IV. Solvatle models and the clompeatho of plotes

1. The AKGT madel
a) Coustuction

Let $\left.|\omega\rangle=\frac{1}{\sqrt{2}}(|01\rangle-110\rangle\right) \in \mathbb{C}^{2} \otimes \mathbb{C}^{2}$
$|u\rangle$ is Su(2)- avernaut:

$$
(u \otimes u) / \omega\rangle=|\omega\rangle \quad \forall u \in \sec (2)
$$

The space $\mathbb{C}^{2} \oplus \mathbb{C}^{2}$ can be decompored paturally noto a auti-sy- and syc. spece,

$$
\mathbb{C}^{2} \mathbb{C}^{2} \cong A \in \mathcal{A},
$$

wh $f=\operatorname{span}\{|S=1, m=+1\rangle$

$$
\begin{aligned}
& |s=1, m=0\rangle \\
& |s=1, m=1\rangle\},
\end{aligned}
$$

where $|S=1 ; m=+1\rangle=100\rangle$

$$
\begin{aligned}
& |S=1, m=0\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
& |S=1, m=-1\rangle=\mid(1\rangle
\end{aligned}
$$

and $A=\operatorname{span}\{(S=0, c n=0\rangle\}$

$$
\left.\left.|S=0, m=0\rangle=\frac{1}{\sqrt{2}}(101)-110\right\rangle\right)
$$

Tus uaturally decoupores

spin-1 spece \& action

Now depre

$$
\begin{aligned}
& P: \mathbb{C}^{2} e \mathbb{C}^{2} \longrightarrow \mathbb{C}^{3} \\
& P=|+1\rangle<S=1, \quad \text { m }=+1 \mid+ \\
&|0\rangle<S=1, \quad \text { cu }=01+ \\
&|-1\rangle<S=1, \quad \text { m }=-1 \mid
\end{aligned}
$$

the sometry proiectry onto the spin- 1 spece, In partizalar,

$$
P(u z u)=V_{u} P
$$

(Note: Up to a phase $\pm 1, u \in \operatorname{Su}(2)$ can be understood as the station of a spin $-\frac{1}{2}$ particle by an angle of $|\vec{\theta}|$ about an axis $\vec{n}=\vec{\theta} /|\vec{\theta}|$ (i.e., $\vec{\theta} \in f O(3)$):

$$
u=u(\vec{\theta})=e^{i \vec{\theta} \cdot \vec{S}^{1 / 2}}
$$

with $\vec{S}^{1 / 2}=\left(\frac{1}{2} \sigma_{x}, \frac{1}{2} \sigma_{y}, \frac{1}{2} \sigma_{z}\right)$ the spin- $1 / 2$ operators.
Then, similarly, $V_{\vec{\theta}}=V_{u(\vec{\theta})}=e^{i \vec{\theta} \cdot \vec{S}^{1}}$, with $\vec{S}^{\prime}=\left(S_{x}^{1}, S_{y}^{\prime}, S_{z}^{2}\right)$ the soon- 1 opectios.)

Now consider a clean of $2 N$ sous \mathbb{C}^{2}, and construct the state

$$
\begin{aligned}
& \left|\underline{\Psi}_{\text {AcCT }}\right\rangle=\left(P_{12} \otimes P_{34} \otimes \ldots \otimes P_{N-1, N}\right)\left(|\omega\rangle_{23} \otimes|\omega\rangle_{45} \otimes \ldots\right. \\
& \text { which on acts } \left.\ldots \otimes / \omega\rangle_{N-2, N-1} \otimes(\omega\rangle_{N, 1}\right)
\end{aligned}
$$

$$
="\left(P^{\otimes N}\right)\left(|\omega\rangle^{\infty N}\right)^{4} .
$$

Ther is the AKG state.
(Apleck, Kemuely, torb, Taseki)

