II. Eutanglenecut

1. Rcan field Mreory - aud Seyoud

Aim: Find \& desconte (in a useff (way) gronud stote $/ t_{0}$) of quanturn many-body (DRTS) systan 4 th local intochans:

$$
\left.H=\sum h_{i} ; \quad H / \psi_{0}\right\rangle=E_{0}\left|\psi_{0}\right\rangle
$$

a) Voriational warefunchous
"Variahinal prucple":
G.S. $\left.\psi_{0}\right\rangle$ is vector $\left.l \psi\right) \in H=\left(\mathbb{C}^{d}\right)$ en which ostains minimen

$$
\min _{|\psi\rangle}\langle\psi / H \mid \psi\rangle=E_{0}
$$

(E.g. follows (n ficcite diun.) from ejan value deconpositio $H=\sum E_{1}\left|\psi_{i} X_{\psi_{i}}\right| ; \quad E_{0} \leq E_{1} \leq \ldots$:

$$
\langle\psi| H|\psi\rangle=\sum\left|\left\langle\psi \mid \psi_{i}\right\rangle\right|^{2} E_{i}=\sum p_{i}^{\prime} \underbrace{E_{i}}_{\geqslant E_{0}} \geqslant E_{0})
$$

Use a (educated) quess for the form of $/ 40\rangle$:

$$
\left|\psi_{0}\right\rangle \approx\left|\tilde{\psi}_{0}\right\rangle \in \int_{p} \in\left(C^{d}\right)^{\theta N}
$$

"Variational faccenly of stetes"
\& minimite $\langle\psi| H|\psi\rangle$ over $|\psi\rangle \in J$.

- approximates graund state well
- is sicepte \& uschel to coosk with
b) Rean-field Kueory

Simplett gness for f : Iguore (quantuar) correlahous:
Rean-frold cuesatz:

$$
\rho_{\Pi F}=\left\{\left|\phi_{1}\right\rangle \infty\left|\phi_{2}\right\rangle \infty \ldots \infty\left|\phi_{\sim}\right\rangle,\left|\phi_{1}\right\rangle \in \mathbb{C}^{d}\right\}
$$

\rightarrow works suipoisnegly well he woung cases - especidly in higher spatal dinucusions (Reasou: "nuovogamy of entanflement" - 'f g, correlohns are shared tehn. wany neighlors, Huey cenest te pnall, of. (ah.)

Example I:
Ising uadel ($n D$ dims.), $\left.H=-\sum i_{i}\right\rangle^{\prime} z_{j}-A \sum x_{i}$ \rightarrow Howework Ruggestra

Exauple II:
Heiscaberg auhtifrovenguet in 1D
(PBC= perriea bomedry conditias)

$$
H=\sum_{i=1}^{N} \overrightarrow{\delta_{i}} \cdot \overrightarrow{\delta_{i m}} \text {,Nevan }
$$

$$
\overrightarrow{S_{i}} \cdot \overrightarrow{f_{i+1}}=\frac{1}{4}\left(\begin{array}{ccc}
1 & & \\
& -1 & 2 \\
& 2 & -1 \\
& &
\end{array}\right)
$$

$$
\left(\left\langle\phi_{1}\right|<\left\langle\phi_{2}\right|\right)\left(\vec{S}_{1} \otimes \vec{S}_{2}\right)\left(\left|\phi_{1}\right\rangle\left|\phi_{2}\right\rangle\right)=?
$$

- cese rotohoal muariauce of $\overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}$.
can fix wlog $\left.\left|\phi_{1}\right\rangle=10\right\rangle$.

$$
\equiv\left|\phi_{1}\right\rangle, \infty \mathbb{1}_{2}
$$

- then $\left\langle\phi_{1}\right| \quad \vec{S}_{1} \cdot \vec{S}_{2}\left|\phi_{1}\right\rangle$ anly progict spus

$$
\begin{aligned}
& =\langle 0| \vec{S}_{1} \cdot \vec{S}_{2}|0\rangle \\
& =\frac{1}{4}\left(\begin{array}{ll}
1 & -1
\end{array}\right)
\end{aligned}
$$

