Teusor network methods me meany-body_pluysics
I. lutroduction

1. The quantum many_body_protlem
a) The quantum wang-body proflem

The non-rclativistic quantucn many body (QTVS) protlem (solids, molecules, clueneical reachous, elechre/wagn.) Neervedry waceic/medranical propetios of motenals,...):

Givece:
N electrons w/ charge $-e$, mast me K undei o/ charge $Z_{k} \cdot e, \sum Z_{k}=N$, mass Π_{k} solve the mony-Sody Shroidinge equotion

$$
H \psi=E \psi
$$

$$
\begin{aligned}
H= & \sum_{a}\left(-\frac{\hbar^{2}}{2 m_{c}} \Delta_{a}^{e l}\right)+\sum_{k}\left(-\frac{t^{2}}{2 \pi_{k}} \Delta_{k}^{\text {Chapter }}\right)^{I, p g 2}+ \\
& +\sum_{\mu, a^{\prime}} \frac{e^{2}}{\left|r_{u}-r_{k}^{\prime}\right|}+\sum_{k, k^{\prime}} \frac{z_{k} z_{k^{\prime}} e^{2}}{\left|R_{k}-R_{k}^{\prime}\right|}+\sum_{a, k} \frac{-z_{k} e^{2}}{\left|r_{2}-R_{k}\right|}
\end{aligned}
$$

Wave-funcechon $\psi \equiv \psi\left(r_{1}, S_{1} ; r_{2}, S_{2} ; \ldots ; R_{1}, S_{1}, R_{2}, S_{2}, \ldots.\right)$
has lunge munuser of degrees of freedom (DOF) \rightarrow extremely complicated of

Use approxneations to solve QRB protlan:

- mort electrais form filled shells: very statle
\rightarrow good approx: consider ions + outer electrous (i,e. panky filled sloels)
- uncla' much Geavier Han electrous: For electrans, maclei look aluost stant:
\Rightarrow Born-Oppenkeiner - approxicnakou:

1) solve electron protlem for static confifuction
of unclai R_{1}, \ldots, R_{k}

$$
H=\frac{-\hbar^{2}}{2 m_{c}} \sum_{n} \Delta_{m}+\sum_{u, u^{\prime}} \frac{c^{2}}{\left|r_{u}-r_{L^{\prime}}\right|}+\sum_{m \gamma} V\left(r_{n}\right)
$$

poteatial of unclei.
\Longrightarrow groued tote eungy $E_{e l}\left(R_{1}, \ldots, R_{k}\right)$.
2) Solve unclai in external potantial Eel.
b) Lative systans \& quankem spsin syskens

Solids: Nuclai form Cattices at low enough temperturs \Rightarrow periodic lattize potcutiol V(r) for clectrous.

Electric \& maguetie propstics can te typically understood ty studyry bekanior of clectrous in nuclear poteutial V(1),
$V(r)$

In fact, cot really a $\frac{1}{r}$ potential, since are lave taken out fully filled orbitals,

In addition, there is electrous/orbtals forming the lattice binds - these are also n a stable (lor-energy) state and will wot te relevant for clectn a/ueagu. props,

Hor do the additional electrons (non-filled shells, not essential for lattice bonds) beleare?

Depends on orbital they occupy:

large orbital
large principal q, unmet, thus hyp. s, p orbitals.
small orbital shall principal a, lesentor, typ. d, f orbitals: transition group clements.
large (delozalized) orfitals:
electron cuarefunchons
$V(1)$

Large overlap of wavefunctins \Rightarrow clectrous can esesily uop to wect site \Rightarrow metallic tehavior (\Rightarrow band theory :)
suall (localized) orfitals:
$V(r)$

suall ovolap of wavefunctims \Rightarrow electrons static at "Hear"uncleas \Rightarrow insulator.
Rewaiurny degrees of freedom: Each clectron cantrituks
a spon $-\frac{1}{2}$ DoF. Siuce the electran orfitalpperatt pg 6 differut poritions are Cocalized (= essuntially orthofonal), we can meaceingpully talle of the "spon at Cattice site x ".
\Longrightarrow Quantuan Spore Sybten.
(note: Such sosus are teleind ueguche propertses especially of numbators.)

