natural” two-qubit operation similar to cnot also for the XY -
interaction, i.e., a gate which can be viewed as the quantum case of a classical
reversible operation like the cnot or the swap gate.

By analyzing the matrix of the iswap gate we see that it can be decomposed
as

iswap =







1
0 i
i 0

1







=







1
i
i

1






·







1
0 1
1 0

1







.

The second matrix represents the swap operation, while the first matrix is equi-
valent to cnot up to one-bit operations since

H

[π/2]z

[π/2]z







1
i
i

1







H
= .

Thus it follows that the iswap gate is equivalent to a combination of cnot

and swap. The exact sequence is

cns := =
H

iSWAP
H

[π/2]z

[π/2]z
.

For the sake of brevity, we introduce the name cns (“cnot+swap”) for the new
gate.

Remarkably this combined gate requires only a single operation using the
coupling Hamiltonian and can therefore be regarded as a natural gate in the
sense explained above.

One is tempted to object that the combination of cnot and swap makes
the cns gate difficult to handle. While this is true in principle, one may notice
that in the case of qubit couplings only between nearest neighbors it is necessary
anyhow to swap the qubit states, as discussed before. Therefore, one can try to
exploit this feature by rearranging the circuit in such a way that cnot and swap

operations appear together and can be replaced by a cns operation. Moreover,
it should be mentioned that the cns operation is considerably shorter than both

53

the cnot and the swap operation (realized with the XY coupling); so even with
an overhead of two-bit operations compared to a “standard” circuit (which uses
cnot and swap) the rearrangement of the network may yield an advantage in
terms of the operation time required for the whole sequence.

4.5 Applications of the CNS gate

In this section we discuss two examples in order to demonstrate that the cns

gate derived above is surprisingly powerful in efficiently implementing quantum
circuits in systems with nearest neighbor XY interactions. As a simple example
we first discuss the Toffoli gate. In order to show that the method works for more
complex networks as well, we then present an implementation of the five-bit error
correction found by DiVincenzo and Shor [DS96].

We mention that the methods we present in this section work equally well for
a couple of other networks. Similar solutions can be found, e.g., for the Quan-
tum Fourier Transform (see, e.g., [CEMM98]), for the quantum adder described
in [Dra00] (which is adding two quantum numbers), or for an adder which is
adding one classical to one quantum number [Bea02].

4.5.1 The three-bit Toffoli gate

The three-bit Toffoli gate is the generalization of the cnot gate with two control
bits—it inverts the third bit if and only if the first two bits are in the |1〉 state.
It is of special interest since it is the elementary gate for classical reversible
computation. For this reason it often appears in circuits for tasks that also can
be solved by classical reversible computers, e.g., the modular exponentiation used
in Shor’s factoring algorithm [VBE96].

There are various proposals to implement the Toffoli gate. The shortest one
using the cnot gate as the only two-bit gate is given in [DiV98] (which is a
simplification of the version in [BBC+95]) and involves six cnot gates:

3

2

1

3

2

1

= D

B B

D

B C

D

A ✝

✝2

1

3

1

2

3

, (4.5)

where

A =

(
1

i

)

, B =

(
1 1−

√
2√

2− 1 1

)

,

C =

(
1

√
2− 1

i(
√
2− 1) −i

)

, D =

(
1 0
0 e−iπ/4

)

,

54

up to normalization factors.
We are considering systems with only nearest neighbor interaction. As the

Toffoli gate often appears as an element in a circuit with more than three qubits,
interaction will be possible only between the qubit pairs 1-2 and 2-3, but not
between qubits 1 and 3. Since in the circuit (4.5) two of the cnot gates act
between qubits 1 and 3, one will have to swap one of the two qubits with qubit
2 in order to make qubits 1 and 3 nearest neighbors. This swapping has to be
undone after the cnot operation in order to bring the qubits back into the right
order. Therefore one has to perform four swap operations in addition to the six
cnots. The number of cnot or iswap gates to build a swap gate is three. It
turns out, however, that the cnot operations between qubits 1 and 3 can be
generated with only five (instead of seven) nearest neighbor cnots. Thus one
ends up with

• 4 + 2 · 5 = 14 cnot gates or

• 6 · 2 + 4 · 3 = 24 iswap gates

required to obtain one Toffoli gate.
Now we rearrange the circuit to make use of the properties of the cns gate.

We have found the sequence

3

2

1

3

1

2

=

A C

B

B

D

D

B

D

✝

✝

3

2

1 2

1

3

(4.6)

which replaces five cnot operations by cns operations and requires only a single
additional swap operation (i.e., in addition to the sequence in (4.6)) to correct
for the fact that the sequence does not exactly implement the Toffoli gate but
rather exchanges the qubits 1 and 2 (as can be seen easily by retracing the three
lines in the circuit above). For the separate swap, three iswaps have to be done
according to (4.3). Thus, one finds that the total number of iswap gates needed
to implement the Toffoli gate in a chain of qubits is

• 5 · 1 + 1 · 2 + 1 · 3 = 10 iswap gates

compared to the 24 iswap gates required for the “näıve version” above.
Note that it is not necessarily a disadvantage to swap qubits 1 and 2 as in

(4.6). Firstly, it can be regarded as a combination of the Toffoli gate and swap

analogously to cns. In fact, by replacing some of the cnots by cns gates in
the Toffoli network in (4.5) every possible permutation of the input bits can be
achieved (amusingly, except the constant permutation), so one could try to exploit
this in more complex circuits the same way as the fact that cns is a combination
of cnot and swap.

55

Secondly, in quantum computing there are numerous circuits which first exe-
cute a sequence and then repeat the operations in the reverse order, e.g., to reset
some ancilla qubits. In this case swapping of two qubits is often irrelevant (for
examples of such circuits, see the network for the N -bit Toffoli gate in [BBC+95]
or the circuit of the quantum adder in [VBE96]).

4.5.2 A five-bit error correcting code

As a more advanced application where the use of cns gates gives a considerable
advantage over the simple “translation” of the network, we present an implemen-
tation of the five-bit error correction network which was found by DiVincenzo
and Shor [DS96]. This network (see Fig. 4.2) can compensate arbitrary one-bit
errors as long as they occur only in one of the encoding qubits at a time.

H

H

H

H

H

H

H

H

H

H

M0M3 M4

|0 |0 |0

U

U

U

U

U

{Mi}

|0

M1

0

1

2

3

4

a

Figure 4.2: The five-bit error correction network as suggested by DiVincenzo
and Shor [DS96]. The protected qubit state is encoded in the qubits 0 to 4, and
the measurements Mi of the ancilla yield the error syndrome which determines
the correction operations U . Instead of a single ancilla it is equally possible to use
four different ancillae such that each measurement is performed on a (physically)
different ancilla.

The protected qubit is encoded in five physical qubits 0 to 4 as a superposition
of five-qubit states. The error correction network makes use of four ancilla bits
which are initialized to |0〉 before the network is applied. After carrying out the
sequence of operations, the ancillae are measured (in the standard basis).

While the implementation of this circuit appears rather hopeless if there is no
direct interaction between the ancillae and each encoding qubit, we will show that
the cns gate makes a straightforward implementation of this network possible. To
this end, we consider a setup of nine qubits (five qubits encoding the protected
state plus four ancilla bits) arranged in a ring, i.e. we have nearest neighbor
couplings with periodic boundary conditions.

By properly rearranging the gates, we obtain the circuit shown in Fig. 4.3.
The labels 0 to 4 on the lines denote the five qubits of the error correcting code
and, correspondingly, a0, a1, a3 and a4 are the labels of the four ancilla bits for

56

a4

a3

a0

a4

H

H

H

H

H

H

H

H

a1 H

H a3

a0

a1

1

4

0

2

3

4

0

1

2

3

Figure 4.3: Implementation
of the five-bit error correct-
ing code with cns gates (see
text).

theMis (see Fig. 4.2). After the application of the network, the four ancillae have
to be measured and the corresponding operations on the five bits to correct the
error syndrome have to be applied. Then the ancillae have to be reset to the |0〉
state. For the whole setup, only one separate cnot is necessary, all other cnot

gates can be replaced by cns gates. Separate swap operations are not required
at all. One may notice that the two-bit operations in this network can be done
in parallel which makes the execution of the whole sequence considerably faster.1

The equivalence of the networks in Fig. 4.2 and Fig. 4.3 is explained in detail
in Section 4.5.3. Note that this implementation of the error correcting code leaves
the qubits in the original order, but rotates them by three bits. Therefore, one
has to keep track of the position of each bit. In any case, after three subsequent
applications of the error correction scheme the encoding bits are back in their
original order. As to the ancilla bits, their order is changed in a well-defined
way. This has to be taken into account for the interpretation of the measurement
outcome. After the measurement, the order of the ancillae is irrelevant since they
are re-initialized to |0〉.

Until now, we have achieved an efficient implementation of the five-bit error
correction code using the cns gate as an elementary building block. Let us
conclude this discussion by studying the implementation closer to the hardware
level. In order to realize the network in a setup of Josephson charge qubits with
SQUID loop coupling, i.e., nearest neighbor XY interaction, one can rewrite the

1Formally a parallel execution looks feasible also if the network can be implemented with
physical couplings between arbitrary pairs of bits, in particular between the ancillae and each

encoding qubit. Note, however, that in such schemes there is typically only one channel which
mediates the coupling between the various qubits [IAB+99, MSS99]. Consequently, simultane-
ous execution of several two-qubit operations would result in N -qubit dynamics (N > 2) which
is to be excluded. Therefore, in certain cases application of nearest neighbor coupling appears
to be even more powerful than coupling between arbitrary pairs of qubits.

57

circuit in Fig. 4.3 in terms of iswap operations. The sequence can be simplified
considerably, the hints are described in section 4.5.3. The result is illustrated in
Fig. 4.4. If we assume that the energies in the one-bit and two-bit part of the
Hamiltionan are of the order E1−bit

typ and E2−bit
typ , respectively, the total operation

time of the sequence (without measurement, correction step and resetting the
ancillae) is 2.5π~/E1−bit

typ + 5π~/E2−bit
typ .

We mention that efficient solutions for similar tasks in error correction have
been developed also in [BS97, BLDS99].

a0

a3

a4

a1

T∆

a3

a4

a0

a1

0

2

3

4

1
4

0

1
2

3���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�����
�����
�����
�����

�����
�����
�����
�����

�
�

�
�

�
�

�
�

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

 �
 �
 �
 �

!�!�!
!�!�!
!�!�!
!�!�!

"�"
"�"
"�"
"�"

#�#�#
#�#�#
#�#�#
#�#�#

$�$�$
$�$�$
$�$�$
$�$�$

Figure 4.4: Sequence of operations for the five-bit error correcting code [DS96]
for a Hamiltonian with controllable σx and σz part and nearest neighbor XY
interaction between the qubits which are arranged in a ring. The horizontal
direction in the figure shows the time axis while in the vertical direction, the
various actions on each qubit are displayed. The boxes represent an active single-
qubit or two-qubit gate, while white spaces denote idle periods. Black boxes
correspond to a σz rotation, and gray boxes to a σx rotation. The big hatched
boxes correspond to the action of an XY coupling term between two qubits.
The time grid is ∆T = 0.5π~/Etyp, where we have assumed equal energy scales
for one-bit and two-bit Hamiltonians: E1−bit

typ ' E2−bit
typ ' Etyp, which, e.g., is

the case for Josephson charge qubits coupled by SQUID loops. The signs of
the corresponding energies are not contained in the diagram. Two-bit blocks
(representing iswap gates) correspond to cns operations; the double iswap block
between qubits 2 and a1 at the end of the sequence represents the separate cnot

gate.

4.5.3 Appendix to the CNS examples

Equivalence of the error correcting networks

We need to show that the two error correction circuits in Fig. 4.2 and Fig. 4.3
are equivalent, i.e., that they correspond to the same unitary. To this end we

58

note that gates which have no bits in common commute trivially. Further, two
subsequent cnot operations commute if they act on the same target bit (in our
case this means that they have the ancilla in common). Also, two cnot gates
with the same control bit and different targets commute as long as the control
bit is not modified by a single Hadamard operation between them.

Starting from these observations, the question whether the two error correct-
ing networks are identical reduces to proving that the two marked blocks in

H H

H H

0

4

3a

1a
(4.7)

do commute.
This can be seen as follows. First, choose the Hadamard transformed basis

for the ancillae (we will denote them by âi). In this basis, the cnot gates
originally enclosed by Hadamard operations become cnots with control and
target reversed, i.e., controlled σx operations. The other cnot gates turn into
controlled phase flips (i.e., controlled σz operations), analogously. Thus, the
network in (4.7) corresponds to2

zσ

xσ zσ

xσ

0

4

a

1a

3

. (4.8)

In this representation, it becomes obvious that the two blocks indeed do commute:
if at least one âi is zero, one of the two controlled operations on each qubit 0 and
4 is the identity, and the operations commute. On the other hand, if â1 = â3 = 1,
exchanging σx and σz on one bit results in a global minus sign. Changing the
order of the two blocks in (4.8) corresponds to two simultaneous changes of this
kind and leaves the all-over result unchanged. Therefore, the networks in Fig. 4.2
and Fig. 4.3 are identical.

Simplifications for circuits with ISWAP

We now briefly describe the methods which can be used for the simplification
of a network like the one presented for the five-bit error correction circuit in

2The newly introduced symbols are controlled-U operations. Similar to cnot, the qubit
marked with a dot is the control qubit, while the box on the target qubit contains an one-bit
operation U . Depending on the state of the control bit, I (control bit is |0〉) or U (control bit
is |1〉) is applied to the target bit.

59

Section 4.5.2, cf. Fig. 4.4. We will consider rotations about the x and the z-axis,
and the iswap operation as the basic building blocks for the implementation. All
other operations will be expressed in terms of these operations. Although the
application of the ideas is rather straightforward it is difficult to provide formal
recipes how to use them.

1. One-bit simplifications. First, rotations about the same axis can be
collected, e.g.:

]z[ψφ[]z = []zφ+ψ
Clearly, rotations by an angle of 2π can be dropped. Operation time can be saved
by applying a −π/2 rotation instead of a +3π/2 one.

A more sophisticated problem is the simplification of compound expressions
of x and z rotations. To this end, the following ways to express the Hadamard
transformation are useful:

H = [π/2] [π/2] [π/2]z x z = [π/2] [π/2] [π/2]x z x =

= [π/2] [π/2] [π/2]z x z = [π/2]x [π/2]z [π/2]x .

By choosing the appropriate way to represent the Hadamard transformations
in the network (or by sometimes “artificially” creating one of these triples, for
example by inserting a pair of operations whose product is unity) and replacing
it by another one, considerable simplifications can be achieved. The applicability
of these simplifications becomes particularly apparent if the single-bit operations
are considered in the context of two-bit operations.

2. Two-bit simplifications. There is essentially only one way to simplify
two-bit expressions for circuits containing iswap:

iSWAP
φ[]z

= iSWAP
φ[]z

,

i.e., z rotations “commute” with iswap if simultaneosly the z rotation is flipped
to the other qubit.

3. Ancilla simplifications. Finally, one can apply also one-bit simplifications
to the ancilla bits which are possible due to the fact that we know the initial state
of the ancilla and, moreover, the ancillae are measured in the {|0〉, |1〉} basis at
the end.

At the beginning of the error correction sequence, the ancillae are set to |0〉.
Therefore, z rotations immediately after the initialization can be omitted (since
global phases are not important).

Further, let us assume the ancilla is in the state a|0〉 + b|1〉 just before the
measurement. As the measurement is performed in the {|0〉, |1〉} basis, a z rota-
tion before the measurement would not affect the result. Therefore, also these z
rotations need not be considered.