\Rightarrow ophinal value for $\left|\phi_{2}\right\rangle=|1\rangle$:

$$
\left.\left(\left\langle\phi_{1}\right| \otimes<\phi_{2} \mid\right)\left(\overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}\right)\left(\mid \phi_{1}\right) \otimes\left(\phi_{2}\right\rangle\right)^{\text {Chapter II. } 1}=-\frac{1}{4}^{\mathrm{pP}}
$$

- continue seguatially:

$$
\left.\left.\left.\left.\left.\left|\tilde{\psi_{0}}\right\rangle=|0\rangle e / 1\right\rangle \sigma / 0\right\rangle \otimes / 0\right\rangle \ldots \infty / 0\right\rangle \infty / 1\right\rangle
$$

(or aug rotated version, $\left.l^{\Delta N} / \tilde{\psi_{0}}\right)$)
\rightarrow autiferrovaguedr order

- energy per ate from mean-freld:

$$
\frac{E_{0}}{N}=-\frac{1}{4}
$$

c) Beyond mean field

How good is Heir?
Have seek: $\quad \operatorname{ein}\left(\vec{S}, \overrightarrow{S_{2}}\right)=\left\{-\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right\}$.
\Rightarrow Theortial Lower Sound $\frac{E_{0}}{N} \geqslant-\frac{3}{4}!$
How close can we get to Kat?

Improved guess:
For a niggle pair $\overrightarrow{S_{i}} \cdot \overrightarrow{S_{i+1}}$, the sublet state $\left.\left./ \sigma_{i, i+1}\right)=\frac{1}{\sqrt{2}}(101)-(10)\right)$ has opormal energy $-\frac{3}{4}$.

Ausak: $\quad\left|\tilde{\psi}_{0}\right\rangle \stackrel{?}{=}\left|\sigma_{12}\right\rangle e\left|\sigma_{3 G}\right\rangle e \ldots e\left|\sigma_{N-1 N}\right\rangle$

What is enogy $\left\langle\widetilde{\psi}_{0}\right| \mathrm{H}\left|\tilde{\psi}_{0}\right\rangle$?

$$
\begin{aligned}
& \left\langle\tilde{\psi}_{0}\right| \vec{S} \cdot \overrightarrow{S_{2}}\left|\tilde{\psi}_{0}\right\rangle=\left\langle\sigma_{12}\right| \overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}\left|\sigma_{12}\right\rangle=-\frac{3}{4} \\
& \left\langle\tilde{\psi}_{0}\right| \overrightarrow{S_{2}} \cdot \overrightarrow{S_{3}}\left|\tilde{\psi}_{0}\right\rangle= \\
& =\sum_{\alpha}\left(\left\langle\sigma_{12}\right| \ll \sigma_{34} \mid\right)\left(S_{2}^{\alpha} \cdot S_{3}^{\alpha}\right)\left(\left|\sigma_{12}\right\rangle\left|\sigma_{34}\right\rangle\right) \\
& \text { and }\left\langle\sigma_{12}\right| S_{2}^{\alpha}\left|\sigma_{12}\right\rangle=0 \text { : } \\
& \text { direct venficaha, or } \\
& \text { (ef.Gh) red. density } \\
& \text { matrix of } 5_{12} \text { ? } \\
& \Rightarrow \frac{E_{0}}{N}=-\frac{1}{2} \cdot \frac{3}{4}=-\frac{3}{8}<-\frac{1}{4} 1_{0}^{1}
\end{aligned}
$$

Better curgy if we mclude 9, correlahai. luthitia: Hacen2torion $H=\sum h_{i}$ hor ruturachous C_{i}. ukose pround staks have q. cosrelahous - ceetauglement.

Howeres, we have only included correlations setwreen half the pain! ldeally, we would like to have all neocdt neiglitor pais on Hee state $/ \sigma_{i, i+1}$?. Is Mus posntle? No!" Ronojamy of entanflement" A spon cament te moximally entanegled enth several other somes.

