5. Examples

a) The GHZ State

|GHZ> = 1 (100....07 + (11....1>) (d=2)

ve have A° A° = A° A'A' = A' $A^{\circ}A' = 0$ $1 \quad \hat{v_1} = \hat{v_2} = \dots = \hat{v_w}$ $0 \quad else$ $= P + \left[A^{\hat{v}_1} A^{\hat{v}_2} \cdots A^{\hat{v}_n} \right] = \begin{cases} \\ \\ \\ \end{cases}$

=> $|\psi\rangle = \sum tr \left[A^{i_{A}}A^{i_{2}}...A^{i_{n}}\right] |_{i_{1},...,i_{n}}$

= 10..... 07 + 11.... 17

GHZ state repto nomedization. Can normalize eg by setting A in, (1) = 1/2 A in, A²k, (h) = A²k, But: Kuis breaks bruu. of organ-Suthan.

Note: TPS are generally not normalized (g. latu).

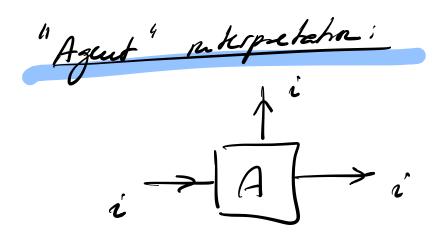
Can also be written usk OBC:

<+1 A "..... A " |+> = 107+117 $= \delta_{i_1 \dots i_N} < + |A^{i_1}| + > = \frac{1}{2}$

-D MPS with

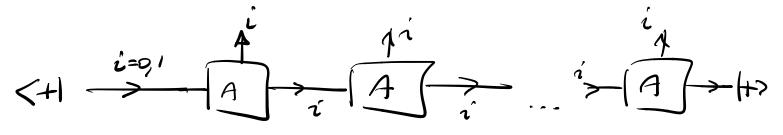
 $B^{i_{a},(i)} := \sqrt{2} < +1 A^{i_{1}}$ $B^{i_{k_{j}}(k)} := A^{k}$ $B^{i_{N}(N)} := A^{i_{N}} + \gamma$

gives OBC rep. of GHZ stete.



A takes report i', and ant puts i' as a physical system, and i as a worked system,

Total CHE state in ODC rep.:



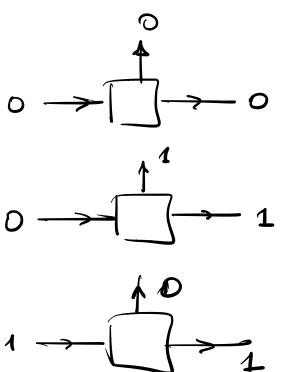
Each process has an amplitude associated to it; the total amplitude is the product of the amplitudes (g. peth notyral). Sometimes this gives a very wateral perspective m RPS.

5) The W State

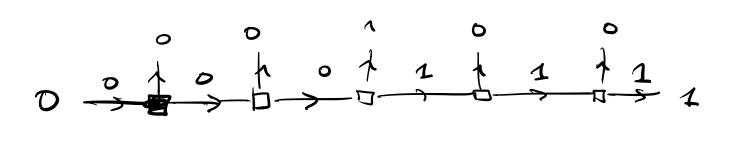
 $|W\rangle = \frac{1}{\ln (100.00) + 1010.00} + ...+ (00...01)$

Agent preha: 1) Stat inthe O.