Nbte: There is other mecleanisues to jet a puantum spin system on a lattice, e.g.

- elechrous which can frecly kop but experience a strong Conbourt repulsisn when they are at the same site ("Hulbard modal"), in the limit of sue clectron per site ("half pillug").
- oprial Lattices iperiodir potcutial by staudiry laser waves shere atous are tropped. internal states of atomes can enake up a 2-level system (or d-level rystem).

2. Quantum Sporn Systans
a) Hultert space of quautuon spon systews

What Hiltot space (t.e., wavefunctia) do we need to desinte a quantum sporn systen?

A ringle spin can be ne two states,

$$
|\uparrow\rangle \text { or }|\downarrow\rangle
$$

We will ofter use Hee votatim

$$
|0\rangle \equiv|1\rangle \text { and }|1\rangle \equiv|\downarrow\rangle \text {. }
$$

We can alro use a dans ceotabon

$$
|0\rangle=\binom{1}{0}, \quad|1\rangle=\binom{0}{1}
$$

A jencial state of one quan how spor is Hen

$$
|\psi\rangle=c_{0}|0\rangle+c_{1}|1\rangle \in \mathbb{C}^{2}
$$

For two spins, we then have Sass is states Chapter I, pg 8

$$
\begin{aligned}
& |0\rangle \infty|0\rangle \equiv|0\rangle|0\rangle \equiv|00\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \\
& |0\rangle \otimes|1\rangle \equiv|0\rangle|1\rangle \equiv|01\rangle \equiv\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& |0 \otimes| 0\rangle \equiv|1\rangle|0\rangle \equiv|10\rangle \equiv\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& |1\rangle \otimes|0\rangle \equiv|1\rangle|1\rangle \equiv|11\rangle \equiv\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

A general plate of tho quetit is then of the form

$$
\begin{aligned}
|\phi\rangle & \left.=c_{00}|00\rangle+c_{0}\left|0(\rangle+c_{10}\right| 10\right\rangle+c_{11}|11\rangle \\
& \in \mathbb{C}^{2} \mathbb{C}^{2}=\left(\mathbb{C}^{2}\right)^{2} \cong \mathbb{C}^{4}
\end{aligned}
$$

(Note: This contains states not of the form $\left.\left|\phi_{1}\right\rangle \theta / \phi_{2}\right\rangle$!')

Bass for N spores:

$$
\begin{aligned}
& \left|s_{1}, s_{2}, \ldots, s_{N}\right\rangle, \quad \cos \mathcal{K} \quad s_{i}=0,1 \quad \forall i: \\
& \left.\begin{array}{ccc}
100 & . . & 0 \\
100 & \ldots .017 \\
100 & . . & 107 \\
\vdots \\
1 & \ldots . .117
\end{array}\right\} \\
& 2^{N} \text { orthogonal basis vectors } \\
& \text { (Note: If wititen as rector, } \\
& \text { order comporuents as ere.) }
\end{aligned}
$$

Most general stake

$$
\begin{aligned}
|\phi\rangle & =\sum_{s_{i}=0,1} c_{s_{1}}, \ldots, s_{N}\left|s_{1}, s_{2}, \ldots, s_{N}\right\rangle \\
& \in \frac{\mathbb{C}^{2} \ldots \infty \mathbb{C}^{2}}{N \text { simes }}=\left(\mathbb{C}^{2}\right)^{\otimes N} \cong \mathbb{C}^{\left(2^{N}\right)}
\end{aligned}
$$

2^{N}-dimensional vector!
State of a spon systum with v sporius livas in an exponentially fig thisit syace dicucuston $2^{N!}$