60

Chapter 5

Implementation of the
Deutsch–Jozsa algorithm

In this chapter, we show how the Deutsch–Jozsa algorithm for an arbitrary num-
ber of qubits can be implemented on the hardware setup described in Chapter 3.
It therefore contains the central results of the thesis.

The chapter is structured as follows. As an introduction, we motivate the
interest in implementations of the Deutsch–Jozsa algorithm and show that the
central issue is the implementation of the oracle. We then consider the exist-
ing (three-bit) implementations of the algorithm and point out the fundamental
principles common to all of them. We discuss several possibilities how to extend
these principles to more than three qubits, and demonstrate that each of these
approaches leads to problems for higher qubit numbers.

This motivates the quest for a universal implementation, which works the
same way for any oracle and any qubit number. We derive such an implementa-
tion which can be programmed easily to realize any function under consideration.
We start by presenting the general concept, and continue with different ideas how
to implement the corresponding network. We show that these programmable net-
works can also be used for other tasks, and discuss some examples. The chapter
closes with a discussion of the complexity of these networks.

Preliminary results of this chapter have been published in [SS02a]. Another
article is in preparation.

5.1 Introductory considerations

5.1.1 Motivation

In this chapter, we discuss the implementation of the Deutsch–Jozsa algorithm.
What is the motivation to do that? As we have seen in Chapter 2, the Deutsch–
Jozsa algorithm is mainly a theoretical construction, intended to demonstrate

61

that quantum computers can outperform classical computers in terms of oracle
query compexity. In this sense, one could argue that an implementation of the
Deutsch–Jozsa algorithm is of purely theoretical interest.

On the other hand, the Deutsch–Jozsa algorithm is the algorithm which has
been implemented (or for which implementations have been proposed) most of-
ten, and for most physical realizations. A first reason is that among all known
quantum algorithms, the Deutsch–Jozsa algorithm is the most simple. Moreover,
it displays the key features of quantum computation, parallelism and entangle-
ment. We concentrate on the Collins–Kim–Holton version (see Section 2.2.1,
pg. 18 et seqq., or [CKH98]) of the Deutsch–Jozsa algorithm without the aux-
iliary qubit, since this bit does not get entangled with the other qubits by the
algorithm. In the sense mentioned above, the implementation of the Deutsch–
Jozsa algorithm is a meaningful test for the feasibility of quantum computation
with a given hardware setup.

5.1.2 The key issue is the implementation of the oracle

In the following, we investigate the implementation of the Deutsch oracle on
Josephson charge qubits. Therefore, recall the main steps of the Deutsch–Jozsa
algorithm as derived in Section 2.2.1:

H⊗N H⊗NN0···0
0···0
else balanced

: constantUf

First, the N -qubit register has to be prepared in the |0 · · · 0〉 state. We mentioned
in Section 3.1 that there exist schemes how to initialize each qubit of the register
to some well-defined value. We also showed in Section 4.1 how to do arbitrary one-
bit operations with the Hamiltonian provided by our hardware. This allows us to
initialize each qubit to the |0〉 state. Also, the two N -bit Hadamard operations
can be performed using our Hamiltonian, since they can be written as products of
one-bit Hadamards. We also mentioned that there exist schemes how to measure
the state of a charge qubit.

Thus, the only task which does not have an obvious solution is the imple-
mentation of the oracle. Recall that we want to implement the Deutsch–Jozsa
algorithm for all possible oracles in order to show the feasibility of quantum
computing in general and not only in some specially chosen cases.

At first glance, the implementation of the oracle might not look like a serious
obstacle. But in fact, it is very complicated. To give an idea why this is the case,
we estimate the number of different oracles which have to be implemented.

On the one hand, there are the oracles belonging to the two constant func-
tions f ≡ 0 and f ≡ 1. The implementation of these oracles is most easy—the
corresponding matrix is an identity matrix up to an irrelevant global phase. On

62

B(1)=2 B(4)=12870 B(7)=2.40 · 1037 B(10)=4.48 · 10306
B(2)=6 B(5)=6.01 · 108 B(8)=5.77 · 1075 B(11)=5.70 · 10614
B(3)=70 B(6)=1.83 · 1018 B(9)=4.73 · 10152 B(12)=1.30 · 101231

Table 5.1: Number of balanced function B(N) as a function of the number of
qubits.

the other hand, all the balanced functions have to be implemented. The number
of balanced functions B(N) is

B(N) =

(
2N

2N−1

)

,

since f : {0, 1}N → {0, 1} acts on a space with 2N elements, and half of the
function values is 1. For the first few N , the number of balanced functions B(N)
is given in Table 5.1. The asyptotic behavior of B(N) can be determined using
Stirling’s formula. For large N , one finds

B(N) ≈ 1√
2π

1

2N/2−1
22

N

∝ 22
N

√
2N

≈ 22
N

.

This means that the number of oracles grows almost doubly exponentially1 with
N , thus making it hard to give implementations for all different oracles without
finding some underlying principles. The discussion of existing approaches to this,
and the development of a new unified method, are subject of this chapter.

5.2 Existing implementations

of the Deutsch–Jozsa algorithm

Up to now, several implementations of the Deutsch–Jozsa algorithm have been
worked out. There exist implementations for up to two qubits in the classical
version with the auxiliary bit [CY95, LBF98, JM98, MDAK01, CMT01, KY02],
and there exist some implementations for three qubits in the Collins version with-
out an auxiliary qubit [CKH+00, KLLC00, SF01, VAZ+01, ADK01, BGLA02].
In the following, we focus on the three-bit solutions. They are of special interest
to us since—as discussed in Chapter 2—the three-bit case is the first to produce

1This can be seen nicely in Table 5.1—the exponent of B(N) is growing exponentially.

63

entanglement, and since for three qubits for the first time a classification of the
oracles proves useful.

Still, we omit some implementations from our discussion—for good reasons,
though. Firstly, there exists an experiment for the four -bit Deutsch–Jozsa algo-
rithm plus auxiliary qubit [MFM+00]. But in this experiment, only one single
balanced function was implemented, which did not even involve entanglement.

Then, there exist two implementations of the three-bit Deutsch–Jozsa al-
gorithm which use molecular vibronic states as quantum registers [VAZ+01,
BGLA02]. We do not consider these proposals, since the underlying concept
of quantum computation is quite different, as discussed in [VAZ+01]. Basi-
cally, those implementations do not use 3 quantum bits but one 8-level sys-
tem. Of cource, the physics is the same, since in both cases the Hilbert space is
8-dimensional. But there no longer exist concepts like one-bit operations or two-
bit operations, such that the notion of universal quantum computation—which is
a central issue in the proof of computational speed-up—no longer applies. Rather,
every operation has to be tailored by hand. Also, the system is not scalable, since
the number of different vibronic levels in the molecule which can be controlled
properly is limited to some hundred. We mention that recently a qubit-based
concept for quantum computation with rotovibrational states of molecules has
been proposed [TdVR02].

Finally, there also exists an implementation of Deutsch–Jozsa using an optical
scheme for quantum computation with only one photon [Tak00], where the state
of the register is determined by the path the photon takes (which, of course,
allows for superpositions as well). But neither this proposal is qubit-based, since,
e.g., applying a Hadamard to one bit requires beam splitters between all pairs of
beams. Of course, there also exist qubit-based proposals for quantum computing
with photons.

5.2.1 Classification by operation sequences

Before going into the details of the remaining three-bit implementations, let us
recall the basic things about the oracle in Deutsch’s algorithm. We consider the
oracles of balanced functions, i.e., functions with f(x) = 1 for exactly half of all
x. The oracle itself maps

Uf : |x〉 7→ (−1)f(x)|x〉 ,

i.e., it can be represented by a diagonal matrix, where the entries are ±1. The
phase of a state |x〉 is flipped exactly if f(x) = 1.

Classification by Siewert and Fazio

We will focus our discussion on the proposal given by Siewert and Fazio for
Josephson charge qubits [SF01], and then compare the generalized results to the

64

other implementations. The hardware used consists of three Josephson charge
qubits coupled by SQUID loops, i.e., the coupling is of theXY type. The coupling
is available between all pairs of qubits, which in fact is the simplest case of qubits
with nearest neighbor coupling arranged in a ring.

The authors start by noting that—due to the irrelevance of a global phase
of π—only 35 of the 70 balanced functions have to be considered. They classify
these 35 functions according to the separability of the oracle. There are 7 balanced
functions where the oracle can be decomposed into a product of one-bit operations
(class I), and 12 more functions where the oracle factorizes into an one-qubit and
a two-qubit part (class II). The remaining 16 gates cannot be factorized. Still,
the authors note that this fully entangling class in fact consists of two somehow
different classes (class III, IV).

Then, they show how these four classes can be implemented. For the fully
separable oracles of class I, no two-bit operations are necessary—one only needs
diagonal one-bit (i.e., phase-shifting) operations. For the partially entangling
class II, one two-bit operation is necessary. For the fully entangling oracles,
finally, at least two entangling operations are necessary. It turns out that this
is the criterion to discriminate the two subclasses. For class III, two two-bit
operations are needed, while for class IV, three of them are necessary.

Classification by controlled phase flips

We thus see that the true classification criterion for the oracles is the number of
two-qubit operations required for the implementation (i.e., the operation sequence
modulo local unitaries) rather than the separability.

We define the two-bit controlled phase flip 2CPF as

2CPF =







1
1

1
−1







,

i.e., the operation which flips the phase of the |11〉 state. More generally, an N -bit
controlled phase flip NCPF is the operation which flips the phase of the |1 · · · 1〉
state. This 2CPF and “one-bit controlled phase flips” 1CPF ≡ σz are the only
operations needed to assemble the Deutsch oracle. Since they are both diagonal,
all operations commute, and the operation sequence can be classified—up to one-
bit unitaries—by the number of 2CPFs, thus yielding exactly the classes we had
before. (A proof of this is given in the next section.)

As an example, take the balanced function

f0 ≡ (f0(x))x = (0, 0, 1, 0, 1, 1, 1, 0) .

The oracle of this function can be decomposed as follows (we use double square
brackets [[·]] for diagonal matrices, since otherwise the equation would not fit onto

65

the page):

Uf0 =





























1
1
−1
1
−1
−1
−1
1





























=





























1
1
−1
−1
−1
−1
1
1





























︸ ︷︷ ︸

=:A

·





























1
1
1
−1
1
1
1
−1





























︸ ︷︷ ︸

=:B

·





























1
1
1
1
1
1
−1
−1





























︸ ︷︷ ︸

=:C

.

The matrices A, B, and C on the right hand side can be decomposed as

A =

(
1
−1

)

⊗
(

1
−1

)

⊗ I = 1CPF⊗ 1CPF⊗ I , (5.1)

B = I ⊗







1
1

1
−1







= I ⊗ 2CPF , (5.2)

C =







1
1

1
−1






⊗ I = 2CPF⊗ I . (5.3)

This means that f0 belongs to the fully entangling oracles, and within the fully
entangling oracles to class III, the one with only two 2CPFs appearing in the
operation sequence (in contrast to class IV, where three 2CPFs appear).

Since the setup for the three-qubit case provides coupling between all pairs of
qubits, and the kCPFs commute (they are all diagonal!), all sequences containing
an equal number of 2CPFs are equivalent up to permutations of the qubits, and
up to one-bit operations. This implies that each of the classes consists of all the
oracles which have the same operation sequence modulo these transformations.

5.2.2 Classification by monomials

Before proceeding to the extension of this approach to four and more qubits,
we derive a more formal description of the classification scheme discussed above.
Although it looks a bit tedious at a first glance, this scheme provides an easy and
straightforward method to determine the class a balanced function belongs to.

We explain the method by means of an example. Take the function analyzed
in the last section, f0 ≡ (0, 0, 1, 0, 1, 1, 1, 0), and recall that the oracle Uf0 is
defined on the computational basis by

Uf0 : |x〉 7→ (−1)f0(x)|x〉 . (5.4)

66

We start by rewriting f0 as a sum of Kronecker deltas,

δx,y =

{
0 if x 6= y
1 if x = y

:

f0(x) =
∑

y:f(y)=1

δx,y

= δ010,x + δ100,x + δ101,x + δ110,x . (5.5)

Each of the δs can be expanded as a polynomial in (xi), e.g.:

δ010,x = (1− x1)x2(1− x3) = x2 − x1x2 − x2x3 + x1x2x3 .

This works since xi ∈ {0, 1}, and therefore (1− x1) equals to not(xi). Further-
more, a product corresponds to an and gating of the factors, which altogether
yields exactly the Kronecker delta.

By rewriting all four δs as polynomials in (xi)—note that each of the polyno-
mials contains ±x1x2x3—and by substituting the polynomials into (5.5), f0 can
be rewritten as

f0(x) = x1 + x2 − x1x2 − x2x3 .
Using (5.4), we see that the oracle does

Uf0 : |x〉 7→ (−1)f(x)|x〉
= (−1)x1(−1)x2

︸ ︷︷ ︸

1CPFs

(−1)x1x2(−1)x2x3

︸ ︷︷ ︸

2CPFs

|x〉 .

In this representation, the operation sequence can be seen clearly! The first two
factors correspond to two σz, i.e.,

1CPF, operations on qubits 1 and 2, cf. (5.1).
The third and fourth part correspond to one 2CPF each, namely the ones given
in (5.2) and (5.3). Thus, each monomial corresponds to some controlled phase
flip kCPF, where the number of xis in the monomial is the number k of bits the
kCPF operates on.

It is important to note that, since the polynomial expansion of each δ contains
±x1x2x3, and for a balanced function the number of δs is 2N/2 = 4, i.e., even,
(−1)x1x2x3 cannot appear in the oracle. Thus, the only nonlocal operations are
the ones with the monomials x1x2, x1x3 and x2x3, leading to the classification
discussed—class I–IV contains 0–3 of these monomials, respectively.

Another interesting observation is due to the fact that we are not interested
in the exact polynomial for f0 but in the action of the oracle Uf0 . Since the oracle
uses only (−1)f0 , f0 (and thus its polynomial) only has to be taken modulo 2.
Therefore, in the polynomial expansion of f0, each monomial may or may not
appear, but effectively it cannot have a prefactor other than 0 or 1. Alternatively,

67

one can replace the + in the polynomial by a ⊕, the sum modulo 2. Also, since
x2i = xi (as xi ∈ {0, 1}), the number of monomials is limited to 2N—each xi may
appear in the monomial (this includes the constant monomial 1 which leads to a
global phase).

It is clear that this decomposition can be done for the oracle of any balanced
function—in fact, for any function—and for an arbitrary number N of qubits.
In any case, the highest order controlled phase flip, i.e., |x〉 7→ (−1)x1···xN |x〉,
vanishes for all balanced functions. This means that for the N -bit Deutsch oracle,
controlled phase flips 1CPF up to N−1CPF are sufficient—and also necessary, of
course. This can be seen most easily by observing that σz ⊗ N−1CPF is the oracle
of a balanced function.

Starting from this representation of balanced functions and their oracles, we
will try to extend the classification scheme described above to more qubits in a
meaningful way. Before we do that, though, we briefly compare these results to
the other existing implementations.

5.2.3 Other implementation proposals

In the following, we briefly compare the other existing three-bit implementations
with the classification discussed above.

Kim et al.

Firstly, we discuss the implementation by Kim et al. [KLLC00]. The authors
show how the refined (i.e., Collins style) Deutsch–Jozsa algorithm can be imple-
mented on a three-bit NMR quantum computer, and give experimental results
carried out with 13C nuclear spins of 99% carbon-13 labeled alanine
(CH3CH(NH2)CO2H) in D2O solvent.

Searching for operation sequences, they also arrive at a classification according
to the entangling operations. They note that some balanced functions require
three-qubit interactions, but these can be simulated by two-qubit gates [KLL00].
Thus, they end up with four different classes of oracles, which are defined exactly
the same way as the classes we derived before, namely by the number of two-bit
operations needed to generate them.