If cutanglement with reveral other spons is requird, The centanglenerent has to te splid up setwrece thee partios.
$(\rightarrow$ in Leifleer delectersins, Neere are inapter II, pg 8 neigletors: entanglevent setw. cod pair smalls, and Heus, mean firld cvosts fett.)

In patticula: luposstle to jut $\frac{E_{v}}{N}=-\frac{3}{4}$.
But: True vake is lenerurn to te

$$
\frac{\bar{E}_{0}}{N} \stackrel{N \rightarrow \infty}{ } \quad \frac{1}{4}-\log 2 \approx-0.443<-\frac{3}{8}
$$

\Rightarrow he order to freed a varia honal faceilly whid allows us to approx. Hus volene, we necd to cutrantle at adjöcent spones (in order to waiviceire $\left.\left\langle\tilde{\psi}_{e}\right| H\left|\tilde{\psi}_{0}\right\rangle=\sum\left\langle\tilde{\psi}_{0}\right| e_{i}\left|\tilde{\psi}_{c}\right\rangle\right)$ \Rightarrow leeed to weederstand whtangle ment struckire of growend states of lozal interackous acoss any cot.
2. The Schmidt decompontia
a) Scop

Consider a system consisting of tho pats:

$$
\begin{equation*}
H=H_{A} \odot \mathcal{H}_{B} . \tag{6}
\end{equation*}
$$

(len a many-soly system, Hus could come from a tripalitia:

- States $|\psi\rangle$ while can te written as

$$
|\psi\rangle=\left|\psi_{A}\right\rangle \psi\left|\psi_{B}\right\rangle
$$

(ie.: $\left|\psi_{A}\right\rangle=\sum a_{i}|i\rangle,\left|\psi_{8}\right\rangle=\sum b_{j}|j\rangle$ i

$$
\left.|\psi\rangle=\left|\psi_{A}\right\rangle \cos \left(\psi_{B}\right\rangle=\sum a_{i} b_{j}|i, j\rangle\right)
$$

for some $\left|\psi_{A}\right\rangle,\left|\psi_{s}\right\rangle$ are called product states or separate stats.

- States $|\psi\rangle$ which are cot of Hus pron, chapter IIertazth cannot be written as $\left|\psi_{t}\right\rangle \otimes\left|\psi_{s}\right\rangle$, are called entangled.

That is,
(8) $\left.|\psi|=\gamma_{1}\left|\psi_{A_{1}}\right\rangle \Subset\left|\psi_{B_{1}, 1}\right\rangle+\gamma_{2}\left|\psi_{A_{1}, 2}>\in\right| \psi_{B_{1}, 2}\right\rangle+\ldots$ with wore than one tern!

Thus suggests that catangtement is related to some hond of correbhars teth. A \&BC

$$
\begin{aligned}
\left|\psi_{A, 1}\right\rangle & \longleftrightarrow\left|\psi_{B, 1}\right\rangle
\end{aligned} \quad\left(\begin{array}{c}
\text { wees } \left.\left|\gamma_{1}\right|^{2}\right) \\
\left|\psi_{A, 2}\right\rangle
\end{array} \longleftrightarrow\left|\psi_{B, 2}\right\rangle \quad\left(\text { wephet }\left|\gamma_{2}\right|^{2}\right)\right.
$$

How to charectense the entanglemat?

Iutiutively, it should depend on weights $\left|\gamma_{k}\right|^{2}$
and distingmishability $1-\mid\left.\left\langle\psi_{A, k}\right| \psi_{A,} e^{\text {chap }}\right|^{\text {III }}, \&_{g}{ }_{11}$

$$
1-\left|\left\langle\psi_{B, L} \mid \psi_{B, e}\right\rangle\right|^{2}
$$

But naively, thus is not even ruvaraud chunder writing $|\varphi\rangle$ in efferent ways as $*$.