The AKCT shate is rotativally (iie So(J)) inconar:

$$
\begin{gathered}
\underbrace{V_{\vec{\theta}}^{\infty N} \mid \psi_{A K G}}_{\vec{\theta}}\rangle=V_{\vec{\theta}}^{\infty N}\left(P^{\infty N}\right)\left(|\omega\rangle^{\infty N}\right) \\
=\left(P\left(u_{b} \omega_{\theta} \omega_{\theta}\right)\right)^{\otimes N}|\omega\rangle^{\infty N}
\end{gathered}
$$

$$
\begin{aligned}
& =P^{\infty N} u_{\vec{\theta}}^{\infty}(\omega)^{\infty N} \\
& \left.\left.=P^{\infty N}\left(\left(\underline{\operatorname{ug}}(\vec{\theta})^{\infty}\right) / \omega\right\rangle\right)\right)^{\infty N} \\
& =|\omega\rangle \\
& =P^{\infty N}\left|\omega_{0}^{\infty}\right\rangle^{\infty a l}=\left|\psi_{\text {KKCT }}\right\rangle
\end{aligned}
$$

b) Parut Hamiltruzus

Does the AKCT model appcer as ground slete of some Coal Kamiltoman?

Cousides 2 consecutire stes m the MKCT chain,

Auxiliary goin $\frac{1}{2}$-deg. of frecdom are n spin $\frac{1}{2}, 0, \frac{1}{2}$, respective ly, and P does not cleange spon:
\Rightarrow final state on 2 sites (ile., reduced deusidy watrix after proj. out the rit of the chain) caunot have spon 2!
L.e: $\quad t_{3,4, \ldots, N}\left(\varphi_{\text {1RG }} X_{\psi_{\text {AKU }}} \mid\right)=\rho_{12}$
is supported in space woth spon $=0,1$,
(1.e.: $\mathbb{C}^{3} \otimes \mathbb{C}^{3}=\mathcal{H}_{s=0} \oplus \mathcal{X}_{s=1} \oplus \mathcal{H}_{s=2}$)
and $\left.\operatorname{supp}\left(f_{12}\right) \subset \mathcal{H}_{s=0} \oplus \mathcal{H}_{S=1}.\right)$

Depue Hamiltorion achy mosks 1,2:

$$
l_{12}=\Pi_{s=2}
$$

Where $\mathbb{T}_{S=2}$ is the projector outs the gop h-2 space (i.e. $\Pi_{S=2}$ prgects onto $H_{s=2}$).

Then, $\left\langle\psi_{\text {AKGT }} / \ell_{12} / \psi_{A K G T}\right\rangle$

$$
=\operatorname{tr}\left[\rho_{12} l_{12}\right]=0
$$

Since $\operatorname{eig}\left(G_{12}\right)=\{0,1\}$, thus means $\left./ \varphi_{\text {sk UT }}\right\rangle$ is an eiglutate of thin intr eigenvalue 0 :

$$
l_{1 / 2}\left|\psi_{\text {KKT }}\right\rangle=0
$$

We can use the same aggument for any 2 adjacent sites init:

$$
\begin{aligned}
& l_{e_{i}^{\prime}, i+1}=\underbrace{\left(\prod_{S=2} l_{i^{\prime}, i+1}\right.}_{\text {proi:a } S=2 \text { subspace }} \\
& \text { at sites } i^{\prime}, i+1 \text { e }
\end{aligned}
$$

Then, for $H_{\text {AkE }}=\sum_{i=1}^{N} h_{i} ; i+1$, we lave:

$$
H_{\text {AKUT }}=\sum_{i=1}^{N} \frac{l_{2 ; i+1}}{\geqslant 0} \geqslant 0
$$

(i.e. Hervly has efunvelues ≥ 0), and

$$
\left.H_{\text {mar }} / \psi_{\text {NKG }}\right\rangle=\sum_{i=1}^{N} \underbrace{\ell_{i, i+1} / \psi_{\text {NKG }}}_{=0}>=0
$$

Note; A Hamiltomian $H=\sum l_{\text {cioits }}$ shere the grond stak mimicuizes the enorgy of ead hijith individually is called foustrato free.

Ronover, HARCT is rotationally invanaut:

$$
\left(V_{\bar{\theta}} \circ V_{\tilde{\theta}}\right) \quad l_{12}=l_{12}\left(V_{\vec{\theta}} \times V_{\vec{\theta}}\right)
$$

since a subspace of constant spin is nesasiant unds rotations (fut not the vectors in the ipece!).