Arvind, Dorai, and Kumar

Arvind, Dorai, and Kumar [ADK01] give an implementation of the Deutsch–
Jozsa algorithm for up to three qubits in the Collins version on an NMR quantum
computer. They mention that for up to two qubits no entanglement is involved,
so that the three-bit case is the first meaningful test for quantum computation.
For the three-qubit case, they give experimental results for an implementation
with 5-nitro-2-furaldehyde.

68

Unfortunately, the authors only discuss (and perform) the implementation
for 9 different functions, one of which is constant. Of the other 8 functions,
4 functions do not involve entanglement, 3 functions only entangle two qubits,
and only one function entangles all three qubits. For the 3 partially entangling
functions, they construct only one sequence, since the oracles can be transformed
into each other by permutation of the qubits. Finally, for the one fully entangling
function, simply an operation sequence is given, without any further discussions
about how other oracles involving full entanglement could be created.

Collins et al.

Finally, there exists an NMR implementation of the Deutsch–Jozsa algorithm by
Collins et al. [CKH+00]. The authors start by mentioning that each function
f (since it is a mapping of a finite set) can be represented by a polynomial in
the ring Z2 (i.e., the ring of natural numbers modulo 2). These polynomials are
obviously of the same form as the ones we derived using the δ representation.

They argue that for a demonstration of the feasibility of the Deutsch–Jozsa al-
gorithm, in principle an implementation of all different balanced functions would
be necessary. On the other hand, certain oracles can be transformed into each
other by permutation of the qubits (note that all qubits are coupled). Therefore,
the implementation has to be demonstrated for only one member of each permu-
tationally equivalent group of functions. This leads to 10 different classes, since
in this case also one-bit operations can make a difference. The first three classes
are non-entangling (our class I), the second three are partially entangling (our
class II), and the last four are fully entangling. Of these four, two belong to class
III, the other two to class IV. The authors give pulse sequences for each type of
oracle, and by permutation of the indices, the implementation of any oracle can
be derived.

5.3 Extending the existing implementations

This section is devoted to the extension of the existing solutions. As we have
seen, the analysis of the polynomial representation of the functions is very useful
and can be shown to be the principle underlying all implementations. Therefore
we will try to give some ideas how the existing classifications can be extended. To
this end, the main issue is to figure out what the aim of an implementation and
of a classification should be. As a result of the discussion, it will turn out that
each of the suggested extensions has certain disadvantages, and the classification
gets more and more complicated. Therefore, a universal implementation becomes
desirable.

69

5.3.1 First idea: Just find the operation sequence

The minimum requirement for an implementation of the Deutsch oracle is to
give an operation sequence how to perform the oracle. This, however, would
not be a challange by itself. For example, we simple could rewrite f as a sum of
Kronecker deltas, and implement each δ by an N -bit controlled phase flip NCPF.2

But N -bit controlled phase flips are hard to generate, especially in systems with
restricted couplings. Just think about the construction for the three-bit Toffoli
gate in Section 4.5.1, which is equivalent to a 3CPF, and imagine how this gets
more and more complicated for higher qubit numbers.

Additionally, constructions of this kind can be simplified considerably. Con-
sider, for instance, two N -bit controlled phase flips, i.e., δs, with only one bit
negated relative to each other. Such a construction could be simplified to only
one N−1CPF, see Fig. 5.1.

x1

x2

N

x3

N

≡

x1

x2

x3

Figure 5.1: Simple equivalence which can be used to simplify circuits with
controlled phase flips. The connected qubits with the squared boxes denote
controlled phase flips |x1 . . . xN 〉 7→ (−1)x1···xN |x1 . . . xN 〉, thus symbolizing their
symmetry against the permutation of qubits, and the boxed N is the not gate,
i.e., σx.

There exist more possible simplifications of this kind. Additionally, one
might feel tempted to find optimized operation sequences with respect to the
specific hardware implementation, as we did for the Toffoli implementation of
Section 4.5.1. But these simplifications would have to be carried out for each
oracle unless we have classes. A classification would reduce the effort spent on
simplification to the optimization of one function per class.

Simplifications like the ones mentioned above can also be carried out in the
polynominal representation of the oracle. For the example in Fig. 5.1:

|x〉 7→ (−1)x1x2x3(−1)(1−x1)x2x3|x〉
= (−1)x1x2x3(−1)x2x3(−1)x1x2x3|x〉
= (−1)x2x3|x〉 .

2The implementation of the proper δ is obtained by applying not operations before and
after the application of the NCPF to all bits which are |0〉 in the δ. The NCPF itself can
be obtained by Hadamard-transforming the target bit of an N -bit controlled-not, for which
constructions are known [BBC+95].

70

Obviously, the polynomial of an oracle can be rewritten in different ways. In the
example above, e.g., we used (1− x1)x2x3 + x1x2x3 = x2x3. Some other possible
rearrangements are

x1x2 · · · xk ⊕ x2 · · · xk = (1⊕ x1)x2 · · · xk
x1x3 · · · xk ⊕ x2x3 · · · xk = (x1 ⊕ x2)x3 · · · xk .

The first equation simplifies one kCPF and one k−1CPF to only one kCPF.
The second equation tells us that we can replace the two k−1CPFs by one k−1CPF,
plus two normal cnots. The cnots act on qubits 1 and 2, thus creating x1⊕ x2
for the k−1CPF and undoing it afterwards.

It is clear that a number of more or less sophisticated transformations, fol-
lowing similar ideas as these two, exist. Moreover, if we again consider our
hardware setup with restricted interactions, a transformation might be useful or
not depending on the qubits involved. This makes the transformations even more
difficult to handle, since it is not clear a priori what a good simplification is.

5.3.2 Better idea: Classify the oracles

We have seen that in case we want to have good, i.e., optimized, operation se-
quences, we have to spend a lot of work on the optimization of each oracle sep-
arately. Therefore, we would like to reduce the effort of optimization to the
simplification of only a few functions, and transfer the results to a whole class.

Classification up to one-bit operations

The simplest idea is to classify the oracles up to one-bit operations.3 This means
that two different balanced functions are regarded equivalent exactly if the cor-
responding oracles can be transformed into each other by local operations. For
balanced functions, it is sufficient to allow σz as a local operation. It appears
sensible to classify the oracles this way since local operations are easy to per-
form, so that they can safely be disregarded when optimizing the circuit. The
local operations themselves, or the classification, can be found by analyzing the
polynomial representation—the local σz ≡ 1CPFs are exactly the monomials
with only one xi. Classifying the 12870 4-bit Deutsch oracles this way yields 996
different classes, though. Since the number of oracles goes as 22

N

while classifica-
tion up to one-bit operations can identify a maximum of 2N balanced functions,
the number of classes is about 22

N

/2N , which still is double exponential in N .
In fact, the classification up to one-bit operations can be extended. It is

also possible to transform two oracles into each other by negating certain qubits
before and after the application of the oracle. This leads to a further reduction

3An even simpler idea is to identify the two functions which only differ by a global phase of
π. This gives a factor of two which is already included in all results which follow.

71

one-bit operations
symmetry none σz σz + not

full 365 86 25
ring 1446 253 57
line 3255 526 88

Table 5.2: Number of classes for the four-bit Deutsch oracle, where the clas-
sification is done with respect to invariances under the system symmetry (i.e.,
permutations of qubits), as well as local σz and not operations.

of the number of classes (although it only gives another factor of 2N), but the
classification can no longer be performed by simply looking at the polynomial.
Combining both criteria, we still get a total of 156 classes for 4 qubits (this
criterion alone gives 555 classes).

Classification up to system symmetry

In fact, the classification can be improved even more. By exploiting the system
symmetry, we find that certain classes can be implemented by exactly the same
operation sequence, up to permutations of the qubits. Still, the allowed permu-
tations depend on the symmetry of the system. If all qubits are coupled any
permutation is allowed and we get a real advantage by that classification. On the
other hand, in case of a ring with nearest neighbor coupling we can only apply
rotations and a reflection (i.e., xi ↔ xN−i for N qubits), and for a linear chain,
just the reflection remains. In case of a ring this gives a factor of N . On the other
hand, the classification might become quite hard, since we have to find a way to
identify two different oracles up to the allowed permutations. Table 5.2 shows the
number of classes for different symmetries of the setup, with and without one-bit
invariances. Clearly, for five qubits the number of classes will be a lot larger. We
do not give any values for this case, since the five-bit classification is very hard
to perform with a computer, as the number of oracles is about 108 compared to
104 for four qubits (cf. Table 5.1).

Classification up to two-bit operations?

Some more sophisticted classification schemes might be considered. One could
try, e.g., to define equivalence classes up to two-bit CPFs, since these are easy to
assemble. But all classification concepts which only classify up to operations with
a limited qubit depth only defer the problem—for some higher qubit number, we
run into exactly the same trouble.

Thus, even if we try to classify the oracles, we get an exceedingly growing
number of classes and a more and more complex classification scheme. For each

72

of the different classes—their number is growing almost double exponentially—we
have to optimize an operation sequence which itself will be about exponentially
long in most cases. This does not look like a satisfactory solution at all. Therefore,
a universal implementation of all Deutsch oracles on the same footing—without
referring to any type of classification scheme—becomes desireable.

5.4 Programmable networks for the oracle

The following section presents the central result of this thesis. We derive a type
of universal network which allows for the implementation of all Deutsch oracles
on the same footing. The operation sequence is fixed, and the desired oracle
can be programmed by simply adjusting the rotation angles of some well-defined
z rotations. Therefore, such a network might well be considered as a black box
(the fixed operation sequence of the network) with some knobs on it (the rotation
angles), which are used to programme the black box. The box takes an N -qubit
state as an input, and returns another N -qubit state. By properly adjusting the
knobs on the black box one can programme the network to encode any desired
Deutsch oracle. The connection between the balanced function and the knob
positions is straightforward.

The section is divided into three parts. Firstly, we present the basic idea of the
programmable networks without thinking about the physical implementation. In
the second part, we discuss different possible implementations of these networks.
Finally, we discuss two works which deal with similar ideas and compare them
to our results.

5.4.1 Programmable networks

To motivate the derivation of the network, we start by considering the following
simple two-qubit setup:

]z[φ11

]z[φ10
x1

x2]z[φ01

. (5.6)

In order to facilitate the dicussion, we structure the network into blocks A to E,
where each block contains only one operation.

x1]z[φ10

]z[φ01]z[φ11

A B C D E

init

A B C

final

E

D

2x =

. (5.7)

73

Introductory considerations

Clearly, it is sufficient to analyze the action of the network on initial states |init〉
chosen from the computational basis {|00〉, |01〉, |10〉, |11〉}, since we are concerned
with linear operations. In order to find out how the network (5.7) acts upon a
basis state, we need to consider the effect of the constituents of the network—
z rotations and the cnot gate.

Let us first consider the effect of φ[]z . By definition (cf. (2.1)),

φ[]z =

(
e−iφ/2

eiφ/2

)

,

so that the basis states are mapped as

φ[]z : |x〉 7→ exp
[
−iφ

2
(−1)x

]
|x〉 .

Therefore, φ[]z does not mix the basis states at all (no off-diagonal matrix el-
ements), but it rather introduces a relative phase of exp[−iφ] between |0〉 and
|1〉.

Secondly, we dicuss the cnot gate. The cnot gate maps

cnot : |x1, x2〉 7→ |x1, x1 ⊕ x2〉

and therefore does not introduce any phases at all. It does not even mix states
in a strict sense, it rather permutes them.

Using these observations for φ[]z and cnot, we see that it is indeed reason-
able to analyze the action of the network by considering the computational basis
states. If we insert a basis state into the network, it might collect some phase
shift from the z rotations, and it might get permuted with some other basis state
by the cnot gates, but it will not get mixed with any other basis state. There-
fore, if we start with a basis state, the system will be in a basis state at any point
throughout the network. Still, it might have collected some phase.

Analysis of the network

Now we analyze the network step by step. We start with a basis state as the
initial state,

|init〉 = |x1, x2〉 .
The first operation is

A =
x1

2x

[φ10]z .

It maps

|x1, x2〉 ≡ |x1〉|x2〉 A7−→
(
exp

[
−iφ10

2
(−1)x1

]
|x1〉

)
|x2〉 ≡ exp

[
−iφ10

2
(−1)x1

]
|x1, x2〉

74

and thus the state |A〉 after the application of A is

|A〉 = A|init〉
= exp

[
−iφ10

2
(−1)x1

]
|x1, x2〉 .

The operation

B =
x1

]z[φ012x

accordingly maps

|x1, x2〉 B7−→ exp
[
−iφ01

2
(−1)x2

]
|x1, x2〉 .

If applied to |A〉, the phase already contained in |A〉 has to be added, and we
obtain

|B〉 = B|A〉
= exp

[
−i
(
φ10

2
(−1)x1 + φ01

2
(−1)x2

)]
|x1, x2〉 .

Next, the first cnot operation is applied.

C =
x1

2x
.

cnot maps

|x1, x2〉 C7−→ |x1, x1 ⊕ x2〉 ,
i.e., the state |B〉 is mapped to

|C〉 = C|B〉
= exp

[
−i
(
φ10

2
(−1)x1 + φ01

2
(−1)x2

)]
|x1, x1 ⊕ x2〉 .

Now the third z rotation follows.

D =
x1

]z[φ112x
.

As mentioned before, it adds a phase of exp
[
−iφ11

2
(−1)x2

]
to the state |x1, x2〉.

But D is applied to the state |C〉, where the register is in the |x1, x1 ⊕ x2〉 state.
Consequently, the phase shift in this case is exp

[
−iφ11

2
(−1)x1⊕x2

]
, i.e.,

|D〉 = D|C〉
= exp

[
−i
(
φ10

2
(−1)x1 + φ01

2
(−1)x2 + φ11

2
(−1)x1⊕x2

)]
|x1, x1 ⊕ x2〉 .

Finally, the second cnot ≡ E acts on the basis state |x1, x1 ⊕ x2〉, yielding

|x1, x1 ⊕ x2〉 E7−→ |x1, x1 ⊕ x2 ⊕ x1〉 ≡ |x1, x2〉 .

75

Therefore, the final state is

|final〉 = |E〉 = E|D〉
= exp

[
−i
(
φ10

2
(−1)x1 + φ01

2
(−1)x2 + φ11

2
(−1)x1⊕x2

)]
|x1, x2〉 . (5.8)

One could argue that this phase is a global phase, and therefore irrelevant.
This is true, of course, as long as we only insert basis states into the network. As
soon as we apply the network to some superposition of basis states,

|init〉 =
∑

x1,x2

αx1,x2
|x1, x2〉 ,

we see that the resulting state is

|final〉 =
∑

x1,x2

exp
[
−i
(
φ10

2
(−1)x1 + φ01

2
(−1)x2 + φ11

2
(−1)x1⊕x2

)]
αx1,x2

|x1, x2〉 .

In this case, the phase factors observed in (5.8) (to be correct, their differences)
are relative phases—at least, we cannot consider them as global phases which are
not important.

Reformulation of the result

The result obtained in (5.8) can be formulated as follows. If applied to an input
state |x1, x2〉 the network (5.6) preserves this input state, but a phase θx1,x2

is
added:

|x〉 ≡ |x1, x2〉 7→ e−iθx |x〉 ,
where the phase angle is

θx ≡ θx1,x2
=
φ10
2

(−1)x1 +
φ01
2

(−1)x2 +
φ11
2

(−1)x1⊕x2 . (5.9)

In order to restate our result more canonically, we first introduce a new phase
φ00. Clearly, to fit into the pattern of (5.9), φ00 has to appear in the sum as
φ00

2
(−1)0, since 0 is the empty xor expression. Therefore, including φ00 in (5.9)

gives

θx ≡ θx1,x2
=
φ00
2

+
φ10
2

(−1)x1 +
φ01
2

(−1)x2 +
φ11
2

(−1)x1⊕x2 . (5.10)

Clearly, this phase φ00/2 is a global phase—it is applied the same way to all the
basis states. Therefore, we can safely include it in θx, since it still describes the
physical behavior of the network (5.6).