Q: Hor can we chorackrize entanglement in a meakingforl way?
b) The singular value decauposita

Theorem (Singe lar Value Decoupesita, sUD):
Any complex mxa-matrix M can te written as

$$
\pi=u D V^{t}
$$

with U, V isometrics (ire. $u^{+} u=V^{+} v=I$), and

$$
D=\left(\begin{array}{ccc}
s_{1} & & \\
s_{2} & 0 \\
0 & \ddots & \\
& & \\
s_{r}
\end{array}\right) ; \quad r \leq m, a .
$$

inth $s_{1} \geqslant s_{c} \geqslant \ldots \geqslant s_{r}>0$ the singular voduce gin.
The s_{k} are the um-zers equenvalues of nnt or equivaleutly of $n^{t} \pi$,
(Notk: U, U are uceique up to rotatrous in rubspaces of degen. Si. Oftem, the SVD is slated wh. U,V unitary and D a uxm-matrix. It is ottained from the form asove by padelng D inth zers and completry u and V to uaitanss by addy columus,)
Proof: Diggonalice πn^{t} :

$$
\begin{aligned}
& \pi \Omega^{+}=\omega \wedge W^{+} \text {; } W \text { umiary, } \\
& \Lambda==\underbrace{\left(\begin{array}{ccc}
l_{1} & & \vdots \\
& d_{2} & \vdots \\
& & a_{n} \\
\hdashline & a_{0} & 0_{0}
\end{array}\right)}_{a} \\
& \text { whth } \lambda_{1} \geq \lambda_{2} \geqslant \ldots \lambda_{r}>0
\end{aligned}
$$

Epfrice $\left.\pi:=\left(\begin{array}{lll|l}\wedge & & & \\ & \ddots_{1} & 0\end{array}\right)\right\} r$,

$$
\begin{aligned}
& u:=\omega \pi^{+}, D:=\left(\begin{array}{lll}
I_{1} & & \\
& \ddots & \\
& \ddots & \\
& & \sqrt{t_{r}}
\end{array}\right), \begin{array}{l}
\text { chapter } I \pi
\end{array} \text { and } \\
& v^{+}:=D^{-1} \pi \omega^{+} \pi .
\end{aligned}
$$

Then, $u^{+} u=\pi \omega^{+} \omega \pi^{+}=\pi \cdot I \cdot \pi^{+}=I$,

$$
V^{+} v=\underbrace{=1}_{=D^{-1} \pi \omega^{+} \pi \pi^{+} \omega \pi^{+} D^{-1}}
$$

(i,e. U, V socuetrics), and

$$
\begin{aligned}
& \left(I-\pi^{+} \pi\right) \omega^{+} \pi \pi^{+} \omega\left(I-\pi^{+} \pi\right)=\left(I-\pi^{+} \pi\right) \wedge\left(I-\pi^{+} \pi\right)=0 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \Longrightarrow\left(I-\pi^{+} \pi\right) \omega^{t} \pi=0 \text {. Thens, } \\
& \underline{u D v^{+}}=\left(\omega \pi^{+}\right) D\left(D^{-1} \pi \omega^{+} \pi\right) \\
& =\omega \pi^{+} \pi \omega^{+} \pi=\omega I \omega^{+} \pi=\pi \text {. }
\end{aligned}
$$

c) The Shwider decompositio

Back to biparthte state $\left.H_{4}\right\rangle \in H_{A}-\mathcal{H}_{\beta}$.
coundes ONB's $\left.l i)_{4}, l j\right\rangle_{\Delta}$.
Write

$$
|\psi\rangle=\sum c_{j}|i\rangle_{A}|j\rangle_{s} .
$$

$u_{k} \operatorname{svD} \quad C=\left(C_{i j}\right)=u \cdot D \cdot v^{+}$,

$$
\text { i.e. } \quad c_{i j}=\sum u_{i k} s_{k} \overline{v_{j k}}
$$

$$
\Rightarrow|\psi\rangle=\sum_{k} s_{k} \underbrace{\left(\sum_{i} u_{i k}|i\rangle\right)_{A}}_{=i\left|\psi_{k}^{k}\right\rangle} \frac{\left(\sum_{j} \overline{u_{j k}}|j\rangle\right)}{=\left|\psi_{k}^{k}\right\rangle \text { ons as }}
$$

ONS as, $\overline{V_{j k}}$ rocment! rerk soment?

$$
\Rightarrow \sqrt{|\psi\rangle=\sum_{k=1}^{r} S_{k}\left|\psi_{A}^{k}\right\rangle \otimes\left|\psi_{s}^{k}\right\rangle}
$$ with $s_{k}>0$.