More jeucrelly, if we have a d-leval sysken, $d \geqslant 2$, at each lattire site (c.g. Optical lattires, effechive degrees of freedome), with $\operatorname{sass}|0\rangle, \ldots,|d-1\rangle$, the state is

$$
\begin{array}{r}
\text { The state is } \\
\begin{array}{r}
|\phi\rangle=\sum_{s_{i}=0}^{d-1} \\
s_{1} \ldots s_{N}
\end{array}\left|s_{1, \ldots, s_{N}}\right\rangle \in\left(\mathbb{C}_{\| 2}^{d}\right)^{\infty N} \\
\mathbb{C}^{\left(d^{N}\right)}
\end{array}
$$

i.e., it lives ru a d^{N} - dinu. Hilsot space,
b) Interachions

To shaly the pluysies of a quicch. systan, we need to kuow its Mamiltouvan - here, how the spons nutract.

First, conoider tro yoins:
 ophed lathees!

One possitle mechacisim (not most comana, thot easict to explain): Brect exchange.

- orbitals ψ_{1} and ψ_{2} overlap
\Rightarrow passibiling for electron to humel from $1 \leftrightarrow 2$ whth tumueling rate t.
- Consider a process shere clccho 1 tunnels to 2
- Can only hoppen if the two electrons form a singlet (Pauli exclusian pronciple),

$$
\left.|\phi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-| | \uparrow\rangle\right)=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
$$

- If both electrons are at the same site, key experience stroy Coulomb repulsion U.
- U $U \gg t$: ground space leas exactly one electron per site, tut there is an energy correction from and oroler perturbation theory:

correction from iud order perturbation theory:

$$
\Delta E=-\frac{t^{2}}{u}
$$

- We thus find: energy of singlet state

$$
\left.|\phi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-| | 0\rangle\right) \text { Cower by }-\frac{t^{2}}{u}
$$

\Rightarrow autiferromaguehe Heitenderg nutvactio.

The same, or similar, intractrons (oncluderety I, pg 12 ferromaguetic ones) can be obtarned from a range of other enechamisus, $e . g$,

- inkeruediate ortilats which moluce an effective congling

- coupling through metermediate coupling to a sand of clectrons - the RKKY mutraction (Ruderman - Kittel - Kasuya- Yosida)

Futher reading: W. Noetny, A. Ramakanth: Quauther Theory of raquetion (Sprigur 2008)

What is the gecucral stucture of menteractions ms a quantum spon system?
\rightarrow locality: metractions only couples wearty spon (or streuth de cays rapidlly wosk desfance)
\rightarrow few-body: interachons only cruple a small renmor (byp. 2) sprus.
\longrightarrow symuetry: nuterachions guerally have the symuretsics of the setup (latree, …)

How does a jeneral 2-dody interactra Cook like?

$$
h: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \in \mathbb{C}^{2}
$$

\uparrow Hawiltonion: 4×4-matrix

We can express h using sporn operatos:

$$
\begin{aligned}
& S^{x}=\frac{1}{2} \sigma^{x}=\frac{1}{2}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) ; S^{y}=\frac{1}{2} \sigma y=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; \\
& S^{z}=\frac{1}{2} \sigma^{z}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) ; \\
& \text { and } \underline{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

The spoin opesator S^{α} acting on ste 2 is given by

$$
\begin{aligned}
& S_{2}^{\alpha}=\mathbb{1} \otimes S^{\alpha} \\
& \equiv \mathbb{1}_{1} \otimes S_{2}^{\alpha}=\left(\left.\begin{array}{l|l|l|l|l|}
1 \cdot S_{2}^{\alpha} & 0 \cdot S_{2}^{\alpha} \\
\hline 0 \cdot S_{2}^{\alpha} & 1 \cdot S_{2}^{\alpha}
\end{array}\right|_{111\rangle} ^{1007} 1017\right. \\
& \text { shorthand } \\
& \text { neotato } \\
& =\left(\begin{array}{l|l}
s_{2}^{\alpha} & \\
\hline & S_{2}^{\alpha}
\end{array}\right)
\end{aligned}
$$

and similarly:

$$
\begin{aligned}
& S_{1}^{\alpha}=S^{\alpha} \propto \mathbb{1} \equiv S_{1}^{\alpha} \propto \mathbb{1}_{2}, \\
& \text { e.g. } \quad S_{1}^{x}=\frac{1}{2}\left(\begin{array}{l|l|l}
0 \cdot \mathbb{1} & 1 \cdot \mathbb{1} \\
\hline 1 \cdot \mathbb{1} & 0 \cdot \mathbb{1}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c|ccc}
0 & 0 \\
0 & 1 \\
10 & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