For the following, we define vectors θ and φ as

θ := (θ00, θ01, θ10, θ11) and

φ := (φ00, φ01, φ10, φ11) .

76

We also give a name to our network (5.6), namely Uθ, the oracle belonging to
θ ≡ θ(φ). It does

Uθ : |x〉 7→ e−iθx(φ)|x〉 .
On the other hand, recall that our goal is to build the different possible Deutsch
oracles, which actually correspond to

Uf : |x〉 7→ (−1)f(x)|x〉 .

So in order to implement a Deutsch oracle using the network Uθ, i.e., Uf = Uθ,
we require

e−iθx(φ) = (−1)f(x) , (5.11)

which finally leads to the requirement4 that

θx(φ) = πf(x) , (5.12)

or by defining f = (f(00), f(01), f(10), f(11)),

θ(φ) = πf .

The question which remains open is whether φ —recall that this is the ad-
justable variable in our network Uθ —can be chosen such that we get the appro-
priate θ. In order to find out about this we rewrite the relation (5.10) between
θ and φ, which is a linear mapping, as a matrix:

θ =
1

2







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1






φ . (5.13)

But this matrix is the (unnormalized) Hadamard transformation H2 in two di-
mensions, and we know very well that this matrix can be inverted. In fact, it is
its own inverse (up to the normalization factor):

H2H2 = 22 = 4 ,

so that

φ =
1

2
H2θ . (5.14)

This implies that for any desired (balanced) function f , we can first derive θ using
(5.12). By virtue of (5.14) we can then determine φ such that the mapping Uθ ≡
Uθ(φ) gives exactly the oracle Uf for f . Therefore, the network Uθ of (5.6) allows
us to construct any oracle with the same setup, simply by changing the three
angles φx1,x2

in the network. In this sense it is a programmable network, since it

4In fact, (5.12) is only one possible choice of θ satisfying (5.11).

77

can be programmed to implement any Boolean function simply by adjusting the
z rotations. (Admittedly, until now this only works for two qubits, which is not
spectacular at all, but this was only to demonstrate how these networks work in
principle. We will show how to extend this to an arbitrary number of qubits in
a moment.)

We should add that this network is in fact capable of implementing Uθ : |x〉 7→
e−iθx |x〉 for any θ with the same fixed setup, only by varying the rotation angles
of the z rotations.

Generalization to N qubits

In order to generalize this to an arbitrary number of qubits—which gives us a
universal and powerful method to build arbitrary Deutsch oracles—we start in the
reverse direction. We look for an N -qubit network with parameters φ ∈ [0, 2π]2

N

(rotation angles, e.g.), which does

Uθ : |x〉 7→ e−iθx |x〉 , (5.15)

and where θ is related to φ by

θ =
1

2
HNφ , (5.16)

with HN the unnormalized N -bit Hadamard transform. This leads to the inverse
relation

φ =
1

2N−1
HNθ . (5.17)

By the same arguments as in the two-bit case, this would give us the possibility
to easily adjust the network (i.e., the φs), such that it implements the desired
Deutsch oracle—the network would be programmable.

Such a network does not mix the computational basis states |x〉 ∈ {0, 1}2N

,
but the phase of each of these states is shifted by θx. Applying the definition
(2.6) of the Hadamard transform on N qubits to (5.16), we obtain

θx =
1

2

∑

y

(−1)x·yφy

=
∑

y

(−1)x1y1⊕...⊕xNyN
φy

2
.

This means that—if applied to any basis state |x〉 —our network has to shift the
phase by (−1)x1y1⊕...⊕xNyNφy/2, for all values of y.

In this sum, we can safely omit the contribution from y = 0, since in this
case the contribution to the phase of a state |x〉 is (−1)0φ0/2 = φ0/2, i.e., a

78

global phase.5 Therefore, we have to realize a network which applies the array of
operations

|x〉 7→ exp
[

−iφy

2
(−1)x·y

]

|x〉 (5.18)

to each state, where the array is taken over all y 6= 0. For these y, one can easily
see that for y fixed x · y = x1y1 ⊕ . . .⊕ xNyN is exactly the ⊕-sum of all the xi
for which yi = 1 holds, i.e.,

⊕

{i|yi=1} xi. This is true since all the products with
yi = 0 vanish and therefore do not contribute.

Now for a given y 6= 0, the operation (5.18) can be accomplished the following
way. Start by generating the desired ⊕ (i.e., xor) combination of the input bits.
This can be done by choosing one of the bits as the target bit, and applying cnot

between all other bits and the target bit. Thereby, the desired xor combination
x ·y of the input bits is generated on the target bit. Then perform a z rotation by
an angle φy, and then apply the cnot network backwards to restore the original
state in the register (since cnot · cnot = I). This network obviously does not
change basis states, but it shifts their phases according to (5.18).

The whole programmable network for (5.15) can be obtained by perform-
ing (5.18) as described above for all y 6= 0 one after another. In principle, this
yields already a programmable network for an arbitrary number of qubits which
obeys the equations mentioned above.

However, this method can be simplified considerably, even at the current
conceptual level. Particularly, since the effect of a z rotation is determined solely
by the the state of the qubit the rotation is applied to, the states of the other
qubits are not important. Neglecting the z rotations for a moment, we only have
to find a cnot network which generates all possible xor combinations of the
inputs and finally restores the original state. This network can be regarded as a
classical logical network in the same sense in which cnot can be regarded as a
classical logic gate. For this reason, we might as well use the cns gate introduced
in Chapter 4 as the basic building block for these networks. Into that classically
derived network, the z rotations have to be placed on the qubits which currently
have the right xor value of the input bits.

By the procedure given above, it is clear that for any qubit number a network
of this kind can be implemented in principle. We thus know how to build a
network which is capable of doing any diagonal phase-shifting operation

Uθ : |x〉 7→ e−iθx |x〉 .

The desired phase shift θ can be adjusted arbitrarily, since the rotation angles of

5Note that—since we are tracing backwards— omitting φ0/2 corresponds to adding φ00/2 in
the two-bit example. In fact the addition of some constant φ00/2 would not have been necessary
at all (since it has no physical consequences!) to make the method work. But we would not have
obtained the Hadamard transform as the relation between θ and φ, thus making the treatment
less handy.

79

the z rotations can be determined easily using

φ =
1

2N−1
HNθ . (5.19)

For the unnormalized Hadamard transform, efficient classical algorithms are
known [Knu97] which particularly are more efficient than a simple matrix mul-
tiplication. Namely, one only needs N2N additions (although HN is a 2N × 2N

matrix).
Specifically, this kind of network network allows for the implementation of

Uf : |x〉 7→ (−1)f(x)|x〉

for any Boolean function f , especially for any balanced function and thus for
any Deutsch oracle. The network is the same for all oracles considered; the
only parameters which have to be tuned are the rotation angles of the considered
(2N−1) z rotations. The rotation angle can be determined easily using θ = πf in
addition to (5.19). Therefore, we call this network a programmable network since
it can be programmed easily to implement various functions or functionalities.

5.4.2 Implementing the programmable networks

In the following we give some methods how to construct the desired networks.
Each of these methods is easier to apply and leads to more compact sequences
than the theoretical construction used in the existence proof above. Hopefully,
the examples given in the following also help to clarify the underlying idea of the
programmable networks.

Gray sequences

We start with a method how to get efficient networks for systems providing direct
cnot operations between all pairs of qubits. This method is based on a suggestion
how to construct similar networks for N -bit Toffoli gates given in [BBC+95]. In
fact, these networks gave the first idea to the programmable networks. We will
just briefly present the method by showing how the construction works for three
and four qubits. We will not discuss the fully formalized version of this network,
since the formalization is straightforward and we actually wanted to focus on
systems which only provide nearest-neighbor coupling.

For this construction, we first have to introduce Gray sequences. An N -bit
Gray sequence is a sequence of all 2N N -bit binary numbers, where two adjacent
numbers differ by exactly one bit. (Optimally, this also holds for the first and
the last number of the sequence.) There exist many different Gray sequences for
each N (see [Knu02] for an exhaustive survey), but for our purpose, the simplest
construction will suffice.

80

We denote the N -bit Gray sequence by GN = (gN1 , . . . , g
N
2N). The simplest

Gray sequence is the one-bit sequence G1 = (0, 1). If GN is known, GN+1 can
be constructed easily as GN+1 = (0GN , 1GN), where GN = (gN2N , . . . , g

N
1) is the

reversed Gray sequence for N bits, and 0GN denotes the sequence consisting of
GN , with the N+1st bit filled with 0. One can easily check that this construction
ensures that GN+1 is a Gray sequence, provided GN is one. The sequences for up
to four qubits are given in Table 5.3.

Now in order to find the desired network simply generate the xor combina-
tions of the xis in the order in which they appear in the Gray sequence, where
an “1” on the ith position symbolizes that the corresponding xi appears in the
xor combination (as opposed to the usual convention, we number the xis from
right to left to render the resulting networks comparable). Clearly, 0 · · · 0 has
to be omitted. The target bit for the cnots is the one which stays “1” in the
Gray sequence for the longest time. In Table 5.3, we marked the target bits for
the cnots by bold typesetting. In order to illustrate the method, we give the
corresponding cnot networks for two, three and four qubits in Fig. 5.2.

This method gives the most efficient implementation of such networks for sys-
tems with cnot between all qubits, unless parallel execution is considered. The
number of cnot gates required is 2N−2. Since we have to generate 2N − (N + 1)
xor combinations and finally to restore the original state of the register, this is
indeed optimal. In principle this construction could be transferred to systems
with only nearest neighbor coupling. Still, this would require for the swapping of
qubits. We need roughly N swappings per cnot, namely N/2 before and after
each cnot. Therefore, the number of cnot gates grows by a factor of N . Of
course, one could argue that some of the swap gates probably cancel out, and
that the cns gate could be used to save swaps. Although this is true in principle,
such a workaround is not desirable since we loose the clarity of the solution and
have to start with tedious simplifications again.

Construction for Josephson qubits

In the following, we give another method for constucting non-parallel networks.
The method only presumes a chain of qubits with nearest neighbor coupling, and
is suitable for all types of interaction, although the best results are achieved for
the cns gate. It is therefore the optimal construction for our hardware setup
of Josephson junctions coupled by SQUID loops. It is especially easy to use,
since the network for N + 1 qubits is obtained inductively by applying a simple
substitution rule to the N -qubit network.

We start by reconsidering the requirements for such a network. The N -
qubit network has to contain all possible xor combinations of the input bits
(x1, . . . , xN), and perform z rotations on them. The (N + 1)-qubit network, on
the other hand, has to generate all xor combinations of (x1, . . . , xN+1). Now
these xor combinations of the N +1 bits of course contain all the xor combina-

81

G1 G2 G3 G4

0 0|0 0|00 0|000
1 0|1 0|01 0|001

1|1 0|11 0|011
1|0 0|10 0|010

1|10 0|110
1|11 0|111
1|01 0|101
1|00 0|100

1|100
1|101
1|111
1|110
1|010
1|011
1|001
1|000

Table 5.3: Gray sequence for up to four bits, constructed by the method ex-
plained in the text. Except from the new bit, the new sequence contains the old
sequence in its original order, and afterwards in the reversed order. The bold
“1”s denote the target bits for the cnots.

x1

x2

x1

x2

01

11 10

x1

x2

x3

x1

x2

x3

011 010

111110

001

101 100

x1

x2

x3

x4

x1

x2

x3

x4

0001

0011 0010

0110 0111 0101 0100

1100 1101 1111 1110 1010 1011 1001 1000

Figure 5.2: Programmable networks (z rotations omitted) for two, three and
four qubits, constructed using Gray sequences. The blocks marked gray are
identical to the programmable network for one qubit less.

82

tions of the first N qubits (x1, . . . , xN), as well as these combinations xored with
xN+1. As one can easily see (or check by counting the number of different xor

combinations), together with the “xor combination” xN+1 itself, this already
gives all xor combinations of (x1, . . . , xN+1).

6

We therefore see that—starting from the N -qubit network—we get the N+1-
qubit network by replacing each z rotation by the z rotation for the old condition,
plus a z rotation on the same qubit xored with the N + 1st qubit. Finally, we
also have to add a z rotation for the new qubit xN+1 alone. In order to be able
to realize the additional xor with the N + 1st qubit in a system with nearest
neighbor coupling, we require all the z rotations to be located on the Nth qubit,
i.e., next to the newly added qubit. This enables us to perform the xor, i.e.,
cnot, operation of the line holding the old xor combination with the new qubit
directly.

In the following, we illustrate the method by demonstrating the construction
of the network for up to three qubits, starting with the trivial one-qubit case.
There, the network consists of a single z rotation:

]zx1 [φ1
. (5.20)

For the two-qubit case, we could in principle use the network (5.6). Nevertheless,
since we want to have all the z rotations located on the second line, a bit more
effort has to be done.

A network which gives all the z rotations on the second line using the cns

gate as the basic two-qubit gate might look like

]zφ[10]zφ[01]zφ[11

x1

x2

. (5.21)

The three cns gates cancel out, and the network provides all necessary xors.
This case already provides all ingredients needed to derive a general rule.

Namely, the step from the one-qubit network (5.20) to the two-qubit network
(5.21) can be described as follows. Firstly, we added the phase shift controlled
by the new qubit x2,]zφ[01 . Then, we replaced the old phase shift with the

condition x1,]z[φ1 , by two phase shifts with the two xor conditions x1 and

x1 ⊕ x2, i.e.,]zφ[10 and]zφ[11 . This was accomplished by replacing the old
z rotation by the remaining part of the network. Note that all the phase shifts
are located on the second qubit.

6Speaking more formally, we split the sum over all (y1, . . . , yN+1), where the xors are
(x1, . . . , xN+1) · (y1, . . . , yN+1), into a sum over all (y1, . . . , yN , 0) and all (y1, . . . , yN , 1) which
gives the N -qubit xors, where in the second case xN+1 is additionally xored. The special
treatment of xN+1, i.e., (0, . . . , 0, 1), results from the fact that the empty xor combination on
N qubits is missing. If we add a formal phase shift for y = 0, the extension gets fully canonical.

83

]z[φ001

]z[01φwas

]z[φ010]z[φ011]z[φ100

]z[10φwas

]z[φ101]z[φ110]z[φ111

]z[11φwas

x1

x2

x3

Figure 5.3: Programmable network for three qubits, using cns and nearest
neighbor coupling, derived by the recursive method given in Section 5.4.2. The
blocks obtained by substituting (5.22) into the two-bit network (5.21) are marked,
and the original shifts located on these blocks in the two-bit network are given.

In fact, this is already the step from N to N+1 we discussed above. Provided
we have the network for N qubits, we can obtain the network for N + 1 qubits
the following way. Start by adding the phase shift acting only on the new qubit
xN+1, i.e.,]zφ[0···01 , and then simply replace all conditional rotations]z[φy1···yN

of
the old network according to the following rule:

y1···yN
]zx·y [φ =⇒

y1···yN
]z[φ 0

xN+1 y1···yN
]z[φ 1

x·y
. (5.22)

Following these rules, we can derive the three-bit network from the two-bit
network, and generally, N + 1 from N . Especially, this construction leaves all
the z rotations on the last qubit, so that the construction can be iterated. Addi-
tionally, the indices y = (y1, . . . , yN+1) of the rotations, i.e., the xor conditions,
appear in their natural order if read as a binary code.