2 valid pransitions:

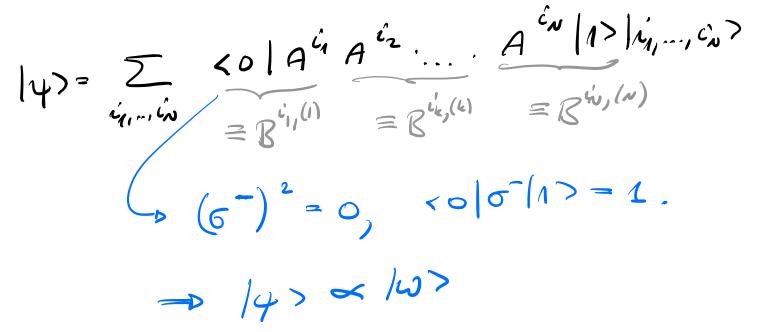


3 fouel confipuration: 1



$$A^{\circ} = 10 \times 0 | + |1 \times 1| = \begin{pmatrix} 1 \circ \\ 0 1 \end{pmatrix} - 1$$

$$A' = |oX1| = 6$$



Note: No hur. PBC rep. of /ws earths, unless D

grows with N. (Any true. OBC MPS can be brand on a truv. PBC MPS work D_{PBC} = ND_{OBC},)

c) Ru clusto state

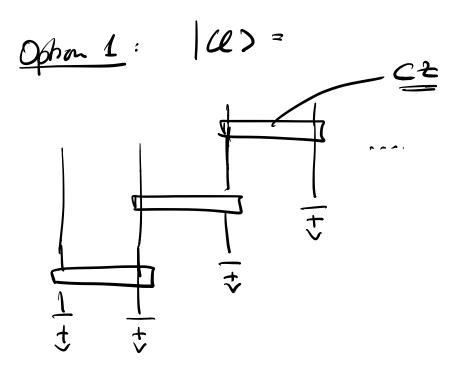
The cluster state is obtained by acting with $CZ_{ijiH} \begin{pmatrix} 1\\ 1_{-1} \end{pmatrix}$ on $|+\rangle = \frac{|_{0}\rangle + |_{1}\rangle}{\Gamma_{2}}$

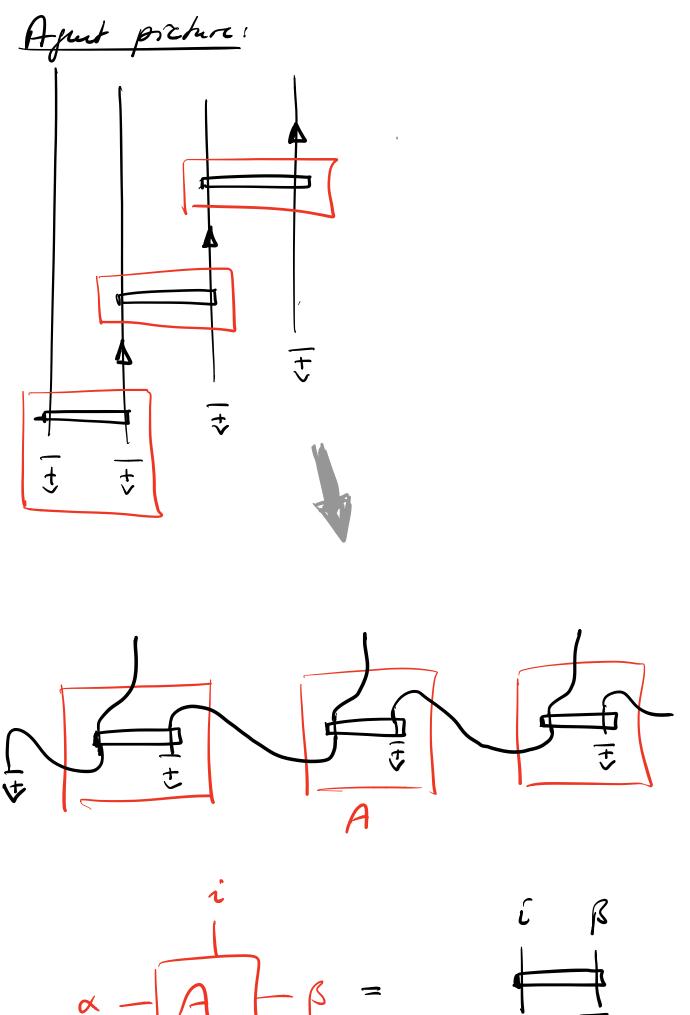
 $|\mathcal{U}\rangle = \prod_{i=1}^{N-1} CZ_{i,i+1} |+\rangle^{\infty} (w/OBC).$

(Nok: All CZijit communk - any order ok.)