Not:

$$
H_{\text {ACCT }}=\sum_{i=1}^{N}\left(\frac{1}{2}\left(\overrightarrow{\rho_{i}} \cdot \vec{\delta}_{i+1}\right)+\frac{1}{6}\left(\overrightarrow{S_{i}} \cdot \overrightarrow{\mathcal{S}_{i+1}}\right)^{2}+\frac{1}{3}\right) .
$$

Theorem: / $\psi_{\text {ABET }}>$ is the unique ground state of Mower.

Proof: Fist, consider 2 sites of the NELT clark:

Define the total nap

$$
Q:=P_{A B} P_{C D} \quad|\omega\rangle_{B C}
$$

which maps $|\alpha\rangle_{A} \&|s\rangle_{p}$ to the tho spon-Ls.

Lemma: Q is nyechive.
Rroof; Howework.
Thus ruples that Q has a Lep-novers Q^{-1} :

$$
Q^{-1} Q=Q .
$$

The Alut clain on N sites can be replaced by

on $N / 2$ sikes, i.e.

$$
\left|\psi_{\text {AKG }}\right\rangle=Q^{\infty N / 2}|\Omega\rangle, \quad|\Omega\rangle \cdot|\omega\rangle^{\infty N / 2} .
$$

$|\Omega\rangle$ is trivially the unique ground thete of $H_{\Omega}=\sum k_{i, i+1}$,

$$
k_{i j i+1}=\mathbb{1} \propto\left(1-\left|\omega X_{\omega}\right|\right) \oplus \mathbb{1}
$$

$$
H_{\Omega}=\sum k_{i ; i H} \geqslant 0 .
$$

Clearly: $H_{\Omega}|\phi\rangle=0 \Leftrightarrow|\phi\rangle=|\Omega\rangle$
(As $k_{i, i+1}(\phi)=0 \Rightarrow$ on the tho central sites $\Leftarrow \theta,|\phi\rangle$ equals $|\omega\rangle$

$$
\left.\Rightarrow k_{i ; i H}|\phi\rangle=0 \quad \forall i: \quad|\phi\rangle=|u\rangle^{\infty}\right) \text {. }
$$

Now consider

$$
\begin{aligned}
\tilde{k}_{i, i+1}= & \frac{\left(Q_{i}^{-1}-Q_{i+1}^{-1}\right)^{+}\left(k_{i, i+1}\right)\left(Q_{i}^{-1} \cdot Q_{i+1}^{-1}\right)}{20} \\
& +\frac{\left(1-\pi_{\ln (a)}\right)-\mathbb{1}}{20} \\
& +\frac{1 \in\left(\mathbb{1}-\pi_{\ln (Q)}\right)}{\geqslant 0}
\end{aligned}
$$

and

$$
\tilde{H}=\sum \underset{k_{c, c i+1}}{\sim} \geqslant 0
$$

Then:

$$
\text { Wou let }|\tilde{\phi}\rangle \text { s.M. } \tilde{H}|\hat{\phi}\rangle=0 \text {; }
$$

$$
\Rightarrow \forall i \tilde{k_{i, i+1}}|\tilde{\phi}\rangle=0
$$

$$
\left.\Rightarrow \quad \forall i: 10\left(\mathbb{1}-\pi_{\text {men }} / \theta\right)\right) \neq \mathbb{1}|\tilde{p}\rangle=0 \text {, i.e. }
$$

$$
\begin{aligned}
& \tilde{k_{i, i+1}}\left|\psi_{\text {Hker }}\right\rangle=\tilde{k}_{i ; i+1}\left(Q^{Q U / 2}\right)|\Omega\rangle \\
& =\left(Q_{i}^{-1} \in Q_{i+1}^{-1}\right)^{+}\left(k_{i i}^{\prime}+1\right)\left(Q_{i}^{-1} \in Q_{i+1}^{-1}\right)\left(Q_{1} \in \cdots \otimes Q_{i} \in Q_{i+1}=\ldots\right) \mid R \\
& +\frac{\left((\underline { q } - \pi _ { \operatorname { m e n } } (Q) \operatorname { l o l }) \left(Q^{\alpha N / 2}(\Omega)\right.\right.}{20}+\ldots \\
& =\left(Q_{1} \propto \otimes Q_{i-1} \otimes Q_{i}^{+}-Q_{i+1}^{+}+Q_{i n c} \propto \ldots=Q_{N / 2}\right) \frac{\left.\left(k_{i, i+r}\right) / \ell\right\rangle}{=0} \\
& =0 \\
& \Rightarrow \tilde{H}\left(\psi_{A k L T}\right)=0 \\
& \Rightarrow\left|\psi_{\text {IkET }}\right\rangle \text { ground tate of } \tilde{H} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
&|\tilde{\phi}\rangle \in(\ln (Q))^{\infty N / 2}, \\
& \underline{\text { and }}\left(Q_{i}^{-1} \cdot Q_{i+1}^{-1}\right)^{+}\left(k_{i ; i+1}\right)\left(Q_{i}^{-1} \cdot Q_{i+1}^{-1}\right)|\tilde{\phi}\rangle=0 \\
& \Rightarrow k_{i}^{\prime}: k_{i, i+1}\left(Q_{i}^{-1} \cdot Q_{i+1}^{-1}\right)|\tilde{\phi}\rangle=0 \\
&\left.\Rightarrow \forall i: k_{i ; i+1}\left(Q^{-1}\right)^{-N / 2} / \tilde{\phi}\right\rangle=0
\end{aligned}
$$