We give the network for three qubits as derived from the two-qubit network
in Fig. 5.3, where the blocks replaced relative to the two-bit network (5.21) are
highlighted. We omit the four-qubit network, since the examples get lengthy very
quickly. The number of cns gates needed is 3(2N − (N + 1)).

We close this subsection with a remark concerning other interaction types. If
the genuine interaction of the system is the ZZ rather than the XY interaction,
i.e., we have cnot instead of cns as the basic two-qubit operation, the network
can be built by noting that two antiparallel cnot gates exactly give a cns gate.
As far as we can see, this is the best possible realization of the extension rule (5.22)
with cnot.7 For the JJ interaction, things are more complicated. Probably the
most efficient method is to use one cnot, one cns and one swap operation in
the extension rule (5.22) where the gates are built using the JJ interaction.

Parallel construction

In the following we present a different method for the construction of the pro-
grammable networks which gives by far more compact sequences than the ap-

7There is another possibility, but the total number of cnots in (5.22) is still 6.

84

a)

]z

[

[

[

[

]z

]z

[φ

[]z

]z]z

]z

[

[φ

[

[]z

]z

]z

]z []z

[1111

[1001]z

]z

[0110]z

0100

1100

0001

0011

0111

1101 1010

1000

1110

0101 1011

φ

φ

φ

φ

φ

φ

φ

φ φ

φ

φ φ

[0010φ

b)

[]z1100φ [0110]zφ

[]z1000φ

[]z0011φ

[]z1011φ

[]z1110φ

]z[0010φ

[]z0101φ []z0111φ

[φ]z1010

[φ]z1101 [1111]φ

[1001]φ

[0001]φ

[]z0100φ

Figure 5.4: a) The four-bit network for a system with nearest neighbor XY
coupling, where parallel execution of operations is feasible. In this setup, the
qubits are arranged in a ring. Note that the z rotations and the two-qubit
operations are located in distinct blocks. Compare the length of this sequence to
to the serial three-bit network of Fig. 5.3. b) The corresponding circuit with the
cnot gate as the basic operation. Obviously, in this case the use of the cns gate
does not make the sequence shorter. It is interesting to note the regularity of
both networks. The regularity of a) can even be increased by rotating the origin
with the network.

proaches mentioned before, and still works for nearest neighbor coupling. The
difference to the other approaches is the parallel execution of gates which—
compared to serial execution—can give a speed-up of up to a factor of O(N).
The main drawback is that we cannot give canonical ways how to construct these
networks efficiently. We put the discussion of this point off until the end of the
section.

As already mentioned at the end of Section 5.4.1, pg. 79, the only thing that
matters about the network is that it only consists of operations as cnot and
cns which perform permutations on the basis, but do not change the phase, and
z rotations. These phase shifting rotations have to be placed on qubits having
exactly the desired xor combination of the input bits—the state of all the other
qubits is of no importance. This allows for the parallel execution of operations
as long as these boundary conditions are respected. The parallelization itself
imposes no problems since operations acting on different qubits one after another
commute and therefore can be executed in parallel as well.

The main problem with the parallel networks is that we could not find a
method for the formal construction of these networks. The network shown in
Fig. 5.4a shows one optimal (it is not necessarily unique) universal four-bit net-
work for a circular setup of qubits with nearest-neighbor coupling, found by an

85

[]z0100φ

[]z0011φ

[]z0111φ

[]z1100φ

[]z0001φ

[]z1011φ [1001]φ []z1010φ []z1111φ

[]z0101φ

[]z1101φ []z1110φ

[]z1000φ

[]z0110φ

]z[0010φ

Figure 5.5: The four-bit programmable network for a setup of qubits arranged
in a line with only nearest neighbor coupling. Once again, note the high regularity
of the sequence. A sequence of the same length can also be obtained using cns

as the basic building block.

Figure 5.6: The six-qubit programmable network for a setup of qubits arranged
in a ring, with cns between nearest neighbors. The z rotations have been omitted,
since they would not have been readable anyway. The network was found by
an algorithm calculating blocks containing 4 steps each, and then repeatedly
applying that block. The optimization was only performed within that block.

4 bits 6 bits
lower bound Fig. 5.4a Fig. 5.4b Fig. 5.5 lower bound Fig. 5.6

8 8 8 12 21.3 28

Table 5.4: Length (i.e., number of blocks of two-bit operations) of the parallel
sequences given in Figs. 5.4–5.6, compared to the theoretical lower bound. Note
that this lower bound does not take into account the restricted interaction range
and that the six-bit sequence of Fig. 5.6 is not necessarily the shortest possible
sequence.

86

exhaustive search. Note that this search is purely combinatoric and does not have
to take care of the quantum mechanical nature of the network. Interestingly, the
sequence of cns operations is highly regular, suggesting the existence of some rule
behind the network. The network is well structured—there are blocks containing
only cns gates (note the massive parallelism!) and there are blocks contain-
ing only phase shifters. Due to the structure of the network the position of most
phase shifts is not unique. Note also that the sequence consists of exactly 16 ≡ 2N

two-bit operations, only two more than for the (not nearest neighbor) network
with Gray sequences. In fact, even a sequence with only 14 cns gates does exists,
which is optimal as already explained for the Gray sequence technique. Still, we
did not present that sequence here since it appears less regular—two of the cns

operations are carried out in a non-parallel way.

Studying the four-bit network of Fig. 5.4a, one might be lead to the conclusion
(possibly motivated by Chapter 4) that the use of the cns gate is essential for
the compactness of the code. Due to the arrangement of the qubits in a ring the
swap included in the cns operation somehow rotates two of the qubits clock-
and the other two counterclockwise, thus mixing them well. It turns out, though,
that this argument is not completely correct. Namely, we give the same network
with cnot gates in Fig. 5.4b, which obviously has exactly the same length. Still,
there is some advantage of the cns gate over the cnot gate in case one uses the
programmable networks for a fixed purpose. An example is given in Section 5.5.3.

Of course, one can also search for networks in a linear setup. Also in this
case, the cns gate and the cnot gate yield sequences of the same length. The
result for cnot is given in Fig. 5.5.

Finally, we also give a network for six qubits (the five-qubit case is less in-
teresting, since it does not allow for more parallelism than the four-qubit case),
using cns gates and qubits arranged in a ring (Fig. 5.6). This network was not
derived by an full exhaustive search but—motivated by the “periodicity” of the
networks in Fig. 5.4—by repeatedly applying identical blocks of length 4 and only
searching within all the possibilities for that block.

The minimum length of the sequences with a parallel implementation is
2N/(N/2). Namely, (roughly) 2N xor combinations have to be generated. Per
time step, at most N/2 combinations can be generated, because both cnot and
cns return one new and one of the old states. In Table 5.4, we compare this
bound to the length of the sequences given in this section.

5.4.3 Similar approaches

At the end of this section, we want to discuss two results obtained by other groups
which are related to the approach presented here. In fact, our solution can be
regarded as a combination of these two approaches although it was not found
that way.

87

The first paper we want to mention deals with the implementation of arbi-
trary unitary operations using only the Hamiltonian allowed by spin-1/2 sys-
tems [KLL00]. The authors start by noting that the generator G of any unitary
U , U = e−iG, can be decomposed with respect to a basis {Bs} which consists
of all possible outer products of the Pauli spin matrices and the identity matrix:
U = e−i

∑

s bsBs . The key step is now to transform this representation into another
one, namely U =

∏

s e
−ib′sBs . The authors emphasize that it is not clear at all

how this transform might work in general.
Finally—and this is the step we are most interested in—they show how the

e−ib
′
sBs can be realized in a system with only ZZ coupling between nearest neigh-

bors. To this end, they first note that any e−ib
′
sBs can be transformed into some

e−idsDs by local unitaries where Ds is an outer product of only σz and identity
matrices. The implementation of e−idsDs still would require ZZ type interaction
between multiple qubits, i.e., Hamiltonians of the form σ

(i1)
z ⊗ · · · ⊗ σ

(ik)
z . But

such Hamiltonians can be simulated by the following circuit:

xk−1

x1

x2

x3

xk

· ·
 ·

·

· ·
 ·

·U ≡

x2

x3

xk−1

xk

·
·

·
·

·
·

·
·

1x

V

(5.23)

where U = e−idsσz⊗···⊗σz , and V = e−idsσz⊗σz . This can be understood nicely in
terms of our xor formalism. U is a diagonal matrix doing U : |x1, . . . , xk〉 7→
exp

[
−ids(−1)(x1⊕···⊕xk)

]
|x1, . . . , xk〉. But we know how to implement such ma-

trices! Just create an xor of the corresponding bits, apply a z rotation about
an angle of 2ds to the xored qubit, and undo the xors. That is indeed what is
happening in (5.23), except that the last pair of cnots and the phase shift are
collected to the operation V , which can be checked using the xor network for
two bits.

Secondly, we refer to a preprint named Concurrent Quantum Computation

[YMY00]. The authors start from the point that mappings of the form U : |x〉 7→
(−1)f(x)|x〉 are needed often in quantum computation and that the construction
of these operations by sequential application of one- and two-bit operations takes
a vast number of operations. They note that on a system providing arbitrary
and independently tunable multi-particle ZZ interactions (!) one can implement
U with only one time evolution. They show that this can be done by prop-
erly adjusting the interactions strengths resp. interaction times of the different
interactions.

88

But as we have seen from the other paper, each multi-particle ZZ interaction
can be implemented by creating xors of the corresponding bits and applying
a z rotation with a properly chosen angle. Therefore, the combination of both
approaches plus the observation that the relation between function and phase
shifts, i.e., interaction times, is exactly the Hadamard transform gives our result.
Moreover, in our approach it is clear that the key point is only the creation of the
xor combinations and the phase shifts, and by no means their order, parallelism,
the complete deconstruction of each xor each time, and so on.

5.5 Other applications

for programmable networks

Before closing the work with some considerations on complexity, we want to
show briefly some other fields of application for the universal networks introduced
above.

5.5.1 Grover’s algorithm

Except for Deutsch’s algorithm, there is another application of the universal
networks in the field of quantum algorithms—the oracle in Grover’s algorithm.
Recall that Grover’s algorithm searches an unsorted database for marked items.
The database is represented by an arbitrary function f : {0, 1}N → {0, 1}, and the
implementation of the database on the quantum computer works via Uf : |x〉 7→
(−1)f(x)|x〉. Clearly, we can realize such mappings, so that we are capable of
testing Grover’s algorithm for an arbitrary database, especially with an arbitrary
number of marked items. In fact, we only need our network and Hadamard
transforms on all qubits in between since the algorithm only contains the oracle,
the Hadamard transform, and the oracle belonging to the database with only
item 0 marked.

It should be added that for databases with only a few marked items, this
method does not give efficient implementations for high N . Namely, for one
marked item it is much more efficient to use N -bit controlled phase flips where the
state to be flipped can be determined by properly negating certain bits. Strate-
gies for implementing controlled phase flips in O(N 2) operations (or even O(N)
if using ancillae) are known [BBC+95]. It should be added that—for systems
with arbitrary couplings—these methods perform better only up from N = 7.
Moreover, for N = 4, e.g., the parallel networks given in Fig. 5.4 provide a much
more efficient implementation of the Grover oracle as well as of the 0 oracle con-
tained in the algorithm itself. Finally, the use of the programmable networks
for Grover’s algorithm once again gives one universal operation sequence for all
oracles.

89

a)

H [π/4]z

[−π/4]z

[π/4]z

[−π/4]z [π/4]z

[−π/4]z [−π/4]z H

b)

[π/4]z

[−π/4]z [π/4]z

[−π/4]z

H

[−π/4]z [π/4]z [−π/4]z

H

Figure 5.7: Networks for the Toffoli gate using a) cnot and b) cns gates
as the basic two-qubit operations. The networks have been derived using the
programmable networks, thus giving an efficient implementation.

Up to now, implementations of Grover’s algorithm searching for single items
have been given for two [CGK98, JMH98, YSV+99, MXKL00, VLS+01, Fen01,
EKW01, EF02, YMB+02] and three qubits [VSS+00, KMSW00]. For two qubits,
there also exist implementations of the multi-item search [LYL+01, ZLSD02].

5.5.2 The Toffoli gate

In the following, we turn to more practical applications of the concept of pro-
grammable networks. By this, we mean applications which clearly give an ad-
vantage over known constructions, and where the operations under consideration
could be of practical relevance in future quantum computers.

As a first example, we consider the Toffoli gate. We already gave an efficient
implementation of the Toffoli gate in Chapter 4, demonstrating that the use
of the cns gate could lead to considerable more compact sequences for certain
operations in case only nearest neighbor couplings are provided. In the following,
we show how even shorter sequences for the Toffoli gate in systems with only
nearest-neighbor coupling can be obtained, regardless whether the basic gate is
cnot or cns.

In order to apply the programmable networks to the Toffoli gate, we have to
find a connection between the non-diagonal Toffoli gate,

toffoli ≡ x2

1x

x3

≡















1
1

1
1

1
1

0 1
1 0















,

90

and our diagonal phase-shifting matrices. Obviously, the submatrices with re-
spect to the third qubit, i.e., the 2 × 2 matrices on the diagonal, are identity
and σx (i.e., not) matrices—and σx can be transformed to σz by virtue of the
Hadamard transform.8 By Hadamard-transforming the third qubit, we indeed
get

x2

1x

x3 H H

≡















1
1

1
1

1
1

1
−1















.

But this is a kind of operation we can implement with our universal networks!
By Hadamard-transforming the coefficients, we find for the rotation angles

φ =
(π

4
,−π

4
,−π

4
,
π

4
,−π

4
,
π

4
,
π

4
,−π

4

)

.

This can be implemented using a three-bit network. The network can be opti-
mized to the given interaction type and distance by an exhaustive search. For
cnot and coupling between all qubits, one finds a construction very similar to
the one given in [DiV98]9 (see also pg. 54). In Fig. 5.7, we give the networks for
a system with nearest neighbor interaction and with cnot resp. cns as the basic
two-qubit gate. Observe that the cns version performs slightly better than the
optimized version given in Chapter 4.

This idea can be extended to a higher number of qubits. The standard con-
struction for N -bit controlled nots given in [BBC+95] is the most optimal for up
to 7 qubits, and our approach gives us a more general view of this construction.
This allows us to optimize the circuit more effectively, especially in systems with
restricted interaction types and distances. Moreover, our construction provides
easy-to-use methods to parallelize these circuits, which leads, e.g., to a very com-
pact sequence for the four-bit controlled not gate. In cases like this it is not
a real disadvantage that we have no systematic methods to construct the gen-
eral parallel N -qubit network since we only need the network for a certain fixed
number of qubits, and also the optimization has to be done only once.

8This can in fact be expressed more formally. Consider a mapping (as Toffoli) which applies
not to the Nth qubit, if some function f(x1, . . . , xN−1) is true, else it applies the identity. By a
Hadamard transform on the Nth qubit before and after the operation, σx is transformed to σz,
while the identity does not change. Therefore, one obtains a mapping σz iff f(x1, . . . , xN−1) = 1.

9Indeed, these constructions for the toffoli gate, namely the one given in [BBC+95], lead
to the idea for the programmable networks.

91

5.5.3 The CARRY gate

As another practical example where the use of the programmable networks leads
to considerably shorted sequences, we discuss the carry gate [VBE96]. The
carry gate is used in circuits performing a reversible addition, which in turn is
necessary to implement the modular exponentiation in Shor’s factoring algorithm.
The carry gate takes two (qu)bits to be added, an and bn, and the carry bit
of the last stage of the adder, cn−1. It then returns a carry bit cn which is one
exactly if at least two of the three inputs are one—this is clearly what a carry
bit should do. Quantum mechanically, we need to insert a qubit for cn as well.
If the carry bit has to be set, this qubit is negated. The carry gate can be
implemented by the following circuit [VBE96]:

cn
~

bn

cn

an an

bn

cn−1 cn−1C
A

R
R

Y
≡ . (5.24)

As described, the carry gate only changes the last qubit, namely applies σx to
it if the carry condition is true, otherwise the identity operator.