We can also act with S^{2} on $1 \& S_{\text {inn }}$:

$$
\begin{aligned}
& S_{1}^{\alpha} \cdot S_{2}^{\beta}=S^{\alpha} \otimes S^{\beta} \\
& \text { shothand } \\
& \text { udatha } \\
& \text { w/ant } \otimes \\
& \text { e.g. } S_{1}^{\alpha}=S_{1}^{x}
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& S_{1}^{x} \cdot S_{2}^{x}=\frac{1}{4}\left(\begin{array}{lll}
0 & & 1 \\
& 0 & 1 \\
1 & 1 & 0
\end{array}\right) ; \\
& S_{1}^{y} \cdot S_{2}^{y}=\frac{1}{4}\left(\begin{array}{lll}
& 1 & 1 \\
& & \\
-1 & &
\end{array}\right) ; \\
& S_{1}^{z} \cdot S_{2}^{z}=\frac{1}{4}\left(\begin{array}{ccc}
1 & & \\
& -1 & \\
& & -1
\end{array}\right)
\end{aligned}
$$

Note: Rotation (in real space) transforms between S^{x}, S^{y}, S^{Z} as it should, The general spin operator in direction $\vec{r}=\left(r_{x}, r_{y}, r_{z}\right)$, $\|\vec{r}\|=1$, is

$$
r_{x} \cdot S^{x}+r_{y} S^{y}+r_{z} S^{z}=\vec{r} \cdot \vec{S}
$$

nth $\vec{S}=\left(S^{x}, s^{y}, s^{z}\right)$,

What are some prototypical supple chatterachinis?

- The denvatia before $\left.-|\phi\rangle=\frac{1}{\sqrt{2}}(1010-10\rangle\right)$ gets eurgy $-t^{2} / u-i s$:

$$
\begin{aligned}
& h=-\frac{t^{2}}{u} / \phi X \phi \left\lvert\,=-\frac{t^{2}}{u} \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right) \frac{\left(\begin{array}{lll}
0 & 1-10
\end{array}\right)}{\sqrt{2}}\right. \\
& \text { energy }-\frac{t^{2}}{u} \text { to }|\phi\rangle \text {, } \\
& 0 \text { ot the other stars } \\
& =-\frac{t^{2}}{2 u}\left(\begin{array}{ccc}
0 & & \\
& 1 & -1 \\
-1 & 1 \\
& & 0
\end{array}\right)=\frac{t^{2}}{2 u}\left(\begin{array}{ccc}
0 & & \\
-1 & 1 \\
1 & -1 \\
& & 0
\end{array}\right)
\end{aligned}
$$

- The only fully rationally musasiant interaction:

$$
\begin{aligned}
h & =J \cdot\left(s_{1}^{x} s_{2}^{x}+s_{1}^{y} s_{2}^{y}+s_{1}^{z} S_{2}^{z}\right) \\
& \equiv J \cdot\left(\overrightarrow{S_{1}} \cdot \overrightarrow{s_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\partial}{4}\left[\left(\left[\begin{array}{llll}
& & & \\
1 & & &
\end{array}\right)+\left(\begin{array}{llll}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\text { Chapter } & \text { I. } & & \\
& & & \\
& & & \\
& -1 & \\
& & -1 & \\
& & & 1
\end{array}\right)\right]\right. \\
& =\frac{J}{4}\left(\begin{array}{rrrr}
1 & & \\
& -1 & 2 & \\
& 2 & -1 & \\
& & & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{7}{2}\left(\begin{array}{ccc}
0 & & \\
& -1 & 1 \\
& 1 & -1 \\
& & 0
\end{array}\right)+\frac{7}{4}
\end{aligned}
$$