$$
\left.\underset{\text { gs. o } \sum_{k j i+1}}{\text { unigucueno }}\left(Q^{-1}\right)^{0 N / /} / \tilde{\phi}\right\rangle=|\Omega\rangle
$$

and syce $Q Q^{-1}=\mathbb{I}_{\ln (Q)}$:

$$
\Longrightarrow \quad|\tilde{\phi}\rangle=Q^{\infty N / 2}|\Omega\rangle
$$

$\Rightarrow\left|\psi_{\text {AKEE }}\right\rangle$ is unique ground state of

$$
\tilde{H}=\sum \tilde{k_{i, i+1}} .
$$

Last wissin tep:
Lemmai $\operatorname{ker}\left(k_{12}^{\sim}\right)=\operatorname{ker}\left(l_{12}^{\vdots}+l_{23}+l_{34}\right)$
(Note: Dne to Klocking:

Proof: E.g. bruke force ma comptes or ty hand
$(\rightarrow$ HLW).

$$
(\rightarrow \mathrm{H}(\mathrm{w}) \text {, }
$$

Die to the frustration-free propsty - a state is a jround stak If arly of it is in her (\tilde{k}) or her (h) for all terms Hus muplins that IY ikar $>$ is the uningue ground sate of $H_{\text {AKLT }}$ as well.
\Longrightarrow Thes concludes the proof!

Theorem H MKt has a gap.
Proof:
We know: $H_{A K C T} / \psi_{A K G T}>=0$ is (antigua) grand state.

Lemma; If th as a ground tho te energy 0 , then
$H^{2} \geqslant \gamma H \Leftrightarrow H$ has a gap /no eigencaluco) detreen O and γ.
Proof;
Write $H=\sum E_{u} / u X_{u} /$ (equal dace.).
Then,

$$
H^{2}=\sum E_{u}^{2}\left|u X_{u}\right| \geqslant \gamma E_{u}\left|u X_{a}\right|
$$

if and only of $E_{u}^{2} \geqslant \gamma E_{u} \quad \forall_{u}$,
i.e., $E_{\mu} \notin(0, \gamma) \quad \forall u$

Lemma: (kate bound)
Let $H=\sum_{i=1}^{N} h_{i, i+1}$ be a Hiv, periodic, frustration free Ham. $w / h_{i j i+1}^{2}=l_{i j}{ }^{2} c^{i}+1$, and $H_{u}^{\prime}=\sum_{i=1}^{n} h_{i}, i+1$ with open hal. $(u \geq 2)$.
$\operatorname{Let} \Delta(H)$ and $\Delta\left(H_{u}^{\prime}\right)$ denote the gaps of H \& H_{w}, respectively.
then,

$$
\Delta(H) \geqslant \frac{u}{u-1}\left(\Delta\left(H_{u}^{\prime}\right)-\frac{1}{u}\right) .
$$

In particular, if $\Delta\left(H_{n}^{\prime}\right)>\frac{1}{u}$ for some $u \geqslant 2$, then H is aped,

Rroof: We have

$$
\begin{align*}
\left(H_{u}^{\prime}\right)^{2} & \geqslant \Delta\left(H_{u}^{\prime}\right) H_{u}^{\prime} \\
\Rightarrow \sum_{i, j=1}^{n} l_{i, i+1} l_{j, j+1} & \geqslant \Delta\left(H_{u}^{\prime}\right) \sum_{i=1}^{u} h_{i, i+1} \tag{2}
\end{align*}
$$