By using the hint we already introduced for the Toffoli gate, i.e., by applying
the Hadamard transform to the last qubit, we can transform this to a σz matrix.
Thus, the carry gate is transformed to a diagonal phase-shifting matrix. The
calculation of the phase shifts for our programmable network gives

φ =
(π

2
,−π

2
,−π

4
,
π

4
,−π

4
,
π

4
, 0, 0,−π

4
,
π

4
, 0, 0, 0, 0,

π

4
,−π

4

)

.

These values could of course be inserted directly into the circuits derived in the
sections before, plus the Hadamard transforms on the last qubit. But φ has only
nine components (neglecting φ0000) which are non-zero—the other phase shifts
can be omitted. But if we do not need to perform phase shifts on these xor

combinations of the qubits, then in fact there is no need to generate these xors
at all! Therefore, we can re-optimize our network to generate only those xor

combinations we actually need. In this case, the cns gate has an advantage over
cnot. Since the sequence gets shorter, the ability of the cns gate to mix the
states quickly once again comes into play. If we consider a linear setup of qubits
with nearest neighbor coupling, using cns we need 10 gates, or 12 gates in 8
slices for a parallel implementation. For cnot, we need 14 gates resp. 15 gates
in 11 slices. Compare this to the 2 ·6+2 = 14 cnots needed for the conventional
implementation of the sequence given in (5.24) although we assume arbitrary
couplings! In a system of qubits arranged in a ring, we even get a cns sequence
using only 9 gates in 5 slices. Some of the resulting networks are given in Fig. 5.8.

92

a)

[π/4]z

[π/4]z

[−π/4]z

[π/4]z

[−π/4]z

H

[−π/2 z]

]z

H

[−π/4

[−π/4]z

[π/4]z

b)

[−π/4]z

[−π/4]z

[−π/4]z

[π/4]z

[−π/2 z]

[π/4]z

[π/4]z

[−π/4]z

H H

[π/4]z

Figure 5.8: Programmable networks (actually, not any more), optimized for
the carry gate. We give a parallelized cns network for qubits arranged in a
ring, and a non-parallel network for a linear setup of qubits. (The non-parallel
network is still drawn with some operations in parallel. The point if talking of
parallel or non-parallel networks is mainly concerned with the optimization—do
we optimize the number of two-bit operations, or do we optimize the number
of time slices?) Note the apparent—almost surprising—symmetry of the second
network if rotated by 180 degrees.

5.6 Complexity considerations

We close the chapter with some considerations on complexity. The central issue
in this discussion is the fact that on the one hand we complained about the
growing difficulty if we want to extend existing classification schemes, on the other
hand, our approach gives sequences of exponential length—O(2N), or O(2N/N)
for parallel implementations. Therefore, one might feel tempted to ask whether
programmable networks really give an advantage over the other approaches.

We start with some general considerations. Assume that only a limited num-
ber k of different basic operations is available. Then, for a sequence with length
l, there exist kl different possibilities (parallel execution excluded). On the other
hand, the number of oracles goes as 22

N

/N for large N . So if we want to be able
to implement all oracles, most of the sequences will have a length of about

l = log
[

22
N

/N
]

/ log k

=
1

log k

[
2N − logN

]
(5.25)

∝ 2N

where log ≡ log2.
We therefore see that the implementation of all Deutsch oracles necessarily

93

leads to sequences with a length exponential in N . Admittedly, the number of
operations in our setup is not fixed, since the grid of the z rotations gets smaller
as 2−N . We will discuss this below.

Now let us compare the length of the programmable network to the length of
the sequence for other approaches discussed at the beginning of this chapter. The
implementation using the δs directly, i.e., via controlled phase flips needs 2N−1
NCPFs. Per NCPF, either O(N) or O(N 2) operations are needed [BBC+95]. In
the first case we need an auxiliary qubit which is not the case for our setup. In the
second case, phase shifts with a grid ∝ 2−N appear. Moreover, both complexities
only hold for systems with arbitrary interactions. Therefore, in both cases an
additional factor of N appears due to the swap operations (which moreover
make the implementation more difficult to handle). Therefore, we end up with
O(N 32N) operations if we work without ancillae.

For the implementation with controlled phase flips derived from the polyno-
mial, the number of operations required in the worst case (i.e., for some polyno-
mial containing many monomials) is O(N 32N) as well.10 Hence, we see that both
approaches lead to sequences with an additional factor of N 3 (or N 4 if we use
parallelized networks) compared to the sequences obtained with programmable
networks.

On the other hand, the simplification of these circuits leads back to a clas-
sification scheme. But according to (5.25) most of the sequences will still have
exponential length after the simplification. Moreover, the number of classes will
be double exponential unless we classify by an exponential number of invariants
which makes the classification itself very hard. This means that we have to
simplify a double exponential number of circuits each of which has exponential
length. This work has to be done before the implementation itself. This is a
serious obstacle if one considers the rapidly growing number of oracles or classes,
cf. Table 5.1. Compared to this, if we use programmable networks there is only
one fixed sequence which we have to simplify.

Finally, we would like to come back to the grid of the z rotations which
clearly (cf. (5.17)) gets smaller as 2−N . This could be a serious drawback since
for growing qubit numbers we have to be able to control the one-bit operations
more and more precisely. On the other hand, for large circuits a good control of
the system is necessary in any case. Finally, this also leads to an observation how
our programmable networks could be simplified. Recall that the relation between
the rotation angles φ of the z rotations and the phase shifts θ applied by the
network was

θ = 1
2
HNφ . (5.26)

10Note that

N−1∑

k=2

(
N

k

)

k3 = −
(
N +N3

)
+
(

3
8
N2 + 1

8
N3
)
2N .

94

From this we derived
φ = 1

2N−1HNθ . (5.27)

But in fact, this is not the only choice for φ which satisfies (5.26). Since θ is
a vector of phase angles which are all 2π-periodic, we can indeed choose any φ
which yields the same angle θ. In other words, we can add any multiple of 2π to
any component of θ, and then apply (5.27). Thereby, we get a large number of
different φs, due to the prefactor 1/2N−1 in (5.27).

This could be a way to avoid that the grid becomes exponentially small.
One could even try to use this to set a subset of the φs to zero, so that the
programmable network can be simplified similarly to the carry example, but
without loosing its universal applicability to all Deutsch oracles.

However, it appears as if the φs we can set to zero were not the same for
all balanced functions. Actually, if one tries to carry out this simplification one
finds similarities to the existing classifications. This is an interesting subject for
further investigation. We mention some ideas related to this in the appendix.

95

96

Chapter 6

Conclusions and outlook

The aim of this thesis was to show how the Deutsch–Jozsa algorithm can be
implemented for more than three qubits on Josephson charge qubits, extending
the work by Siewert and Fazio [SF01].

To this end, we started by analyzing the existing three-bit solutions. We
could find the common principles underlying all of them, and gave a generalized
description of the classification in terms of the polynomial representation of the
oracle. We discussed different possible schemes how to extend the existing clas-
sifications, and demostrated that all these extensions cannot solve the problem
of the rapidly growing number of classes.

These observations motivated the quest for an implementation which is not
based on any classification. We could find a type of programmable networks which
allow for the implementation of all Deutsch oracles on the same footing. These
networks have a fixed operation sequence, where the only adjustable operations
are one-bit z rotations. The relation between the Deutsch oracles and the rotation
angles is straightforward.

We could devise different ways how to construct these networks. Particularly,
we found a systematic recursive method how to build the networks for systems
with only nearest neighbor coupling. For these systems we could also provide a
parallelized construction which yields highly compact sequences. As a byproduct,
we found a genuine two-bit operation for the XY interaction. In several cases,
this cns gate gives a considerable advantage over the conventional constructions
using cnot.

The programmable networks allow for the implementation of all Deutsch or-
acles on the same footing. Thus, we obtain an operation sequence of constant
length, which is considerably shorter than the sequences derived by other meth-
ods which are similarly straightforward to apply. Although shorter sequences for
at least a subset of the oracles could be found, this would require the optimization
of each oracle separately, and therefore is not desirable.

The programmable networks derived are in fact multi-purpose networks. Be-
yond the oracles in Deutsch’s algorithm, they can be used for the implementation

97

of Grover’s oracle. Furthermore, together with the Hadamard transform these
networks allow for the implementation of any controlled-not operation. This in-
cludes the Toffoli or multi-qubit cnot gates as well as other gates with practical
relevance such as the carry gate.

Still, there remain some interesting questions open which might be subject
to future research. It is certainly interesting to ask whether there are other ap-
plications for the programmable networks, e.g., similar to the carry gate. It
would be challenging to find out whether programmable networks which are sim-
ilarly easy to apply can be found for non-diagonal matrices as well. To this end,
one could try to use several programmable networks with Hadamard transforms
placed inbetween, motivated by the observation that the programmable networks
together with Hadamard are universal.

Another interesting open field is the investigation of the programmable net-
works with respect to errors. It would be interesting to know whether errors
occuring in the network are attenuated or rather amplified. One might ask this
question especially with respect to imprecisions of the z rotations. Finally, one
might feel tempted to implement an error correction into the network. It seems
especially appealing to try to integrate the five-bit error correcting code discussed
in Chapter 4 into the programmable network. For a hardware setup with XY
interaction and nearest neighbor coupling in a ring constructions which are sim-
ilarly efficient as the one for the error correcting code alone are imaginable.

Finally, it would be challenging to investigate the effects caused by the 2π-
periodicity of θ, and to find out whether this gives a straightforward method to
further simplify the networks for the Deutsch oracle. This question seems to be
related to the entanglement of the states generated by the Deutsch algorithm.
The study of these relations might even lead to some new insight into the nature
of the entanglement of these states. Some basic ideas on this are given in the
appendix.

98

Appendix A

Formal equivalence of oracle
representations

This appendix discusses some interesting aspects of the programmable networks
as well as the polynomial representation of the oracles with respect to entangle-
ment and locality. Recall the relation

θ = 1
2
HNφ .

The N -bit Hadamard operation HN = H⊗N is a local operation. On the other
hand, θ is related to the oracle and the state generated by it in the Deutsch
algorithm. Therefore, the question arises whether the entanglement properties of
that state (which are not changed by local operations) can still be found in φ.

On the other hand, recall the polynomial representation. Define mony(x) to
be the monomial containing all xi with yi = 1. Then, the polynomial represen-
tation

f(x) =
∑

y

pymony(x)

defines a vector p of the coefficients of the monomials in the polynomial. The
relation between p and f is clearly linear. But is it local as well?

Take a vector α = (α1, . . . , αN) ≡
∑

i αi|i〉. This vector is separable (i.e.,
local) with respect to two subsystems if a decomposition

∑

i

αi|i〉 =
∑

j,k

βjγk|j〉|k〉

in two vectors β and γ exists, i.e., αij = βiγj with a combined index ij. Math-
ematically, α = β ⊗ γ. Clearly, this is the definition of separability used in
quantum mechanics, but actually it applies to any vector in any product space.
An operation is local exactly if it preserves the locality of any vector (resp. state
in quantum mechanics) in such a way that each of the parts of the result is already
determined by the corresponding part of the input.

99

Now suppose f is separable with respect to two subsystems x1,x2 of x, i.e.,
x = (x1,x2). Then

f(x) = f 1(x1)f 2(x2)

=
∑

y1

p1y1mony1(x1)
∑

y2

p2y2mony2(x2)

=
∑

y1,y2

p1y1p2y2mony1(x1)mony2(x2)

=
∑

y1,y2

p1y1p2y2mon(y1,y2)(x
1,x2)

=
∑

y1,y2

p1y1p2y2mony(x) .

Therefore, the coefficients in the polynomial for f are py = p1
y1p2y2 . Obviously,

this means p = p1 ⊗ p2, where p1 and p2 are the polynomial representations of
f 1 and f 2. Therefore, the mapping between f and p is local as well. The matrix
of this mapping is TN = T⊗N , where

T =

(
1 0
−1 1

)

.

Together with the known relation θ = πf , this gives the following diagram:

f θ

p φ

-·π

?

TN
6
1
2
HN

This means that the relation between all three different representations of f is
local—a very interesting observation with respect to entanglement. Still, this is
not the entanglement of the state created by the oracle. But by defining a new
θ̂ = θ − π

2
, we see that θ̂x = −π

2
(−1)f(x), and therefore θ̂ has exactly the same

entanglement and separability properties as the state generated by f . Corre-
spondingly, we define f̂ , φ̂ and p̂ by the following diagram:

f θ

p φ

-·π

?

TN
6
1
2
HN

θ̂ f̂

φ̂ p̂

¾ ·π

6
1
2
HN

?

TN

-−π/2

100

From this diagram, we can derive the following relation between φ̂ and φ:

φ̂ =
(
1
2
HN

)−1 (
I − π

2

)
1
2
HNφ

= φ−
(
1
2
HN

)−1 π
2

= φ− πδ0 ,

where δ0 is the vector (1, 0, . . . , 0). (This can be checked easily, for instance by
noting that (1, . . . , 1) = (1, 1)⊗N , and H(1, 1) = (2, 0)). This means that φ̂ and
φ only differ by the 0 component—which is the only component which does not
appear in the programmable network. (On might notice that this is of course
exactly the global phase we added before.) Similarly, one finds

p̂ = p− 1
2
δ0 ,

i.e., p̂ and p only differ in the prefactor of the constant monomial, which once
more only contributes a global phase and does not enter the implementation
derived from the polynomial. (In fact, things are a bit more complicated in this
case, but it still works.)

To conclude, the entanglement properties of the state after the application of
f are found in θ̂ and f̂ , and therefore due to the locality of HN and TN in φ̂
and p̂ as well. On the other hand, φ̂ and p̂ can be used for the implementation
of the oracle the same way φ or p can be used. Therefore, the properties of the
state concerning locality or entanglement can be found in the parameters of the
programmable network or in the sequence of controlled phase flips derived from
the polynomial.

This suggests that we can learn more about the entanglement by studying the
different representations of the oracles, but one might as well suspect that this is
exactly the reason why the simplification using the 2π-periodicity probably will
fail. Finally, it tells us what the nice thing about the programmable networks
is. These networks in fact do not reduce the complexity of the problem, but
they are its optimal representation in the sense that all flexible parts are one-bit
operations, and therefore it is most easy to adapt to its specific purpose.

101

102

Appendix B

Deutsche Zusammenfassung
(German abstract)

Lange Zeit wurde davon ausgegangen, daß die Informatik, ähnlich der Mathema-
tik, auf einer rein theoretischen Ebene betrieben werden könne, ohne die kon-
krete physikalische Realisierung des Computers zu berücksichtigen. Den ersten
Hinweis darauf, daß diese Sichtweise nicht zutreffend ist, gab Landauer [Lan61],
der nachweisen konnte, daß in einer irreversiblen Berechnung jeder Rechenschritt
ein Mindestmaß an Entropie erzeugt, das von grundlegenden thermodynamischen
Gesetzen bestimmt wird.

In der Folgezeit wurde immer klarer, daß es nicht möglich ist, Computer un-
abhängig von ihrer physikalischen Realisierung zu beschreiben: zum einen werden
den Möglichkeiten von Computern durch die zugrundeliegenden physikalischen
Theorien Grenzen gesetzt, genauso aber können neue physikalische Theorien auch
neue Möglichkeiten im Bereich der Computer eröffnen. In dieser Hinsicht ist es
interessant festzustellen, daß die traditionellen Computermodelle der Informatik
vollständig im Rahmen der klassischen Physik beschreibbar sind.

