III. Ratrix Product States

In this chapter, we wall consider one-dinensival spin chains, i.e. $H=\left(\mathbb{C}^{d}\right)^{\infty}$,
-•••••• $\mathbb{C}^{d} \dot{\mathbb{C}}^{d} \ldots$ • $\quad 0$
with states

$$
|\psi\rangle=\sum_{i_{1,1}, i_{i}=0}^{d-1} c_{i_{1} \ldots i_{N}}\left|i_{1}, \ldots, i_{N}\right\rangle
$$

1. Construction

Consider $|\psi\rangle=\sum c_{i n}-i_{N}\left|i_{1}, \ldots, i_{N}\right\rangle_{0}$

We can thrill of $c_{i j \ldots} \ldots i_{N}$ as a tensor with N indices; read index can take devalues.

Graphical notation:

$$
c_{i} \ldots i_{N}=
$$

$$
\text { Box }=\text { tensor }
$$

Since $|\psi\rangle$ and $C_{i}, \ldots i_{v}$ are the same offcct (once we fix a doss), can can also write

We can also consider
$C_{i_{1} i_{2} \ldots i_{i}}=C_{i_{1}}\left(i_{2} \ldots i_{v}\right)$ as a matrix
wi res-index i^{\prime}, and columu-molex $\left(i_{2} \ldots i_{N}\right)$ (tie., a cunlti-ndex).

Now perform an sud of $c_{i j}\left(i_{2} \ldots c_{v}\right)$:

$$
\begin{aligned}
& C_{i_{1}\left(i_{2} \ldots i_{\sim}\right)}=\sum_{\alpha_{1}, \alpha_{1}} u_{i_{1}, \alpha_{1}} \Lambda_{\alpha_{1}, \alpha_{1}^{\prime}} V_{\alpha_{1}^{\prime},\left(i_{2}, \ldots, i, i\right)} \\
& \quad(\text { or } c=u \wedge v),
\end{aligned}
$$

with 1 a diagonal matrix, $\Lambda_{\alpha_{1,},{ }_{1}}=\delta_{\alpha_{1, \alpha},} \cdot \hat{\lambda}_{\alpha_{1}}^{0}$
and U, V isometrics:

$$
\begin{aligned}
& \left.\sum_{i_{1}} \bar{u}_{i_{1}, \beta_{1}} u_{i_{1}, \alpha_{1}}=\delta_{\alpha_{1}, \beta_{1}}\right) \\
& \sum_{i_{2}, \ldots i_{N}} \bar{V}_{\beta_{1}\left(i_{2}, \ldots, i_{N}\right)} V_{\alpha_{1},\left(i_{2}, \ldots, i_{N}\right)}=\delta_{\alpha_{1}, \beta_{1}} .
\end{aligned}
$$

Graphically:

Comenechinglegs denotes
contraction. The legs are identified and summed ore

$$
\text { E.g: }: A-B{ }^{j}=\sum_{k} A_{i k} B_{k j}=(A \cdot B)_{i j}
$$

The isometry conditions read
grapluially:

$$
\sum_{i_{2}, \ldots i_{N}} V_{\beta_{1}\left(i_{2}, \ldots, i_{N}\right)} V_{\alpha_{1},\left(i_{2}, \ldots, i_{N}\right)}=\delta_{\alpha_{1}, \beta_{1}} .
$$

and
siluple live $=$ identity matrix
 (consistent:

$$
\begin{aligned}
-A-B & =A \cdot B \\
& =A \cdot \mathbb{1} \cdot B \\
& =\mathbb{1} \cdot A \cdot B=\ldots)
\end{aligned}
$$

Express state $|\psi\rangle$ with $U, 1, V$.

$$
\begin{aligned}
& |\psi\rangle=\sum_{\substack{i, i_{1}, i_{i}, i_{i} \\
\alpha_{1}}} u_{i, \alpha}, \Lambda_{\alpha_{1}, \alpha,} V_{\alpha_{1},\left(i_{i}, \ldots, i v\right)}\left(i_{i, i}, \ldots,(i)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& C_{0}\left\langle e_{\beta} \mid e_{\alpha}\right\rangle=\sum_{i, j, \alpha \beta} u_{i \alpha} \overline{u_{j \beta}}\left\langle\begin{array}{l}
\langle j \mid i\rangle \\
=\delta_{i j}
\end{array}\right. \\
& =\sum u_{i \alpha} \overline{u_{i \beta}}=\delta_{\alpha \beta} \\
& \Rightarrow\left|l_{\alpha}\right\rangle \text { (and }\left|r_{\alpha}\right\rangle \text {) aNS! }
\end{aligned}
$$

$\Rightarrow \otimes$ is the Shucuiet decomposition of $/ \psi$) in the partition $\frac{1 \mid 23 \ldots N \text {, with }}{\frac{23}{A}}$ $\Lambda_{\alpha_{1} \alpha_{1}}=\operatorname{eig}(1)$ the Stands coefficient!!