The Schmider decouposita, whan
Sohwidet coepperiants sk>0
and Sohmidet rauk r.
Note: © The $\left.\left\{1 \psi_{*}^{k}\right\rangle\right\}$ and the $\left.\left\{14 \sigma^{k}\right\rangle\right\}$ each form an ortno normal sct!

- The Sihncidel decompostor is nueque, up to simultancous rotahors withim subspaces u/ deguerate secuidet coefficimh.
d) Reduced deusty watrices

Dcusity matrices: typ. mitroduced to desconk states chere we have pactial kursledge.
Consider $\langle\psi| \Pi|\psi\rangle$, wth II e.g. an osservolle, or a projection onto a meas. remlt:

$$
\begin{aligned}
\langle\psi| \pi|\psi\rangle= & \operatorname{tr}\left[\pi \cdot \frac{\left|\psi X_{\psi}\right|}{C \text { Propccor ato tup }} \quad\right. \\
& \operatorname{tr}^{\prime}(X)=\sum X_{i i} . \text { Sans-nolequendent! }
\end{aligned}
$$

Then, if we have skate $\left.H_{i}\right\rangle$ it probabily p_{i} :
Avg, antome is

$$
\begin{aligned}
\sum p_{i}\left\langle\psi_{i}\right| \pi\left|\psi_{i}\right\rangle & =\sum p_{i} \operatorname{tr}\left[\Pi\left|\psi_{i} x_{\psi_{i}}\right|\right] \\
& =\operatorname{tr}\left[\Pi \cdot \sum p_{i}\left|\psi_{i} x_{\psi_{i}}\right|\right] \\
& =\operatorname{tr}[\Pi \rho]
\end{aligned}
$$

anth $\rho:=\sum p_{i} / 4 \psi_{i} X_{H_{i}} \mid$ the deusity matrix (or deusizy opevator).
(Cau be used to dersoste ensantle $\left.\left\{p_{i} / \varphi_{i}\right\rangle\right\}$. Note: This, s not umpuely deternined ifp!)

Back to siparthe states. Consider $|\psi\rangle \in \mathcal{X}_{A} \otimes \mathcal{X}_{B}$. Has can we derserte the expectation value of an operater R_{A} on A ? (E.g. measurement)
 plate $\left.|\psi\rangle=\left|r_{A}\right\rangle=1 \psi_{s}\right\rangle$, we wist have

$$
\begin{aligned}
"\langle\psi| \Pi_{A}|\psi\rangle ": & =\left\langle\psi_{A}\right| \Pi_{A}\left|\psi_{A}\right\rangle \\
& =\left\langle\psi_{A}\right| \Pi_{A}\left|\psi_{A}\right\rangle\left\langle\psi_{B} \mid \psi_{S}\right\rangle
\end{aligned}
$$

That is, n_{A} acts on $\left(\psi_{A}\right) \otimes\left(\psi_{s}\right)$ as

$$
\left.\left.\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle \longmapsto\left(\Pi_{A} / \psi_{A}\right\rangle\right) \infty / \psi_{\Delta}\right\rangle .
$$

Thus is exactly the dentition of the operator $\Pi_{A} \propto \eta_{B}$! - Due to linear $\boldsymbol{H}_{1} \Pi_{A}$ must act as $\pi_{A} \otimes U_{s} n$ all states $(\psi) \in H_{A} \odot X_{A}$! Now let $\left.\left.|\psi\rangle=\sum \varepsilon_{j} / i\right\rangle_{\lambda} d /\right\rangle_{\psi}$.