Feynman [Fey82] wies als erster darauf hin, daß die Quantenmechanik neue
Möglichkeiten im Bereich der Computer eröffnen könnte: während die Simulation
eines quantenmechanischen Systems auf einem klassischen Computer im Normal-
fall exponentieller Resourcen bedarf, kann das System sich selbst in linearer Zeit

”
simulieren“.

Das erste konkrete Beispiel einer Aufgabenstellung, bei der ein quantenme-
chanisches System (ein

”
Quantencomputer“) einem klassischen Computer nach-

weisbar überlegen ist, kam vom Deutsch [Deu85]. Von diesem Zeitpunkt an war
klar, daß Quantencomputer tatsächlich eine neue Art von Computern darstel-
len. Einige Jahre später gelang es Deutsch und Jozsa [DJ92], den Algorithmus
so zu erweitern, daß sich ein exponentieller Geschwindigkeitsvorteil gegenüber
klassischen Computern ergibt.

Diese Entdeckung beförderte die Forschung im noch jungen Gebiet des Quan-
tencomputing. Eine Reihe von neuen Algorithmen wurde gefunden, von denen

103

insbesondere der Algorithmus von Shor [Sho94] zum Faktorisieren großer Zah-
len und der Algorithmus von Grover [Gro96] zum Durchsuchen unstrukurierten
Datenbanken zu nennen sind.

Die Entdeckung dieser Algorithmen, die praktische Perspektiven für die An-
wendung von Quantencomputern aufzeigten, gab auch der Suche nach physikali-
schen Implementierungen neuen Auftrieb. Die ersten Experimente wurden mittels
Kernspinresonanz in organischen Flüssigkeiten durchgeführt, da diese Systeme
gute Eigenschaften bezüglich Kohärenz und kontrollierbarer Dynamik besitzten.
Andererseits sind diesen Systemen aufgrund der zugrundeliegenden Physik in
Bezug auf ihre Skalierbarkeit, die für die praktische Anwendbarkeit von Quan-
tencomputern unabdingbar ist, klare Grenzen gesetzt.

In dieser Hinsicht scheinen Realisierungen auf Festkörperbasis wesentlich ge-
eigneter zu sein, da hier der Skalierung keine prinzipiellen Hindernisse im Weg
stehen. Eine Vielzahl von Implementierungen wurde vorgeschlagen, basierend un-
ter anderem auf Spins in Quantendots, auf Kernspins sowie auf mesoskopischen
supraleitenden Systemen. In dieser Arbeit beschäftigen wir uns mit einer spezi-
ellen Art supraleitender Systeme, nämlich den Josephson–Ladungsqubits.

Für viele dieser Implementierungen diente der Deutsch–Jozsa-Algorithmus
als eine erste Demonstration für die Anwendbarkeit dieser Systeme als Quanten-
computer. Collins et al. [CKH98] konnten nachweisen, daß der Deutsch–Jozsa-
Algorithmus tatsächlich einen aussagekräftiger Test für die Realisierbarkeit von
Quantencomputern mit einer spezifischen Implementierung darstellt, da er we-
sentlichen Gebrauch von den beiden Kernelementen von Quantenalgorithmen,
Parallelität und Verschränkung, macht. Sie führten eine auf diese Elemente re-
duzierte Version des Algorithmus ein und konnten nachweisen, daß der Deutsch–
Jozsa-Algorithmus erst von einer Anzahl von mindestens drei Quantenbits an
tatsächlich Gebrauch von Verschränkung macht; daraus folgerten sie, daß der
Algorithmus erst von drei Qubits aufwärts als ein echter Test für eine Implemen-
tierung angesehen werden kann.

Trotz der Entdeckung bei weitem komplexerer Quantenalgorithmen dient
der Deutsch–Jozsa-Algorithmus immer noch in vielen Fällen als erster Test für
Quantencomputing-Systeme, wohl auch, weil er vergleichsweise einfach aufge-
baut ist. Aussagekräftige Implementierungen, also Implementierungen für drei
Bits, existieren für Kernspinresonanzsysteme und für mittels SQUIDs gekoppel-
te Josephson-Ladungsqubits. Andererseits existieren keinerlei Implementierungen
für mehr als drei Qubits. Dies liegt jedoch nicht, wie man meinen könnte, daran,
daß Quantencomputer mit mehr als drei Qubits nach derzeitigem Stand nicht
machbar wären, denn tatsächlich existieren Implementierungen mit bis zu sieben
Qubits [VSB+01]. Somit stellt sich die Frage nach der Möglichkeit einer Imple-
mentierung des Deutsch–Jozsa-Algorithmus für vier und mehr Qubits.

Ziel dieser Arbeit ist es aufzuzeigen, wie sich der Deutsch–Jozsa-Algorithmus
mit mehr als drei Qubits realisieren läßt. Insbesondere soll damit eine Arbeit von
Siewert und Fazio [SF01] fortgesetzt werden, die eine Drei-Bit-Implementierung

104

für mittels SQUID-loops gekoppelte Josephson-Ladungsqubits vorgeschlagen ha-
ben. Obwohl der Schwerpunkt dieser Arbeit auf dieser Implementierung liegt,
sind die meisten Ergebnisse nicht darauf beschränkt.

Die Kapitel 2 und 3 geben eine Einführung in die Grundlagen des Quan-
tencomputing im Allgemeinen sowie in die Physik der Josephson-Ladungsqubits.
Kapitel 4 verknüpft die Ergebnisse dieser beiden Kapitel. Desweiteren führen wir
ein neues Quantengatter ein, das für die verwendete Implementierung besonders
geeignet ist und in vielen Fällen wesentlich kürzere Implementierungen als die
klassischen Verfahren ermöglicht. Diese Ergebnisse wurden bereits anderweitig
veröffentlicht [SS02b].

Kapitel 5 schließlich enthält die wesentlichen Ergebnisse der Arbeit. Vorläufi-
ge Resultate dieses Kapitels wurden bereits veröffentlicht [SS02a]. Wir beginnen
mit einer Diskussion der exisiterenden Drei-Bit-Implementierungen. Dabei leiten
wir eine Verallgemeinerung der verschiedenen Ansätze her, die auf einer Darstel-
lung der verschiedenen beim Deutsch–Jozsa-Algorithmus zu implementierenden
Funktionen durch Polynome beruht. Alle diese Ansätze gehen so vor, daß sie
die verschiedenen Funktionen nach gewissen Merkmalen klassifizieren und dann
untersuchen, wie man die Funktionen der verschiedenen Klassen implementie-
ren kann. Wir diskutieren verschiedene Vorschläge, wie man, ausgehend von der
Darstellung durch Polynome, die existierenden Klassifizierungen erweitern kann,
und weisen nach, daß für all diese Ansätze die Anzahl der verschiedenen Klassen
äußerst schnell wächst, so daß ein Klassifikationsansatz letztendlich nicht wei-
terführt.

Es scheint vorteilhafter zu sein, einen vereinheitlichten Ansatz zur Implemen-
tierung dieser Funktionen zu verwenden, bei dem alle Funktionen auf die selbe
Weise realisiert werden können, so daß die langwierige Klassifikation der Funk-
tionen entfällt. Wir leiten dafür das Konzept programmierbarer Netzwerke her.
Diese Netzwerke ermöglichen es uns, alle Funktionen mit einem festen Netzwerk
zu implementieren. Die gewünschte Funktion kann durch die Einstellung von ei-
nigen Einbit-z-Rotationen ausgewählt werden, wobei die Rotationswinkel durch
eine einfache Operation aus der Funktion hergeleitet werden können.

Anschließend zeigen wir verschiedene Möglichkeiten auf, diese Netzwerke zu
implementieren, unter anderem auch eine systematische rekursive Konstruktion
sowie eine besonders effiziente parallele Version für die verwendete Implementie-
rung. Bei diesen Netzwerken kann die im Kapitel 4 hergeleitete neue Zwei-Bit-
Operation gewinnbringend eingesetzt werden.

Die Fähigkeit der programmierbaren Netzwerke, alle Funktionen des Deutsch–
Jozsa-Algorithmus gleichermaßen zu implementieren, hat viele Vorteile: alle Se-
quenzen haben die gleiche Länge, und da wir nur eine Sequenz für alle verschie-
denen Fälle benötigen, lohnt sich die Optimierung dieser Netzwerke besonders.
Desweiteren können beispielsweise auch Fehlerkorrekturverfahren speziell auf das
Netzwerk zugeschnitten werden.

Diese Netzwerke sind, abgesehen vom Deutsch–Jozsa-Algorithmus, auch noch

105

für eine Reihe weiterer Anwendungen geeignet: so kann man mit ihnen auch al-
le möglichen Datenbankfunktionen des Algorithmus von Grover implementieren,
außerdem kann man mittels eines Tricks beliebige kontrollierte not-Operationen
ausführen. In diese Klasse fallen auch eine Reihe von Operationen, die in pra-
xisrelevanten Netzwerken benötigt werden, wie z.B. das Toffoli-Gatter oder das
carry-Gatter, die unter anderem im Algorithmus von Shor Verwendung finden.

Zusammenfassend läßt sich feststellen, daß wir ein Verfahren aufzeigen konn-
ten, mit dem sich eine Vielzahl von auf den ersten Blick sehr verschiedenen
Operationen mit einem einzigen, einfach anzupassenden programmierbaren Netz-
werk implementieren läßt. Diese programmierbaren Netwerke lassen sich auch auf
Hardwaresystemen mit spezifischen Beschränkungen effizient implementieren und
bieten somit eine breite Palette von Anwendungen.

106

Bibliography

[ADK01] Arvind, K. Dorai and A. Kumar, Quantum entanglement in the
NMR implementation of the Deutsch-Jozsa algorithm, Pramana,
Journal of Physics 56, L705 (2001), quant-ph/9909067.

[AL99] D. S. Abrams and S. Lloyd, Quantum Algorithm Providing Exponen-
tial Speed Increase for Finding Eigenvalues and Eigenvectors, Phys.
Rev. Lett. 83, 5162–5165 (1999), quant-ph/9807070.

[Bar95] A. Barenco, A universal two-bit gate for quantum computation,
Proc. R. Soc. Lond. A 449, 679–683 (1995), quant-ph/9505016.

[BB01] J.-L. Brylinski and R. Brylinski, Universal quantum gates, (2001),
quant-ph/0108062.

[BBC+95] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin and H. Weinfurter, Elementary gates
for quantum computation, Phys. Rev. A 52, 3457–3467 (1995),
quant-ph/9503016.

[BBHT98] M. Boyer, G. Brassard, P. Høyer and A. Tapp, Tight bounds on
quantum searching, Fortschr. Phys. 46, 493–505 (1998), quant-
ph/9605034.

[BDD+02] M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W.
Harrow, D. Mortimer, M. A. Nielsen and T. J. Osborne, Practical
Scheme for Quantum Computation with Any Two-Qubit Entangling
Gate, Phys. Rev. Lett. 89, 247902 (2002), quant-ph/0207072.

[Bea02] S. Beauregard, Circuit for Shor’s algorithm using 2n+3 qubits,
(2002), quant-ph/0205095.

[Ben73] C. H. Bennett, Logical reversibility of computation, IBM J. Res.
Develop. , 525–532 (1973).

[BGLA02] Z. Bihary, D. R. Glenn, D. A. Lidar and V. A. Apkarian, An Im-
plementation of the Deutsch-Jozsa Algorithm on Molecular Vibronic

107

Coherences Through Four-Wave Mixing: a Theoretical Study, Chem.
Phys. Lett. 360, 459 (2002), quant-ph/0110041.

[BLDS99] G. Burkard, D. Loss, D. P. DiVincenzo and J. A. Smolin, Physical
optimization of quantum error correction circuits, Phys. Rev. B 60,
11404 (1999), cond-mat/9905230.

[BS97] S. L. Braunstein and J. A. Smolin, Perfect quantum-error-correction
coding in 24 laser pulses, Phys. Rev. A 55, 945 (1997), quant-
ph/9604036.

[BV93] E. Bernstein and U. Vazirani, Quantum complexity theory, in Proc.
Twenty-Fifth Ann. ACM Symp. on the Theory of Computing, ACM
Press, 1993.

[CEMM98] R. Cleve, A. Ekert, C. Macchiavello and M. Mosca, Quantum algo-
rithms revisited, Proc. R. Soc. Lond. 454, 339–354 (1998), quant-
ph/9708016.

[CGK98] I. L. Chuang, N. Gershenfeld and M. Kubinec, Experimental Imple-
mentation of Fast Quantum Searching, Phys. Rev. Lett. 80, 3408
(1998).

[CKH98] D. Collins, K. Kim and W. Holton, Deutsch-Jozsa algorithm as a
test of quantum computation, Phys. Rev. A 58, R1663–1666 (1998),
quant-ph/9807012.

[CKH+00] D. Collins, K. W. Kim, W. C. Holton, H. Sierzputowska-Gracz and
E. O. Stejskal, NMR quantum computation with indirectly coupled
gates, Phys. Rev. A 62, 022304 (2000), quant-ph/9910006.

[CL83] A. Caldeira and A. Leggett, Quantum tunnelling in a dissipative
system, Ann. Phys. 149, 374–456 (1983).

[CMT01] G. Ciaramicoli, I. Marzoli and P. Tombesi, Realization of a quantum
algorithm using a trapped electron, Phys. Rev. A 63, 052307 (2001).

[CY95] I. L. Chuang and Y. Yamamoto, Simple quantum computer, Phys.
Rev. A 52, 3489 (1995), quant-ph/9505011.

[Deu85] D. Deutsch, Quantum theory, the Church-Turing principle and the
universal quantum computer, Proc. R. Soc. Lond. 400, 97–117
(1985).

[Deu89] D. Deutsch, Quantum computational networks, Proc. R. Soc. Lond.
A 425, 73–90 (1989).

108

[DiV98] D. P. DiVincenzo, Quantum gates and circuits, Proc. R. Soc. Lond.
A 454, 261–276 (1998), quant-ph/9705009.

[DiV00] D. P. DiVincenzo, The Physical Implementation of Quantum Com-
putation, Fortschr. Phys. 48, 771–783 (2000), quant-ph/0002077.

[DJ92] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum
computation, Proc. R. Soc. Lond. 439, 553–558 (1992).

[Dra00] T. G. Draper, Addition on a Quantum Computer, (2000), quant-
ph/0008033.

[DS96] D. DiVincenzo and P. Shor, Fault-Tolerant Error Correction with
Efficient Quantum Codes, Phys. Rev. Lett. 77, 3260 (1996), quant-
ph/9605031.

[EF02] V. L. Ermakov and B. M. Fung, Experimental realization of a con-
tinuous version of the Grover algorithm, accepted for publication in
Phys. Rev. A (2002), quant-ph/0208145.

[EJ96] A. Ekert and R. Jozsa, Quantum computation and Shor’s factoring
algorithm, Rev. Mod. Phys. 68, 733–753 (1996).

[EKW01] B.-G. Englert, C. Kurtsiefer and H. Weinfurter, Universal unitary
gate for single-photon two-qubit states, Phys. Rev. A 63, 032303
(2001), quant-ph/0101064.

[Euc] ���������
	��
�����������������
��� (Euclid, Elements (Book VII), about 300 B.C.).

[EWD+01] P. Echternach, C. P. Williams, S. C. Dultz, P. Delsing, S. Braunstein
and J. P. Dowling, Universal Quantum Gates for Single Cooper
Pair Box Based Quantum Computing, Quantum Computation and
Information 1, 143 (2001), quant-ph/0112025.

