
Lecture 260070 “Entanglement in quantum many-body systems” – SS 2021

— Exercise Sheet #1 —

Problem 1: Schur convexity & concavity

For a probability vector ~p = (p1, . . . , pD), pk ≥ 0,
∑
pk = 1, define ~p ↓ = (p↓1, . . . , p

↓
D) as the vector

obtained by ordering the entries of ~p in descending order.

We say that ~p majorizes ~q – denoted by ~p � ~q (or ~q � ~p) – if and only if

∀d = 1, . . . , D :

d∑
i=1

p↓i ≥
d∑
i=1

q↓i (1)

with equality for d = D. (Intuitively, this says that the distribution ~q is more flat (“more random”) than
~p – try to convince yourself of this intuition by looking at some examples.)

An important property is that majorization introduces a natural ordering on probability distributions:
It can be proven that ~p � ~q if and only if a random source with distribution ~q can be obtained by
randomizing a source with distribution ~p, that is, there exists a doubly stochastic matrix Sij (i.e.,

∑
i Sij =∑

j Sij = 1) such that ~q = D~p. Birkhoff’s theorem states that any such S can in turn be written as
S =

∑
riΠi, with probabilities ri ≥ 0,

∑
ri = 1, and permutations Πi (i.e., S can be implemented by

applying the permutation Πi with probability ri; again, this is an if and only if statement – the converse
should be obvious).

We thus arrive at the following characterization of majorization:

~p � ~q ⇐⇒ ∃ ri,Πi : ~q =
∑
i

riΠi~p . (2)

This does not need to be proven, and can be used for the problem.

1. Let F (~x) =
∑
i f(xi), where f(x) is a convex function. Prove that F is Schur convex, that is,

~q � ~p =⇒ F (~q) ≤ F (~p) . (3)

2. Prove that the Shannon entropy H(~p) = −
∑
pi log pi and the the α Rényi entropies

Hα(~p) =
log

∑
i p
α
i

1− α
,

α 6= 1, are Schur concave functions, i.e.,

~q � ~p =⇒ F (~q) ≥ F (~p) . (4)

Problem 2: Truncation error vs. Rényi enropy

In this problem, we determine the error in approximating a bipartite pure state with a given Rényi entan-
glement entropy by a state with a lower Schmidt rank. This step is central in obtaining an parameter-
efficient approximation to quantum many-body states which satisfy an entanglement area law for a
suitable α-Rényi entropy. This follows the derivation in https://arxiv.org/abs/cond-mat/0505140.

Throughout this problem, we consider some fixed α with 0 ≤ α < 1.

1. Show that majorization introduced a partial order on the space of probability distributions (in
particular, ~p � ~q and ~q � ~r implies ~p � ~r), but not a total order (i.e., there are ~p and ~q which are
not related by majorization).

2. Fix some χ ≥ 1. Consider all probability distributions ~p with a fixed value of

ε(χ) :=
∑
i>χ+1

p↓i . (5)

We will not determine the distribution ~p satisfying (5) which minimized Hα(~p).



(a) Show that there is a one-parameter family of distributions ~p, parametrized by the value

p↓χ+1 =: h, which majorizes all other distributions with this property (this is non-trivial
because of part 1), and explicitly derive these extremal distributions.

(b) Compute Hα(~p) for these distributions. Find a suitable lower bound to this quantity and
minimize it as a function of the parameter h.

(c) What is the interpretation of this entropy for a given ε(χ) (in the light or the results of problem
1)?

3. Use this to derive the maximum possible ε(χ) for all distributions ~p with a given value of Sα(~p)
(for one given α).

4. Let |ψ〉 ∈ CD ⊗ CD be a bipartite state with Schmidt decomposition

|ψ〉 =

D∑
i=1

si|i〉|i〉 , (6)

where s1 ≥ s2 . . . , and α-Rényi entanglement entropy Sα(trB |ψ〉〈ψ|) = E. What is the error

ε = ‖ |ψ〉 − |ψ(χ)〉‖2 (7)

made when approximating |ψ〉 by

|ψ(χ)〉 =

χ∑
i=1

si|i〉|i〉 ? (8)

5. What is the error for the normalized approximation, ‖ |ψ〉 − |ψ̂(χ)〉‖2, with |ψ̂(χ)〉 = |ψ(χ)〉
‖ |ψ(χ)〉‖2

?

6. If we want to obtain an approximation with a given accuracy ε0 in (7), how do we have to scale χ?