Then, $\langle\psi| \Pi_{A}-M_{B}|\psi\rangle=$

$$
\left.=\sum c_{i j} \bar{c}_{i i^{\prime \prime}}\left(\left\langle\left. i^{\prime}\right|_{A}<j^{\prime}\right|\right)\left(\pi_{A} \otimes \mathbb{1}_{\Delta J}\right)\left(i_{A}\right\rangle_{-} / j_{s}\right)
$$

$$
\begin{aligned}
& =\sum c_{i j} \overline{c_{i j}} \underbrace{\left\langle i^{\prime}\right| \Pi_{A}|i\rangle} \underbrace{\left\langle j^{\text {chapter IT, pr }}\right| \mu_{j}|j\rangle} \\
& =\operatorname{tr}\left[n_{A} \mid i X_{i}^{\prime}\right]=\delta_{j \prime \prime}{ }^{\prime \prime} \\
& =\sum_{i i^{\prime} j} c_{i^{\prime} j} \overline{c_{i^{\prime} j}} \operatorname{tr}\left[\Pi_{A}\left|i X_{i^{\prime}}\right|\right] \\
& =\operatorname{tr}\left[\Pi_{A} \rho\right] \text {, }
\end{aligned}
$$

with $\rho=\sum_{i^{\prime} j} c_{i j} \overline{c_{i j}^{\prime}}\left|{ }_{i} X_{i^{\prime}}\right|$,
or $\quad \rho_{i i^{\prime}}=\langle i| \rho\left|i^{\prime}\right\rangle=\left(C C^{+}\right)_{i i^{\prime}}, C=\left(c_{i^{\prime}}\right)$.

This can be formalized therggh the concept of the partial trace: Given PAS, the paschal trace is

$$
\rho_{A}=\operatorname{tr}_{B} \rho_{A B}:=\sum_{j}\left(\left.\mathbb{1}_{A} \alpha_{j}\right|_{B}\right) \rho_{A B}\left(\mathbb{1}_{A} \alpha \mid \rho_{B}\right)
$$

$$
\begin{aligned}
& \equiv \sum_{j}\left\langle j_{B}^{\prime}\right| \rho_{A B}|j\rangle_{B} \\
& \equiv \sum_{i, i^{\prime}, j}|i\rangle_{A}\langle i, j| \rho_{A B}\left|i^{\prime \prime} j\right\rangle\left\langle i^{\prime} / A\right.
\end{aligned}
$$

Aganu, pA desentes augtleng pestairing to soptem A. un particular, for the cak $\rho_{n o}=\left|4 X_{+}\right|$,

$$
\begin{aligned}
& |\psi\rangle=\sum\langle i \mid i\rangle|j\rangle: \\
& P_{A}=\sum \sum_{A^{\prime}} \varepsilon_{i^{\prime} j^{\prime}} t_{B}\left[\left(|i\rangle_{A}\left\langle\left. i^{\prime \prime}\right|_{A}\right) \propto|j\rangle_{B}<\left.j^{\prime}\right|_{B}\right]\right. \\
& =\sum_{c_{i j}\left(\overline{c_{i j}} \mid\right.}|i\rangle_{A}\left\langle\left. i^{\prime}\right|_{A} \frac{\operatorname{tr}\left[\left|j X_{i}\right|\right]}{=\delta_{j j} .}\right.
\end{aligned}
$$

Finally, conside Schuider decamportion of $\mid \psi>$

$$
|\psi\rangle=\sum_{k=1}^{\gamma} s_{k}\left|\psi_{A}^{k}\right\rangle e\left|\psi_{s}^{k}\right\rangle .
$$

Then,

$$
\begin{aligned}
& \rho_{A}=\operatorname{tr}\left[\sum_{k, l} S_{k} S_{c} 1 \psi_{A}^{k} X \psi_{A}^{e}\left(\sigma / \psi_{s}^{k} X \psi_{s}^{e}\right)\right] \\
& =\sum_{k e} s_{k} s_{e}\left|\psi_{A}^{k} X_{\psi_{A}}^{e}\right| \underbrace{\operatorname{tr}_{B}\left[\left|\psi_{B}^{k} X \psi_{B}^{e}\right|\right]} \\
& =\delta_{k e} \text { as } \mid \psi_{i s}^{\circ}>\text { ow } \\
& =\sum_{k} \rho_{k}^{L} / \psi_{A}^{k} X_{\psi_{A}}^{k} / \text {. } \\
& \text { (cycling or trace }\left|\psi_{s}^{\circ}\right\rangle \text {) }
\end{aligned}
$$

