## Lecture 260070 "Entanglement in quantum many-body systems" - SS 2021

- Exercise Sheet \#3 -


## Problem 5: Representations of translational invariant MPS

1. Let $|\psi\rangle$ be a translational invariant state on a chain of $N$ sites, and let

$$
|\psi\rangle=\sum A^{i_{1},(1)} A^{i_{2},(2)} \cdots A^{i_{N},(N)}\left|i_{1}, i_{2}, \ldots, i_{N}\right\rangle
$$

be an open boundary condition (OBC) MPS representation of $|\psi\rangle$ with bond dimension $D$. Show that then, $|\psi\rangle$ can be also written as a translational invariant MPS with periodic boundary conditions,

$$
|\psi\rangle=\sum \operatorname{tr}\left[B^{i_{1}} B^{i_{2}} \cdots B^{i_{N}}\right]\left|i_{1}, i_{2}, \ldots, i_{N}\right\rangle
$$

where the $B^{i}$ are $N D \times N D$ matrices.
(Hint: This suggests that every $B^{i}$ must contain the information from all $A^{i,(k)}$ - therefore, try to build $B^{i}$ as a block matrix, where the blocks are the $A^{i,(k)}$ or zero. Note that $B^{i} B^{j}$ should contain $A^{i,(k)} A^{j,(k+1)}$ as blocks.)
2. What is the dimension of $B^{i}$ in case the $A^{i_{k},(k)}$ have different dimensions $D_{k-1} \times D_{k}$ ?
3. Can the result also be applied to turn a non-translational invariant periodic MPS representation of a translational invariant state $|\psi\rangle$ into a translational invariant MPS representation?
4. Consider the translational invariant state

$$
|\psi\rangle=\frac{1}{\sqrt{2}}[|010101 \cdots 01\rangle+|101010 \cdots 10\rangle]
$$

(on an even length chain). Find
(a) an OBC MPS representation of $|\psi\rangle$,
(b) a PBC MPS representation of $|\psi\rangle$,
(c) a translational invariant PBC MPS representation of $|\psi\rangle$,
ideally with the minimum possible bond dimension. (Bonus points for showing that the bond dimension is minimal.)
5. Try the same for the state

$$
|\psi\rangle=\frac{1}{\sqrt{2}}[|010101 \cdots 01\rangle-|101010 \cdots 10\rangle] .
$$

Which of the three representations (OBC, PBC, tinv PBC) does not exist, and why?
Note: Whenever we talk about finding an MPS representation of a state $|\psi\rangle$ in this problem, this is always up to proportionality.