Now call $u=u^{(1)}, 1=\Lambda^{(1)}, v=v^{(1)}$
Consider $\Pi^{(1)} \alpha_{\alpha_{1} i_{2},\left(i_{3} \ldots i_{\omega}\right)}:=\sum_{\alpha_{1}^{\prime}} \Lambda_{\alpha_{11} \alpha_{1}} V_{\alpha_{1}^{\prime},\left(i_{2} \ldots i_{\nu}\right)}^{(1)}$ new $\mathrm{mu} / \mathrm{col}$. notices

Perform SUD of $\pi^{(i)} \equiv{ }^{4} \Lambda^{(1)} \cdot V^{(1) "}$:

$\Lambda^{(2)}$ is diagonal $\geqslant 0$
$u^{(2)}, v^{(2)}$ isometric:

$$
\text { (or: } \left.\sum_{\alpha_{1} i_{2}} u_{\left(\alpha, i_{2}\right) \alpha_{2}}^{(L)} \bar{u}_{\left(\alpha, i_{2}\right) \beta_{2}}^{(2)}=\delta_{\alpha_{2} \beta_{2}}\right)
$$

Together:

What is the form of the decomposition in the cat 1213..N?
$V^{(2)}$ isometry \Rightarrow right basis $\alpha_{2}-\frac{1 \cdots}{v}$ 10als.

is also an isometry (as a mop for $\alpha_{2} \rightarrow\left(i, c_{i}\right)$)
\Rightarrow thess is again a Schmidt decomposita, now in the cut 12/3....N.

Roreover, if we consider

across the cut $1 / 2 \ldots . N$, then then still gives a schmidt-Like decomposition

$$
\begin{aligned}
& |\psi|=\sum\left|e_{\alpha,}^{(1)}\right\rangle\left|\tilde{\gamma}_{\alpha}^{(r)}\right\rangle \\
& \text { with }\left\langle e_{\alpha}^{(1)} \mid e_{\beta}^{(r)}\right\rangle=\delta_{\alpha \beta} \\
& \text { and }\left\langle{\tilde{\gamma_{\alpha}}}^{(1)} \mid \tilde{\gamma}_{\beta}^{(1)}\right\rangle=\Lambda_{\alpha \alpha} \delta_{\alpha \beta}
\end{aligned}
$$

O rhowonal, and the Sohmidet coeffrimet a Sorted in $\left.\mid \tilde{r_{2}}\right)$ b

We can nos ikete Hus scheme and got:

and thurs also

- ie., Hus repestentation gives a quast-Shuindt decorposition in every cut $1 \ldots k /(k+1) \ldots N, k=1, \ldots, N-1$:

$$
\begin{aligned}
\sum & \left|e_{\alpha}^{(k)}\right\rangle\left|\tilde{r}_{\alpha}^{(k)}\right\rangle, \\
\left\langle e_{\beta}^{(k)} \mid e_{\alpha}^{(k)}\right\rangle= & \delta_{\alpha \beta} \\
\left\langle\tilde{\gamma}_{\beta}^{(k)} \mid \tilde{r}_{\alpha}^{(k)}\right\rangle= & \lambda_{\alpha}^{(k)} \delta_{\alpha \beta} \\
& \sum_{\text {Shenider costs for cut } k .}
\end{aligned}
$$

Alkmatively, we can consider

$$
\frac{u_{1}^{(1)}-\alpha_{1} \text { is a set } f \text { ios vectors }\left(u_{i}^{(i)}\right)_{\alpha, 1},}{}
$$

and $\alpha_{\alpha_{k}}^{-u^{(k)}}-s_{k}$ as matrices $\left(U_{i_{k}}^{(l)}\right)_{\alpha_{k} \beta_{k}}$ and $\alpha_{N-1}^{i \omega} u^{(\omega)}$ as a ret of col. vectors $\left(u_{i N}^{\omega)}\right)_{\alpha_{N 1}}$.

Then,

vector matrix. matrix.... vector!

$$
\Rightarrow|\psi\rangle=\sum u_{i_{1}^{\prime}}^{(r)} \cdot u_{i_{2}^{\prime}}^{(2)} \cdot \ldots \cdot u_{i_{N-1}^{\prime}}^{(N-1)} \cdot u_{i_{N}^{\prime}}^{(N)}\left|y_{1}^{\prime}, \ldots, i_{N}^{\prime}\right\rangle
$$

"Matrix Product State" (MPS)

In general, we have:

$$
\begin{gathered}
U_{i_{1}}^{(1)}: 1 \times D_{1}-\text { vector } \\
U_{i_{2}^{\prime}}^{(2)}: D_{1} \times D_{2}-\text { cuatrix } \\
U_{i_{k}}^{(k)}: D_{k-1} \times D_{k}-\text { math } X \\
\vdots
\end{gathered}
$$

$$
u_{i N}^{(N)}: D_{N-1} \times 1 \text {-vector }
$$

We call D_{i} the "Sand dimension".

Observation: We have re-plirated $c_{i}, \ldots i_{N}$ as a vecter-matix product!

Did this reduce the \#of paracueters?
No, this cameo Le - this decomposition is exact \& cachet reduce \# of params.

In fact: At each cut, the bond sinencisin will generically be min (dim (Left), dm(njht)),
e.g. eurn $\left(d^{k}, d^{N-k}\right)$, suce D_{k} is the Sucmunation range of the Solcuict decompontion! \Longrightarrow the bond deimensin will te expoucubilly tg chen we decaupose an arbitrary state $|\psi\rangle=\sum c_{i, \ldots}, \hbar\left|i_{1}, \ldots, i_{N}\right\rangle!$