Similarly, $\rho_{B}=r_{A}\left|\psi X_{\psi}\right|=\sum_{k} S_{k}^{2}\left|\psi_{B}^{k} X \psi_{B}^{k}\right|$.
\Rightarrow Schmidt coeffrints are the un-zero eigenvalues of ρ_{A} (or ρ_{B}).
(lu particular: For a pere slate $|\psi\rangle=|\psi\rangle_{\text {tB }}$, P_{A} and P_{s} have the same un-zero efferch.) The frhmidt rectors are the eypurectoss of $\rho_{A} \& \rho_{B}$, respectively.

Uulen there are degmerate so, thes umiquely determines the Sohmidt decomporstre.
e) Quautitative cloracteriztion of eutanglement

Recall: $|\psi\rangle \in \mathcal{X}_{A} \odot X_{J}$:

$$
\begin{aligned}
& \left.|\psi\rangle=\left|\psi_{A}\right\rangle \otimes / \psi_{s}\right\rangle \leftrightarrow i \frac{(\psi\rangle \text { product }}{\text { (or sparcke) }} \\
& |\psi\rangle \neq\left|\psi_{A}\right\rangle \phi\left|\psi_{n}\right\rangle \leftrightarrow|\psi\rangle \text { cutanfled }
\end{aligned}
$$

- i.e., $|\psi\rangle$ has non-tovial quantiven correlahas whith camut be created by lozal opentions \& classial commucuzatio.

What determines II, and Lesr unch, a state is eutaugled?

Use Slemidet basis:

$$
\left.|\psi\rangle=\sum s_{k}\left|\psi_{\pi}^{k}\right\rangle 0 / \psi_{J}^{k}\right\rangle
$$

$\left|\psi_{A}^{k}\right\rangle$ ONS, $\left|\psi_{s}^{k}\right\rangle$ ONS: For each k we have perfect (iic. orthograal /destinguitcatle) crrelatons tetwren A\&B. The ceatre (8ocurount) of corclatios shinld dep. n the destrititia of the s_{k} - if more events can occur wh same protabilin, there are wore correlaho.
ludeed: The $\left|\psi_{A}^{k}\right\rangle$ 8 $\left./ \psi_{k}^{k}\right\rangle$ can te changed with lood rothens, and this is all that local rotations can do \Rightarrow all rifo. atrut eutanglement is in the s_{k}.

Caversely, the s_{4} caccuor th claanged y blal uncitonns, as they are ejgarolues of PA \& Ps (uluie ar nuclanged muder ω_{s} / U_{1}, respectively). (Actematively: Gocal umitang trausbomis $C \rightarrow U_{A} C U_{s}{ }^{\top}$,
which does uot cleauge sugular values $\mathcal{J}^{\text {Chazter. }}$.II, pg $^{\text {II }}$

Resulting prichec:

no corrs. cutouglemant

(Intuinuly:)
Amount of cutanglement

Averunt of disordes in $\rho_{u}=f_{k}{ }^{2}$.

$$
\left(\sum_{p_{k}}=L!\right)
$$

Typirally mecasurical by soue veecasuic of entropy ("entanglevent entropy"),
e.g. von Nencuacm entropy

$$
S\left(\rho_{A}\right):=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]=-\sum p_{a} \log p_{k}
$$

Defined in the equavalues, ie.

$$
\begin{aligned}
& p_{A}=\sum p_{i}\left|\psi_{i} X_{\psi_{i}}\right| \Longrightarrow \log \rho_{A}=\sum \log p_{i}\left|\psi_{i} x_{\psi_{i}}\right| \\
& \Longrightarrow S\left(p_{A}\right)=-\lambda_{i}\left[\sum p_{i} \log p_{i}\left|\psi_{i} X_{\psi_{i}}\right|\right] \\
&=-\sum p_{i} \log p_{i}
\end{aligned}
$$

or some Reuse' cutropy

$$
S_{\alpha}\left(P_{t}\right)=\frac{1}{1-\alpha} \log \left(t\left(\rho^{\alpha}\right)\right)=\frac{1}{1-\alpha} \log \sum p_{k}^{\alpha}
$$

