Lecture 260070 "Entanglement in quantum many-body systems" - SS 2021

— Exercise Sheet #1 —

Problem 1: Schur convexity & concavity

For a probability vector $\vec{p} = (p_1, \ldots, p_D), p_k \ge 0, \sum p_k = 1$, define $\vec{p}^{\downarrow} = (p_1^{\downarrow}, \ldots, p_D^{\downarrow})$ as the vector obtained by ordering the entries of \vec{p} in descending order.

We say that \vec{p} majorizes \vec{q} – denoted by $\vec{p} \succeq \vec{q}$ (or $\vec{q} \preceq \vec{p}$) – if and only if

$$\forall d = 1, \dots, D : \sum_{i=1}^{d} p_i^{\downarrow} \ge \sum_{i=1}^{d} q_i^{\downarrow}$$

$$\tag{1}$$

with equality for d = D. (Intuitively, this says that the distribution \vec{q} is more flat ("more random") than \vec{p} – try to convince yourself of this intuition by looking at some examples.)

An important property is that majorization introduces a natural ordering on probability distributions: It can be proven that $\vec{p} \succeq \vec{q}$ if and only if a random source with distribution \vec{q} can be obtained by randomizing a source with distribution \vec{p} , that is, there exists a *doubly stochastic matrix* S_{ij} (i.e., $\sum_i S_{ij} = \sum_j S_{ij} = 1$) such that $\vec{q} = D\vec{p}$. Birkhoff's theorem states that any such S can in turn be written as $S = \sum r_i \Pi_i$, with probabilities $r_i \ge 0$, $\sum r_i = 1$, and permutations Π_i (i.e., S can be implemented by applying the permutation Π_i with probability r_i ; again, this is an if and only if statement – the converse should be obvious).

We thus arrive at the following characterization of majorization:

$$\vec{p} \succeq \vec{q} \iff \exists r_i, \Pi_i : \vec{q} = \sum_i r_i \Pi_i \vec{p} .$$
 (2)

This does not need to be proven, and can be used for the problem.

1. Let $F(\vec{x}) = \sum_{i} f(x_i)$, where f(x) is a convex function. Prove that F is Schur convex, that is,

$$\vec{q} \preceq \vec{p} \implies F(\vec{q}) \le F(\vec{p})$$
 (3)

2. Prove that the Shannon entropy $H(\vec{p}) = -\sum p_i \log p_i$ and the the α Rényi entropies

$$H_{\alpha}(\vec{p}) = \frac{\log \sum_{i} p_{i}^{\alpha}}{1 - \alpha}$$

 $\alpha \neq 1$, are Schur concave functions, i.e.,

$$\vec{q} \preceq \vec{p} \implies F(\vec{q}) \ge F(\vec{p})$$
 (4)

Problem 2: Truncation error vs. Rényi enropy

In this problem, we determine the error in approximating a bipartite pure state with a given Rényi entanglement entropy by a state with a lower Schmidt rank. This step is central in obtaining an parameterefficient approximation to quantum many-body states which satisfy an entanglement area law for a suitable α -Rényi entropy. This follows the derivation in https://arxiv.org/abs/cond-mat/0505140. Throughout this problem, we consider some fixed α with $0 \leq \alpha < 1$.

- 1. Show that majorization introduced a *partial order* on the space of probability distributions (in particular, $\vec{p} \leq \vec{q}$ and $\vec{q} \leq \vec{r}$ implies $\vec{p} \leq \vec{r}$), but not a total order (i.e., there are \vec{p} and \vec{q} which are not related by majorization).
- 2. Fix some $\chi \geq 1$. Consider all probability distributions \vec{p} with a fixed value of

$$\epsilon(\chi) := \sum_{i > \chi + 1} p_i^{\downarrow} .$$
(5)

We will not determine the distribution \vec{p} satisfying (5) which minimized $H_{\alpha}(\vec{p})$.

- (a) Show that there is a one-parameter family of distributions \vec{p} , parametrized by the value $p_{\chi+1}^{\downarrow} =: h$, which majorizes all other distributions with this property (this is non-trivial because of part 1), and explicitly derive these extremal distributions.
- (b) Compute $H_{\alpha}(\vec{p})$ for these distributions. Find a suitable lower bound to this quantity and minimize it as a function of the parameter h.
- (c) What is the interpretation of this entropy for a given $\epsilon(\chi)$ (in the light or the results of problem 1)?
- 3. Use this to derive the maximum possible $\epsilon(\chi)$ for all distributions \vec{p} with a given value of $S_{\alpha}(\vec{p})$ (for one given α).
- 4. Let $|\psi\rangle \in \mathbb{C}^D \otimes \mathbb{C}^D$ be a bipartite state with Schmidt decomposition

$$|\psi\rangle = \sum_{i=1}^{D} s_i |i\rangle |i\rangle , \qquad (6)$$

where $s_1 \geq s_2 \dots$, and α -Rényi entanglement entropy $S_{\alpha}(\operatorname{tr}_B |\psi\rangle \langle \psi|) = E$. What is the error

$$\epsilon = \| |\psi\rangle - |\psi(\chi)\rangle \|_2 \tag{7}$$

made when approximating $|\psi\rangle$ by

$$|\psi(\chi)\rangle = \sum_{i=1}^{\chi} s_i |i\rangle |i\rangle ?$$
(8)

5. What is the error for the *normalized* approximation, $\| |\psi\rangle - |\hat{\psi}(\chi)\rangle \|_2$, with $|\hat{\psi}(\chi)\rangle = \frac{|\psi(\chi)\rangle}{\| |\psi(\chi)\rangle \|_2}$?

6. If we want to obtain an approximation with a given accuracy ϵ_0 in (7), how do we have to scale χ ?