
Lecture 260070 “Entanglement in quantum many-body systems” – SS 2021

— Exercise Sheet #6 —

Problem 10: AKLT I

Let Ssα, s = 1
2 , 1, α = x, y, z denote the spin operators for spin s, |ω〉 = 1√

2
(|01〉− |10〉), and P the AKLT

projector as defined in the lecture.

1. Determine u~θ = exp(i~θ · ~S1/2). Show that this yields all SU(2) matrices up to a phase ±1 for
~θ ∈ SO(3) (i.e. |~θ| ≤ π, with opposite vectors ±~θ of length |~θ| = π identified).

2. Show that (u⊗ u)|ω〉 = ω for any u ∈ SU(2). (What happens if u ∈ U(2)?)

3. Show that P (S
1/2
α ⊗ 11 + 11⊗ S1/2

α ) = S1
αP .

(If this is not the case, maybe you have used incompatible definitions for S1 and S1/2 – in that
case, you should check that the S1

α obtained here are spin-1 operators as well and update your
definition of S1

α.)
Moreover, show that

P †P (S1/2
α ⊗ 11 + 11⊗ S1/2

α ) = (S1/2
α ⊗ 11 + 11⊗ S1/2

α )P †P = S1/2
α ⊗ 11 + 11⊗ S1/2

α .

4. Show that P (u~θ ⊗ u~θ) = exp(i~θ · ~S1)P .

5. Check the formula for the AKLT Hamiltonian h = ΠS=2 (the projector onto the spin-2 space on
two adjacent sites),

h = 1
2
~S1 · ~S2 + 1

6 (~S1 · ~S2)2 + 1
3 .

Show that any Hamiltonian of the form w0ΠS=0 +w1ΠS=1 +w2ΠS=2 can be expressed in this form
with suitable prefactors. (Hint: An elegant way is to use that (~S1 + ~S2) is the total spin operator,

which fixes the possible values of (~S1 + ~S2)2 = ~S2
1 + ~S2

2 + 2~S1 · ~S2 depending on the total spin
S = 0, 1, 2.)

Problem 11: AKLT II

Let P and |ω〉 be as before (i.e., for the AKLT state).

1. Show that the map Q = (PAB ⊗ PCD)|ω〉BC defined in the lecture,

(1)

which maps the degrees of freedom A and D to the two physical degrees of freedom, is injective.
(This can be done analytically or numerically.)

2. Check that the kernel of the Hamiltonian k̃12 on two blocked sites (i.e., four unblocked sites), as
constructed in the lecture, equals the kernel of the AKLT Hamiltonian on the same four sites,

ker(k̃12) = ker(h12 + h23 + h34) .

3. Check that the AKLT Hamiltonian on 3 sites (with open boundaries) satisfies the condition of the
Knabe bound (i.e., its gap above the zero-energy space is larger than 1/n = 1/3). (This is best
done numerically.) If you want, you can try to push this to more sites, to obtain an as good as
possible bound on the gap of the AKLT Hamiltonian.



Problem 12: AKLT construction vs. MPS

In this problem, we will establish that the AKLT-type construction – starting from a state |ω〉 and
applying a map P – is in fact equivalent to the MPS construction.

1. Show that any state |ω〉 ∈ CD⊗CD can be written as |ω〉 = (11⊗M)|Ω〉, with |Ω〉 = 1√
D

∑D
i=1 |i, i〉,

with a suitable matrix M .

2. Show that this implies that any state |Ψ〉 constructed in the same way as the AKLT state,

where |ω〉 and P are arbitrary, can be rewritten as

(where the entangled state now is |Ω〉) with a new map P̃ . What is P̃?

3. The map P̃ can be written in the computational basis as

P̃ =
∑
i,α,β

Aiαβ |i〉〈α, β| .

Now consider the map Q̃ = (P̃AB ⊗ P̃CD)|ω〉BC (cf. Problem 11.1, Eq. (1)). What is the explicit
form of

Q̃ =
∑
i,j,α,γ

Bi,jαγ |i, j〉〈α, γ|

in terms of the Aiα,β?

4. Iterate the previous formula to obtain an explicit expression of the state |Ψ〉 in terms of the tensor
Aiα,β .

5. Determine the explicit form of the Aiα,β for the AKLT state.

6. Show that for the AKLT model, there exists a physical basis transformation such that the Ai

become (proportional to) the Pauli matrices. What are the spin operators {S1
x, S

1
y , S

1
z} in this

basis?