\Rightarrow same as $-\frac{t^{2}}{u}$ ($\phi \times \phi /$ (up to constant)

Heishberg nuterachon
I >0: autiferrousafuetre
I<O: ferrowajuetiz

Eigenvalues of operator

$$
\begin{aligned}
& \overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}=\frac{1}{4}\left(\begin{array}{cc}
1 & \\
-1 & 2 \\
2 & -1
\end{array}\right): \\
& \left.1 \times\binom{ 3}{-\frac{3}{4}} \text {, with eigenvector }\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)=|01\rangle-|10\rangle\right)_{\text {tome }}^{\text {ppm }=0} \\
& \left.3 \times\left(+\frac{1}{4}\right) \text {, int eigenvectors }\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=100\right\rangle \\
& \text { total Spin } \\
& S_{z}=+1 \\
& \left.\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)=111\right\rangle \\
& S_{z}=-1 \\
& \left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)=|01\rangle+|10\rangle \\
& S_{z}=0
\end{aligned}
$$

Important' TO preserve rotational symmetry,
$\frac{1010+10\rangle}{\sqrt{2}}$ must go with the ferromajuetie
states: Classical mania unisleadiy.'
\Longrightarrow form of quantum correlations
(entanglement) plays an essential role!

Other remportant rutsactions:
Ising meteraction: $\quad h=S_{1}^{x} \cdot S_{2}^{x}$
(or $s_{1}^{z} \cdot \rho_{2}^{z}, \cdots$)
XX uteraction: $\quad b=S_{1}^{x} \cdot S_{2}^{x}+S_{1}^{y} \cdot S_{2}^{y}$
$x x z$ metracha: $\quad b=S_{1}^{x} \cdot S_{2}^{x}+S_{1}^{y} \cdot S_{2}^{y}+\Delta S_{1}^{z} \cdot S_{2}^{z}$
... Hose have a preferred axw/plane,

Hos do these act in the full N-spen Heldet space?

$$
(\phi)=\sum c_{s_{1}} \ldots s_{N}\left|s_{1}, s_{2}, \ldots, s_{N}\right\rangle
$$

$h_{12}(\phi)$ ach mily in s_{1}, s_{2}, and
lears othe ${ }^{\prime}$ 'mvasiant:

$$
\begin{aligned}
l_{l_{2}}|\phi\rangle & =\sum c_{s_{1} \ldots s_{N}}\left(e\left|s_{1}, s_{2}\right\rangle\right) \otimes\left|s_{3}, s_{1} \ldots\right\rangle \\
& =\sum c_{s_{1} \ldots s_{N}}\left(h_{k}\right)_{s_{1}, s_{2}}^{s_{2}^{\prime} s_{2}^{\prime}}\left|s_{1}^{\prime}, s_{2}^{\prime}, s_{3}, \ldots\right\rangle
\end{aligned}
$$

That is: l_{12} should be understood as

$$
l_{12} \propto y_{3} \propto \mathbb{4}_{4} \propto \ldots \propto H_{a} .
$$

Or we can do then sight at the level of soon operators,

$$
S_{i}^{\alpha}=\mathbb{1}_{1} \otimes \ldots \otimes \mathbb{u}_{i-1} \otimes S_{i}^{\alpha} \otimes \mathbb{1}_{i+1} \propto \ldots,
$$

and define $h_{i j}$ worry these $S_{i}{ }^{\alpha}, ~ e . g$,

$$
h_{i j}^{\prime \prime}=J \vec{S}_{i} \cdot \overrightarrow{S_{j}} .
$$

Can couple arbitrary spins this way, hut typ. Hamiltonian should te local (\rightarrow mechanise telund not.)