- Thus holds of conse for every $\sum_{i j=1}^{k+u-1}-$
$\xrightarrow{\text { Sucmury }}$ all $\mathrm{K}:$

$$
\begin{gathered}
\sum_{|i-j|<n}(\mu-|i-j|) h_{i, i+1} l_{i, j+1} \geqslant \Delta\left(H_{u}^{\prime}\right) \cdot u \cdot \frac{\sum_{i=1}^{N} h_{i ; i+1}}{=H} \\
\left|i^{\prime}-j\right| \geqslant 2: h_{i, i+1} l_{i, j+1} \geqslant 0 \\
\Rightarrow \text { cau ade morse on LHS } \\
\text { to get wajut u-1, } \\
\left|i^{\prime}-j\right|=0: h_{i, i+1}^{2}=h_{i, i+1}
\end{gathered}
$$

\Longrightarrow

$$
\begin{aligned}
& \sum_{=H} h_{i_{i}^{\prime}+1+1}^{2}+\underbrace{\sum_{i_{1}^{\prime} j}(u-1) h_{a ; i+1} l_{i, j+1} \geqslant \Delta\left(H_{u}^{\prime}\right) u H}_{=(u-1) H^{2}} \\
& \Rightarrow(u-1) H^{2} \geqslant\left(u \Delta\left(H_{u}^{\prime}\right)-1\right) H \\
& \Rightarrow \quad H^{2} \geqslant \frac{u \Delta\left(H_{u}^{\prime}\right)-1}{u-1} H \\
& \Rightarrow \Delta(H) \geqslant \frac{u}{u-1}\left(\Delta\left(H_{u}^{\prime}\right)-\frac{1}{u}\right) .
\end{aligned}
$$

We can uow verify uncuerically for the AKGT Kamultomin Har

$$
\Delta\left(H_{n}^{\prime}\right)>\frac{1}{n} \text { for } u=3 \text {. }
$$

c) The Naldaue cayzcture

Conoider spon-S Heisentorg model:

$$
H=\sum_{i=1}^{N} \overrightarrow{S_{i}} \cdot \overrightarrow{\mathcal{L}_{i+1}}
$$

$\rho=1 / 2,3 / 2,5 / 2, \ldots$
Lirs-Schaltz-Ratts - Theormu (61): H is symmetry beakny or gapless that is, H camet be gapped with a cunque ground sbate.
$S=0,1,2, \ldots ;$
Kaldaue ('83): $H=\sum \overrightarrow{S_{i}} \cdot \overrightarrow{\mathcal{S}_{i+1}}$ for nteger spin has unique ground state +gap.

Argument works vid unapiy to ficlel Kerory ("non-linear sigue usdel") in licurt $S \rightarrow \infty \rightarrow$ uot fully ngorous.

Argmment based in sprumetrics of ruodel.

AkLT uodel: Provides a njornes vanaut If an inkegs spsn chain with sul2) symuetry where the gap can to njorously prove!
d) Frachoreal edge modes

Cousids AKCT Hawiltowion wl open boundasss:

$$
H=\sum_{i=1}^{n-1} l_{c i j i+1}
$$

What are the groued states?
Followny earlier proof of uniguencrs:
$h_{i, i+1}$ (or its bloched sithry) make sure that in sotcs $2 ; i t 1$, the ground state

On OBC: Precssely spous on colge recuain arfiluary.

\rightarrow AKLT chain u/ OBC has A-fold degen. fround space.
\rightarrow Paraunctrited by a spri- $1 /<$ degree of freedar ("edje mode") at ead Sounday.
\rightarrow Edge cuodes Cocalied at Somelens (\rightarrow urore latt \Rightarrow each edge carris a spin-1/c excitatio.

Thes is very surprising: he a spon system, Lowal excitatious - created e.g. by st^{t} shmuld have neteges spon (as st chacugs soin by 1).
\Rightarrow The spous "fractimalice" at the edge; and such practional excitations can aly be created in paits.

Uucruventival delavior:
\rightarrow points to um-tivid quautuen correlations in the system
\rightarrow sigu of a differut type/plase of watto?