How can we find TRS representation?

Different approaches possible ...

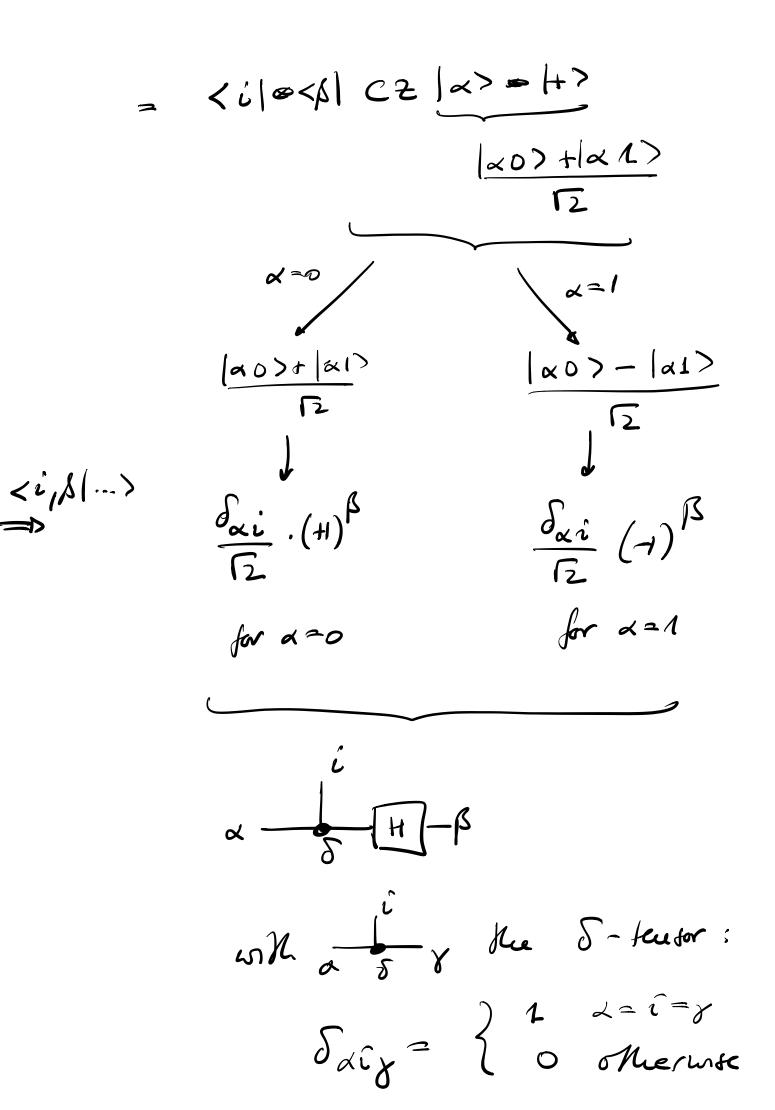




ß 2 A

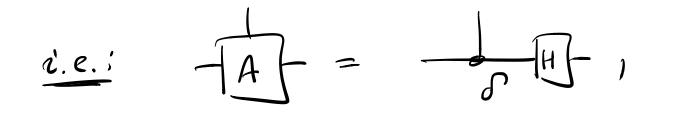
x

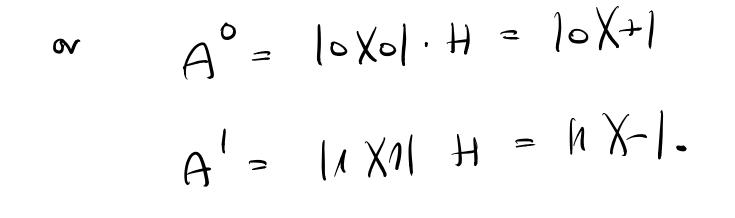
+ み



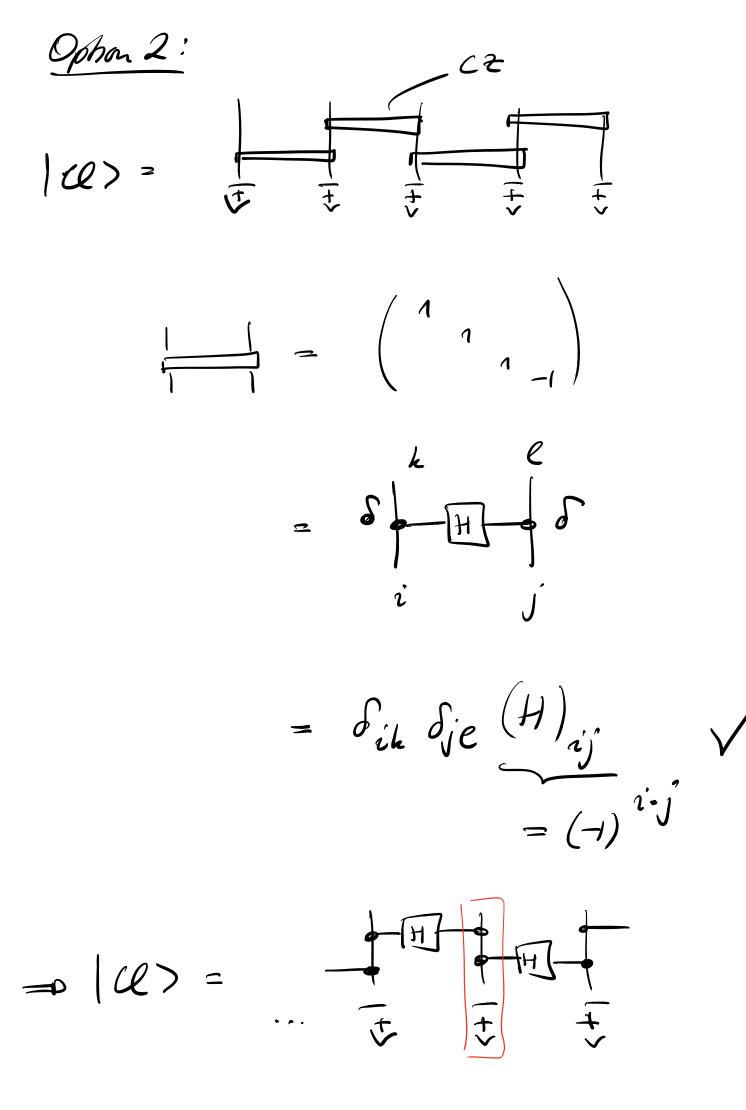
and $H = \frac{1}{5} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{5$

He Hadamard was to 2/ transformation.

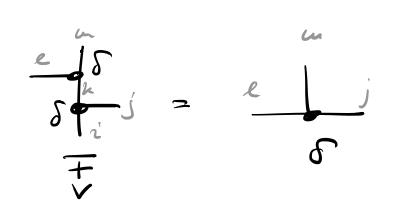




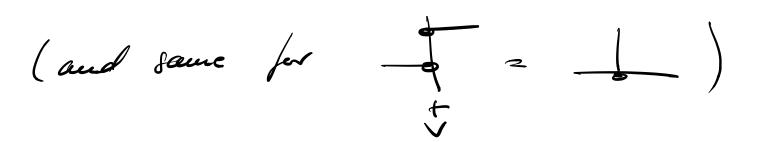
100 = Z < +1 A in A in 107 (in in)



and



|



- Jame MPS ognudation (hut Kers also works for PBC).