(Note: $\lim _{\alpha \rightarrow 1} S_{\alpha}(\rho)=S(\rho)$).
f) Approximation by low Sclucidel rachel

$$
\begin{gathered}
|\psi\rangle=\sum_{k=1}^{r} s_{k}\left|\psi_{A}\langle \rangle e / \psi_{B}^{k}\right\rangle \quad \text { Shluewided dec., } \\
S_{1} \geq S_{2} \geqslant \ldots>0 .
\end{gathered}
$$

We can approcicuote $/ 4$? by a stateptof/r, pg 25 soluceidd rank D dy cutting the pane,

$$
\left.\left|\phi_{D}\right\rangle:=\sum_{k=1}^{D} \delta_{k} / \psi_{A}^{k}\right\rangle \otimes\left|\psi_{s}^{k}\right\rangle .
$$

This is the ophzeral truncahir, ie. He are which reaximeites $\left|\left\langle\psi \mid \phi_{D}\right\rangle\right|$. The truncation error is

$$
\varepsilon(D)=1-\left|\left\langle\psi \mid \psi_{0}\right\rangle\right|=\sum_{k>0} S_{k} .
$$

If the s_{k}^{2} decay rapidly
 enough (rue ldl wejet a tail), thee the error is small.
la particular, this is the care if the Reni'eutropins for sone $\alpha<1$ are Sounded. Then, $\varepsilon(D) \leq \frac{1}{D^{\eta_{\alpha}}} \quad C_{\alpha} e^{\eta_{\alpha} S_{\alpha}\left(\rho_{1}\right)}$ with $C_{\alpha}=\frac{1}{2} \alpha(1-\alpha)^{Y_{\alpha}} ; \eta_{\alpha}=\frac{1-\alpha}{\alpha}$
(SCC https://arxiv.org/abs/cond-mat/0505140)
-i.c., the error scales as $\in(D) \sim 1 / p o l y$ (D).
9) Entanglevent in fround ghates

Ground states of quantum spin systans a,in to
 q. correlatious are bu'lt up lorady.

Thes ir copturd by Hee arca lav for eutanglement:
The entanglement ecrors every cut scales blee the Leugth of the Soundory (vs. Hhe volume of the regin).

Eig. ID chaik:

$$
1 \psi_{0}>
$$

$$
\rho_{A}=\sigma_{13} 1 \varphi_{0} \times 4 /
$$

$S\left(\rho_{A}\right) \leq$ coutt (alro holds for Reugr' eutropes)

Rigornsly proven for 10 gapped oystans.
proven by Hastizgs nttps:/axivi.org/abs 07005.2024
maproved by Aral, Kiker, dendan, Vazirami' ntrosi//axivi.orgabass/1301.1162
For fopless systacas in 1D:

$$
S\left(e_{A}\right) \sim \log (\underbrace{|A|}_{\text {site of } A})
$$

for pliysically rossmatle cotes, but (artificial) cruntrexacuples cuist.

20: spin systions (gapped \& goplen):

$$
P\left(P_{A}\right) \sim|\partial A|
$$

- leugth of somolary
goplers ferminer (= vectals):

$$
S\left(P_{A}\right) \sim|\partial A| \log |A|
$$

- all of thei not provec, fut teliaved to hold for rosona the cystuer.

Thus: Even conical systems geverdly
display only a logasthunc entanglement scaly.
This is in stale contrast to a random (Haar-raudon) state, for which

$$
S\left(P_{A}\right)=|A|-c \operatorname{cog}|A|!
$$

\Rightarrow ground bates are very special in the space of all states!
(We knew hens from parameter comets, tut now we knows chat maker them special: They have (comparatively) vo little entanglement!)

So... what is the structure of many-lody stack wo th lithe entanglement?