[Fen01] M. Feng, Grover search with pairs of trapped ions, Phys. Rev. A
63, 052308 (2001), quant-ph/0102122.

[Fey82] R. P. Feynman, Simulating physics with computers, Int. J. Theor.
Phys. 21, 467–488 (1982).

[GD92] H. Grabert and M. Devoret, editors, Single Charge Tunneling,
Plenum, New York, 1992.

[Gro96] L. K. Grover, A fast quantum mechanical algorithm for database
search, in Proceedings of the 28th Annual ACM Symposium of
Theory of Computing, 1996.

109

[Høy99] P. Høyer, Conjugated operators in quantum algorithms, Phys. Rev.
A 59, 3280–3289 (1999).

[IAB+99] A. Imamoḡlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo,
D. Loss, M. Sherwin and A. Small, Quantum Information Processing
Using Quantum Dot Spins and Cavity QED, Phys. Rev. Lett. 83,
4204 (1999), quant-ph/9904096.

[JL02] R. Jozsa and N. Linden, On the role of entanglement in quantum
computational speed-up, (2002), quant-ph/0201143.

[JM98] J. A. Jones and M. Mosca, Implementation of a quantum algorithm
on a nuclear magnetic resonance quantum computer, J. Chem. Phys.
109, 1648 (1998), quant-ph/9801027.

[JMH98] J. A. Jones, M. Mosca and R. H. Hansen, Implementation of a
quantum search algorithm on a quantum computer, Nature 393,
344 (1998).

[Joz98] R. Jozsa, Quantum algorithms and the Fourier transform, Proc. R.
Soc. Lond. 454, 323–337 (1998), quant-ph/9707033.

[Kan98] B. Kane, A silicon-based nuclear spin quantum computer, Nature
393, 133 (1998).

[KBDW01] J. Kempe, D. Bacon, D. P. DiVincenzo and K. Whaley, Encoded
Universality from a Single Physical Interaction, Quantum Computa-
tion and Information 1, 33 (2001), quant-ph/0112013.

[Kit95] A. Kitaev, Quantum measurements and the Abelian stabilizer prob-
lem, (1995), quant-ph/9511026.

[KLL00] J. Kim, J.-S. Lee and S. Lee, Implementing unitary operators in
quantum computation, Phys. Rev. A 61, 032312 (2000), quant-
ph/9908052.

[KLLC00] J. Kim, J.-S. Lee, S. Lee and C. Cheong, Implementation of the
refined Deutsch-Jozsa algorithm on a 3-bit NMR quantum computer,
Phys. Rev. A 62, 022312 (2000), quant-ph/9910015.

[KMSW00] P. G. Kwiat, J. R. Mitchell, P. D. D. Schwindt and A. G. White,
Grover’s search algorithm: An optical approach, J. Mod. Opt. 47,
257 (2000).

[Knu97] D. E. Knuth, The Art of Computer Programming, Vol. 2 – Seminu-
merical Algorithms, Addison-Wesley, 31997.

110

[Knu02] D. E. Knuth, The Art of Computer Programming, Vol. 4,
Pre-fascicle 2a, (2002), Pre-fascicle availabe at http://www-cs-
faculty.stanford.edu/˜ knuth/fasc2a.ps.gz.

[KW02] M. Keyl and R. F. Werner, How to correct small quantum errors,
in Coherent evolution in noisy environments, Springer Verlag, 2002,
quant-ph/0206086.

[KY02] A. R. Kessel and N. M. Yakovleva, Schemes of implementation in
NMR of quantum processors and Deutsch-Jozsa algorithm by using
virtual spin representation, (2002), quant-ph/0206106.

[Lan61] R. Landauer, Irreversibility and Heat Generation in the Computing
Process, IBM J. Res. Develop. 3, 183 (1961), The article has been
reprinted in [Lan00].

[Lan00] R. Landauer, Irreversibility and Heat Generation in the Computing
Process, IBM J. Res. Develop. 44, 261 (2000).

[LBF98] N. Linden, H. Barjat and R. Freeman, An implementation of the
Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer,
Chem. Phys. Lett. 296, 61 (1998), quant-ph/9808039.

[LCYY00] D. W. Leung, I. L. Chuang, F. Yamaguchi and Y. Yamamoto, Ef-
ficient implementation of coupled logic gates for quantum computa-
tion, Phys. Rev. A 61, 042310 (2000), quant-ph/9904100.

[LD98] D. Loss and D. P. DiVincenzo, Quantum computation with quantum
dots, Phys. Rev. A 57, 120 (1998), cond-mat/9701055.

[LYL+01] G. L. Long, H. Y. Yana, Y. S. Lia, C. C. Tua, J. X. Taoa, H. M.
Chena, M. L. Liue, X. Zhange, J. Luoe, L. Xiaoa and X. Z. Zenge,
Experimental NMR realization of a generalized quantum search al-
gorithm, Phys. Lett. A 286, 121 (2001).

[Mak00] Y. Makhlin, Nonlocal properties of two-qubit gates and mixed
states and optimization of quantum computations, (2000), quant-
ph/0002045.

[MDAK01] T. S. Mahesh, K. Dorai, Arvind and A. Kumar, Implementing logic
gates and the Deutsch-Jozsa quantum algorithm by two-dimensional
NMR using spin- and transition-selective pulses, Journal of Magnetic
Resonance 148, 95 (2001), quant-ph/0006123.

[Mer02] S. Mertens, Computational complexity for physicists, Computing in
Science & Engineering 4, 31–47 (2002), quant-ph/0012185.

111

[MFM+00] R. Marx, A. Fahmy, J. Myers, W. Bermel and S. Glaser, Approaching
five-bit NMR quantum computing, Phys. Rev. A 62, 012310 (2000).

[MOL+99] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal
and S. Lloyd, Josephson Persistent-Current Qubit, Science 285,
1036–1039 (1999).

[MPG01] D. Mozyrsky, V. Privman and M. Glasser, Indirect Interaction of
Solid-State Qubits via Two-Dimensional Electron Gas, Phys. Rev.
Lett. 86, 5112 (2001), cond-mat/0012470.

[MSS99] Y. Makhlin, G. Schön and A. Shnirman, Josephson-junction
qubits with controlled couplings, Nature 398, 305 (1999), cond-
mat/9808067.

[MSS01] Y. Makhlin, G. Schön and A. Shnirman, Quantum-state engineer-
ing with Josephson-junction devices, Rev. Mod. Phys. 73, 357–400
(2001), cond-mat/0011269.

[MXKL00] F. Mang, Z. Xiwen, G. Kelin and S. Lei, Quantum computing by
pairing trapped ultracold ions, (2000), quant-ph/0011001.

[NC00] M. A. Nielsen and I. A. Chuang, Quantum Computation and Quan-
tum Information, Cambridge University Press, 2000.

[NPT99] Y. Nakamura, Y. Pashkin and J. Tsai, Coherent control of macro-
scopic quantum states in a single-Cooper-pair box, Nature 398,
786–788 (1999), cond-mat/9904003.

[OMT+99] T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, L. S. Levitov,
S. Lloyd and J. J. Mazo, Superconducting persistent-current qubit,
Phys. Rev. B 60, 15398 (1999), cond-mat/9908283.

[Pre98a] J. Preskill, Fault-tolerant quantum computation, in Introduc-
tion in quantum information and computation, edited by H.-K. Lo,
S. Popescu and T. P. Spiller, Singapore, 1998, World Scientific, quant-
ph/9712048.

[Pre98b] J. Preskill, Lecture Notes for Physics 229: Quantum Information
and Computation, 1998, available at http://www.theory.caltech.edu/
people/preskill/ph229.

[PYA+02] Y. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V.
Averin and J. S. Tsai, Quantum oscillations in two coupled charge
qubits, submitted to Nature (2002), cond-mat/0212314.

112

[PZ99] J. P. Paz and W. H. Zurek, Environment-Induced Decoherence
and the Transition From Quantum to Classical, (1999), quant-
ph/0010011.

[SF01] J. Siewert and R. Fazio, Quantum algorithms for Josephson net-
works, Phys. Rev. Lett. 87, 257905 (2001), cond-mat/0105169, An
extended version of this article has been published in [SF02].

[SF02] J. Siewert and R. Fazio, Implementation of the Deutsch-Jozsa algo-
rithm with Josephson charge qubits, J. Mod. Opt. 49, 1245 (2002),
quant-ph/0112135.

[SFPS00] J. Siewert, R. Fazio, G. Palma and E. Sciacca, Aspects of qubit
dynamics in the presence of leakage, J. Low Temp. Phys. 118, 795–
804 (2000).

[Sho94] P. W. Shor, Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer, in Proceedings of the
35th Annual Symposium on the Foundations of Computer Science,
edited by S. Goldwasser, page 124, Los Alamitos, CA, 1994, IEEE
Computer Society, quant-ph/9508027. An extended version appeared
in [Sho97].

[Sho97] P. W. Shor, Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer, SIAM J. Comput. 26,
1484–1509 (1997), quant-ph/9508027.

[Sim94] D. R. Simon, On the power of quantum computation, in Proceed-
ings of the 35th Annual Symposium on the Foundations of Computer
Science, edited by S. Goldwasser, page 116, Los Alamitos, CA, 1994,
IEEE Computer Society, An extended version appeared in [Sim97].

[Sim97] D. R. Simon, On the power of quantum computation, SIAM J.
Comput. 26, 1474–1483 (1997).

[SS02a] N. Schuch and J. Siewert, Implementation of the Four-Bit Deutsch-
Jozsa Algorithm with Josephson Charge Qubits, phys. stat. sol. (b)
233, 482–489 (2002).

[SS02b] N. Schuch and J. Siewert, A natural two-qubit gate for quantum
computation using the XY interaction, accepted for publication in
Phys. Rev. A (2002), quant-ph/0209035.

[SSH97] A. Shnirman, G. Schön and Z. Hermon, Quantum Manipulations of
Small Josephson Junctions, Phys. Rev. Lett. 79, 2371–2374 (1997).

113

[Tak00] S. Takeuchi, Experimental demonstration of a three-qubit quantum
computation algorithm using a single photon and linear optics, Phys.
Rev. A 62, 032301 (2000).

[TdVR02] C. M. Tesch and R. de Vivie-Riedle, Quantum Computation with
Vibrationally Excited Molecules, Phys. Rev. Lett. 89, 157901 (2002),
quant-ph/0208025.

[VAC+02] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina,
D. Esteve and M. Devorett, Manipulating the quantum state of an
electrical circuit, Science 296, 886–889 (2002), cond-mat/0205343.

[VAZ+01] J. Vala, Z. Amitay, B. Zhang, S. R. Leone and R. Kosloff, Experimen-
tal Implementation of the Deutsch-Jozsa Algorithm for Three-Qubit
Functions using Pure Coherent Molecular Superpositions, (2001),
quant-ph/0107058.

[VBE96] V. Vedral, A. Barenco and A. Ekert, Quantum networks for elemen-
tary arithmetic operations, Phys. Rev. A 54, 147 (1996), quant-
ph/9511018.

[VHC02] G. Vidal, K. Hammerer and J. I. Cirac, Interaction cost of non-local
gates, Phys. Rev. Lett. 88, 237902 (2002), quant-ph/0112168.

[VLS+01] A. S. Verhulst, O. Liivak, M. H. Sherwood, H.-M. Vieth and I. L.
Chuang, Non-thermal nuclear magnetic resonance quantum com-
puting using hyperpolarized Xenon, Appl. Phys. Lett. 79, 2480
(2001), quant-ph/0105147.

[VSB+01] L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sher-
wood and I. L. Chuang, Experimental realization of Shor’s quantum
factoring algorithm using nuclear magnetic resonance, Nature 414,
883–887 (2001), quant-ph/0112176.

[VSS+00] L. M. Vandersypen, M. Steffen, M. H. Sherwood, C. S. Yannoni,
G. Breyta and I. L. Chuang, Implementation of a three-quantum-
bit search algorithm, Appl. Phys. Lett. 76, 646 (2000), quant-
ph/9910075.

[VYW+00] R. Vrijen, E. Yablonovitch, K. Wang, H. W. Jiang, A. Balandin,
V. Roychowdhury, T. Mor and D. DiVincenzo, Electron-spin-
resonance transistors for quantum computing in silicon-germanium
heterostructures, Phys. Rev. A 62, 012306 (2000), quant-
ph/9905096.

114

[YMB+02] F. Yamaguchi, P. Milman, M. Brune, J. M. Raimond and S. Haroche,
Quantum search with two-atom collisions in cavity QED, Phys. Rev.
A 66, 010302(R) (2002), quant-ph/0203146.

[YMY00] F. Yamaguchi, C. P. Master and Y. Yamamoto, Concurrent Quan-
tum Computation, (2000), quant-ph/0005128.

[YSV+99] C. S. Yannoni, M. H. Sherwood, L. M. Vandersypen, D. C. Miller,
M. G. Kubinec and I. L. Chuang, Nuclear Magnetic Resonance Quan-
tum Computing Using Liquid Crystal Solvents, Appl. Phys. Lett. 75,
3563 (1999), quant-ph/9907063.

[ZLSD02] J. Zhang, Z. Lu, L. Shan and Z. Deng, Experimental implementation
of generalized Grover’s algorithm of multiple marked states and its
application, (2002), quant-ph/0208102.

115

116

Acknowledgements

In the first place, I have to thank Jens Siewert for being my supervisor and
introducing me to this fascinating new field of physics. I enjoyed a lot all the
stimulating discussions we had. He always took the time for these discussions;
most of them lasted four hours rather than the thirty minutes I had asked for. I
am grateful for the freedom he gave me in my work on this thesis, and for believing
in the relevance of my results sometimes more than I did. He encourged me to
present my results at various conferences, and taught me a lot about how to give
talks. He spent a lot of time as well on my first papers, patiently trying to teach
me a concise style of writing (considering the length of this thesis, he obviously
failed ;-). Proofreading my drafts usually resulted in rewriting the whole article.
Also, I owe him thanks for trying to improve my English (hopefully, it is tolerable
after all). Further on, although being very busy, he thoroughly proofread this
whole thesis. Finally, I want to thank him for his help with finding a PhD
position. I enjoyed a lot working with him.

Then, I have to thank Klaus Richter for taking me as a Diploma student, for
supporting my work, for giving me the opportunity to participate in conferences,
and of couse for the nice atmosphere at his chair.

At this point I want to thank all the members of the Richter chair who made
my time here a very enjoyable one. I will certainly miss our daily coffee break
with its chats and the birthday cakes, and especially the collective solving of the
Zeit and Sueddeutsche crosswords on Thursdays and Fridays.

I also owe some special thank to our secretary Angie Reisser, who was a big
help with all the unavoidable formalities. A lot of the good atmosphere at the
chair is due to her.

There are several people I have to thank for stimulating discussions, and
for confirming my belief that physics is fun. Especially, I would like to thank
Andreas Osterloh for clarifying discussions about the nature of entanglement,
and Dani Shapira for giving me some new insight to quantum search algorithms.
I also want to thank all the people I met at conferences and who made these
conferences enjoyable ones in any respect. Finally, I would like to thank Roland
Hoffmann who was opened to discussions about physics (and to other enjoyable
things, especially having cocktails) all the five years we studied together.

Moreover, I would like to thank all my friends, especially the people from
the Regensburger Studententheater, for giving me some diversion from physics
throughout my study, but especially throughout the work on this thesis.

Finally, I want to thank my parents for their continuous support and encour-
agement. Without them, achieving this goal would not have been possible.

117

118

Erklärung

Hiermit erkläre ich, daß ich die Diplomarbeit selbständig angefertigt und keine
Hilfsmittel außer den in der Arbeit angegebenen benutzt habe.

Regensburg, den 19. Dezember 2002

(Norbert Schuch)

119