Total Hamiltonian: Sum of all (crab) kermes,

$$
\begin{aligned}
& \text { Sum over } H=\sum_{k} h_{k} \stackrel{\text { e.g. }}{=} \sum_{i l l} J_{v} \cdot \overrightarrow{S_{i}} \cdot \overrightarrow{S_{j}} \\
& \text { should decay inch } \\
& \text { distance. }
\end{aligned}
$$

c) Shudy of-quantucn sporn systuers

Spen systion:

$$
\begin{aligned}
& H=\left(\mathbb{C}^{d}\right)^{N} ; \begin{array}{c}
\text { Catice } \\
\text { geoushy }
\end{array} \\
& H=\sum_{i} l_{i} \quad \begin{array}{c}
\text { Geal /quasi=local } \\
\text { inkractions }
\end{array}
\end{aligned}
$$

H is typrially transl. ruvariaut, i.e. $h_{i} \equiv h$, centered at positio $i-e, g$. Heisentorg conpling,...
time - udep. Shrơdnge equatia

$$
H|\psi\rangle=E|\psi\rangle ; \quad|\psi\rangle \in \mathscr{X} \text {. }
$$

in particuler: Cowest ejeurvalue ϵ_{0} and correspouding ejunvector $\left.\mid \psi_{0}\right)$:
ground state $\left(\psi_{0}\right)$, ground state energy \in

- descrites system at sufficienky lor deugerotures.
therual state

$$
\begin{aligned}
\rho=\frac{e^{-\beta H}}{z} ; z & =\operatorname{tr}\left(e^{-\beta H}\right) \\
\beta & =\frac{1}{k T}
\end{aligned}
$$

sipuificankly urore complex hau 14_{0} >:

$$
2^{N} \times 2^{N}-\operatorname{matin} x .
$$

For Tsinall evough: $\rho \approx\left|\psi_{0} X_{\psi_{0}}\right|$.
Key questious to ask adout system (e.g. for ground or Karual thete):

What type of order (phase) does syatem extibit?

- long-cange maguchi order
- us unaguetir ords
- other types of order?!
... as a function of T, or of soue paracuetor in H, such as different complizs, a moguetio fiold

$$
H^{\prime}=H-b \cdot \sum_{i} S_{i}^{z} \text {, or } H^{\prime}=H-\sum_{i} \vec{b} \cdot \vec{S}_{i}, \ldots
$$

T

phase transtia lives:

Where are the please transits? What propstics do they have?

Focus: Quantucu Ratter - makiôls where quantum effects play an essential role.
\Longrightarrow Hus is more prominent at Los T $(k T \ll$ energy scales of H (y. Cate))
(Why? \rightarrow gfilatu: at lager T, quantum correlations - entanglement -vanish.)
\Rightarrow Special interest on pleysics at $T=0,1, e$, ground state properties \& plose diagrace.

"quantime plates
"quautum plase trausiha-s"
(lmportant porint: Are propertics at $T=0$ ototle againt suall $T>0$? \rightarrow Catu!)

What propestics are we intersted in?

- wajuetic order:
e.g. averaje majuetitatio

$$
\vec{u}=\frac{1}{N} \sum_{i}\left\langle\overrightarrow{S_{i}}\right\rangle=\left\{\begin{array}{l}
=0 \\
\neq 0
\end{array}\right.
$$

τ ferromaguetio or, wore jeueral,

$$
\vec{u}(k)=\frac{1}{N} \sum_{j} e^{i k j}\left\langle\overrightarrow{\rho_{j}}\right\rangle=?
$$

e.g. for 2D, $k=(\pi, \pi)$: "staggered maguetitatio", detects autiferromaguetic order.

- corrclations tetwreea spins
* $\left\langle S_{i}^{\alpha} \cdot S_{j}^{\beta}\right\rangle$ - for trausl. nvariant systems, this only depands on i-ji, or (if ve also have cflector sym.) on $\left|i^{i} j\right|$.

* "Stuncture factor" $S(k)=e^{i k(i-j)}\left\langle S_{i}^{\alpha} S_{j}^{\beta}\right\rangle$
\rightarrow eucodes nuformation afont maguede order $\rightarrow S(k)$ can be vecasured inth wentron scattring
\rightarrow dehanior of corclation, e.g.

$$
\left\langle S_{i}^{\alpha} S_{j}^{\alpha}\right\rangle \sim e^{-|i-j| / \xi}
$$

gies correlatra Length 5, whid diverges phase traus. A gives ectra nufo. afout type of transtia.
https://www.ericmfischer.com/project/exact-sampling-cluster-sampling/

- ground Date energy E_{0}

$$
\begin{aligned}
& \text { By itriff meaningless, hut derivatives in } \mathrm{K} \\
& \text { respect to parameters (fill,...) encode } \\
& \text { nuformation } \\
& \text { (y.f. free energy } \begin{array}{r}
F=-k T \ln z) \\
\}_{-e^{-\delta H}}
\end{array}
\end{aligned}
$$

e.g.: $H^{\prime}=H+K V, e \cdot g, \quad V=\sum S_{i}^{z}:$

$$
\begin{aligned}
& \left.\left.\frac{d E_{0}\left(H^{\prime}\right)}{d \lambda}\right|_{\lambda=0} \frac{d}{d \lambda}\right|_{\lambda=0}\left(\left\langle\psi_{0}(\lambda)\right| H+\lambda V\left|\psi_{0}(\lambda)\right\rangle\right) \\
& =\left\langle\psi_{0}(0)\right| V\left|\psi_{0}(0)\right\rangle
\end{aligned}
$$

(other terns vacuis as $\frac{d / u_{0} \text {) muit }}{d x}$ be orthogrual to $\left|t_{0}\right\rangle$ due to wonaliata)

- Finally, we might also be muterosted in othe questass
- Hive evolutia, e.g, after clange of H ("quench"), or Kipping a spon cau be meas. W/mclashc neútron scotteny
- exacted states :

$$
\left.H / \psi_{k, E}\right\rangle=E_{k}\left|\psi_{k, E}\right\rangle
$$

with mormenturen $\left.\left.T / \psi_{k, E}\right\rangle=e^{i k} / \psi_{k, E}\right\rangle$ \} trauslatia operator

- effects of disorder in H
- properties of thermal states
- oo. and munch more!

For the beginning, hay questions asl te:

- What is the ground state
- what are its properties

This wall alto form the tons for many of the other questras.
d) The spectral gap

What characterites a please trausitia?

- DVergence of correlata leugth
- disconticuity of denvatives of certain quantilies.

Phase trausitin: Suall change in paracmeters can gite sise to lage (sudde) clayge in physical propertios - the system is uustatle.

Inside a plase: Syotem should anly reat weakly to suall perturtations, i.e. The propertios and Mus the syoter are sktte againtt perturditins.

How can we charactenite (in-)stabiliz to small petturdations $H \rightarrow H^{\prime}=H+\varepsilon V$ in a siuple way?

Perturbation Kerry:
H : ground state $|\psi\rangle$ w/euergy E_{0}, ex. states $\left|\phi_{i}\right\rangle w /$ energy E_{i} (sorts: $E_{i} \leq \varepsilon_{i+1}$) H^{\prime} : ground tate $\left|\psi^{\prime}\right\rangle$

$$
\left|\psi^{\prime}\right\rangle=\underbrace{-\varepsilon \sum_{i}^{-\frac{\left|\phi_{i}\right\rangle}{E_{i}}-\epsilon_{0}}}_{\text {cleanse m state! }}+|\psi\rangle+\ldots
$$

$$
\begin{aligned}
& \|\left|\psi^{\prime}\right\rangle-|\psi\rangle \|=\varepsilon \cdot\left|\sum_{i} \frac{\left.\left|\phi_{i}\right\rangle \phi_{i}|V| \psi\right\rangle}{\frac{E_{i}-E_{0}}{\geqslant E_{1}-E_{0}}=: \Delta}\right| \\
& \leqslant \frac{\varepsilon}{\Delta} \| V|\psi\rangle \|
\end{aligned}
$$

(\& higlu orders scale wi $\left(\frac{\varepsilon}{\Delta}\right)^{k}$!)
\Rightarrow If the "energy gap" (or: "spectral jap",
or "gap") of H is suffiriunty large, chaptlexici pg 31

 gapped with deycuerate ground stk

Defluites: We call a Hacuitfocion (SodoteraI, pg 32 fain'ly of Hamiltorional)

$$
H=\sum_{i=1}^{N} k_{i}
$$

on a lative of size N gapped of the gap $E_{1}(N)-E_{0}(N)=\Delta(N)$ on a lathe of site N is lowrer bocueded:

$$
\Delta(N) \geqslant \Delta>0
$$

(typ, $\Delta(N) \rightarrow \Delta)$,
We call Δ the jap (or enozyy gap, spectral jap) of H.

This can alro te extuded to systrius with k deyeuerte (or alvort dejeuerate, as $N \rightarrow \infty$) ground staks; Heen, $\Delta(N)=E_{k H}(N)-E_{k}^{-}(N)$.

Capless (or critizal) systeus are those chatefleeres

$$
\Delta(N) \rightarrow 0 \quad\left(\text { offen, } \Delta(N) N \frac{1}{\operatorname{pog}(N)}\right)
$$

We can deprue (gagred) quantiun plasts as ugions in pacaunter space where t is gapped, and the borendanes (transiton) ktrreen Heen as the eives where H is gopless.
luhutin - of a dove: A fip euruces dotatiliz of the phate, as the profoctor $\left(\frac{\varepsilon}{\Delta}\right)^{\text {k on the }}$ putultation series vacuibles.
But Hers is usit rigorons, snece typ. V is exturove $(e . g .: H^{\prime}=H+\varepsilon \underbrace{\sum \sigma_{i}^{z}}_{\equiv v})$, and H lues $\|V(\psi\rangle\| \propto N$. Thews, higher order ternus can in fact get laiger (as the bounds scale as $\left.\left(\frac{\varepsilon}{\Delta}\right)^{k} N^{k}!\right)$ Should onll te true of the teruer in V dou't "conspice".

Proofs of such stability possthe in certain cases under sse additional reasmatle assumptions:

$$
H^{\prime}(\varepsilon)=H+\varepsilon \sum_{i} V_{i}
$$

is still gaped for small enough E, and the ground states of H and $H^{\prime}(\varepsilon)$ only differ inside a "Leet cone" whose size depends on ε and Δ (up to small correcting): Thus, the propotias of the proved state do not change abmplly, and in patianlar, uso loyg-rauge correlation can appear (or disappear).
(Further riding: https://arxiv.org/abs/1001.0344
for the stability of the pap, and https://arxiv.org/abs/cond-mat/0503554
for the consequence that the stoke only chasers reside a "light cone",")

A further consequence of a gap is that for lowharcainifleg 35 temperature,

$$
\rho(\tau)=\frac{e^{-\beta H}}{\operatorname{tr}\left(e^{-\beta H}\right)} \approx\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|
$$

with $\left|\psi_{0}\right\rangle$ the ground take (Hent requires ane extra reasonable assumption on the density of states) - ic., we dan't need to cod to $T=0$ to be (effectively) in the ground state.
e) Sunowary: Schep \& Question

- Quantiver ypres system $\mathcal{H}=\left(\mathbb{C}^{d}\right)^{\otimes \infty}$.
- Local Hacuiltruiken $H=\sum h_{i}$.
- Dekruive propstios of ground state \& spectral properties of H.
Q: Hor can we led ink the exp dimension d^{N} of the undorlyng Hhatot space H?
 we car about growed stact \Rightarrow only a small fraction of stetes in He achally eleraut! What sugles not the rclevaut plates?
\Rightarrow The stuctuce of Kuer 9.corrclations entanglement!

