IV. Simulations inth TPS

MPS form good approx. e.g. for ground staks, and reany quantitis can to extracted eprimky: Can wre use Heen as a unumerical tool to shady the physics of $1 D$ systans?

1. Ground States: The DREG method and teyand

Usc NPS to find grownd states of 10 tamiltowaus.

Nort suportant method: The "Duesty Matir Renormaliatia Grayp" (DNRG) method - in in uodern interportation as a variational method over MPS.
a) Idea \& baric algorithm
i) Given $H=\sum h_{i}$ OBC, coral, 1D.

Use OBC MPS ausact

$$
\left.|\psi\rangle=\sum A^{i_{1}(1)} A^{i_{2},(2)} \cdots A^{(i,(\omega)} / n_{1} \ldots, i_{N}\right\rangle
$$

for ground state, and optimize the $A^{i_{k 1}(k)}$ such as to miveimite the energy

$$
\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle} .
$$

ii) To optruite the $A^{i_{k},(b)}$, pick one k_{0} (the "wortury ok"),

$$
A^{i_{k_{0}}}\left(k_{0}\right) \equiv X^{i_{0}}, \text { keep all }
$$

other $A^{i_{k},(L)}$ fired, and mivicuize

$$
\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle} \equiv \frac{\langle\psi[x]| H|\psi[x]\rangle}{\langle\psi[x] \mid \psi[x]\rangle} \text { as }
$$

a fraction of X.
iii) What is the form of $\langle\psi[x]| H|\psi[x]\rangle$ and $<\psi[x]|\psi[x]\rangle$ as a fuucta of x ?

$$
|\psi[x]\rangle=\sum A^{i_{1}(1)} \ldots \cdot x^{i_{0_{0}}} . \ldots \cdot A^{\left.i_{1}(\mu) / i_{1}, \ldots, i\right)}
$$

is linear in $X \Longrightarrow$
$\langle\psi[x]| H|\psi[x]\rangle$ and $\langle\psi[x] \mid \psi[x]\rangle$ are quadratic in \times !

Core explicitly:

$$
\begin{aligned}
& \langle\psi[x] \mid \psi[x]\rangle=
\end{aligned}
$$

$$
\begin{aligned}
& =[L-\infty-R \\
& =\frac{\Gamma \Omega}{\frac{N}{\left[\frac{1}{x}\right]}}
\end{aligned}
$$

$$
=\vec{x}^{+} N \vec{x}
$$

with \vec{x} the "vectorized version" of x (ie. a vector w/ components $\left.\left(x_{\alpha, \beta}^{i}\right)_{i, \alpha, \beta}\right)$.

Similarly,

$$
\begin{aligned}
& \langle\psi[x]| H|\psi[x]\rangle=\ldots+ \\
& =\frac{\pi \times}{\frac{\pi}{\left[\frac{1}{x}\right]}} \\
& =\vec{x}^{+} \pi \vec{x} . \\
& \text { Ham. terns! }
\end{aligned}
$$

iv) The verizicuitatia problem in (ii) is thus of the form

$$
E_{m i h}=\min _{x} \frac{\vec{x}^{+} \Pi \vec{x}}{\vec{x}^{+} N \vec{x}}
$$

By redeproing $\vec{y}=\sqrt{\omega} \vec{x} \quad(N \geqslant 0!)$,
thus gres

$$
E_{\min }=\min _{y} \frac{\vec{y}^{+}\left(\frac{1}{\sqrt{N}} \pi \frac{1}{\sqrt{N}}\right) \vec{y}}{\vec{y}^{+} \cdot \vec{y}}
$$

\Rightarrow mikicusen Emin is given by suallest eifurvelue of $\frac{1}{\sqrt{N}} \pi \frac{1}{\sqrt{N}}$ \& corresp. espurvector!

$$
E_{\text {curk }} \underbrace{\overrightarrow{y_{o p t}}}=\frac{1}{\sqrt{N}} \Pi \underbrace{\frac{1}{\sqrt{N}} \vec{Y}_{\text {opr }}}
$$

$\sqrt{n} \vec{x}$

$$
\Leftrightarrow \quad E_{\min } N \overrightarrow{x_{o p t}}=\Gamma \vec{x}_{\text {opr }}
$$

"geueralied ejuralue protken"

Can te solved epficiraty!
v) We can now more back and fork ("swepe")
therough the sythem and for cach workny site ko replace $A^{i_{k_{0}}}\left(k_{0}\right)$ by the opprimal $A^{i_{00},\left(k_{0}\right)}$ - i.e. the me cthith mivimites the cuergy.

Thus proceduc inl only decrast the curgy, Remarharly, typieally it will converge to a very good approx. If the ground stack afte a few sweegs! (fometimes w/ snue triels...)

Tus is the crscuce of Nu DRRG arateforivit?
vi) There are a unnets of bey optriuizahas:

- Work in the mixed gange acound ko:

Then,

$$
\langle\psi[x] \mid \psi[x]\rangle=
$$

$$
=\prod_{x}^{x}=\vec{x}+\vec{x}
$$

i.e. He wivicuization in (iv) secanes a nomal eiguraluc protem

$$
E_{\min } \vec{x}=\pi \vec{x}
$$

(This is essectiral for the statility of the cucthol, as N typ. tecones ill-condihoed \rightarrow this is a ty drawback of the PBC alforitica!)

- When moving $k_{0} \rightarrow k_{0} \pm 1$ (one chaptegrip. pg 8 in a forward/backward sweyp) afto optimizing the tursor $A^{\text {ino, }}\left(\varepsilon_{0}\right)$, the cauonial form can te repolated wisk $O\left(D^{3}\right)$ operations (molep. of N!), suce only $A^{i_{0}},\left(k_{0}\right)$ has teen clanged, and ruly $A^{\left(k_{0}\right)}$ and the adfacent theror need to te up-dated,
- For the Kacuittorian, we can pre-compak for all cuts $\underset{E}{ }$ leff of the workeng nit k_{0},

$$
\ldots+
$$

 and similarly $R_{\tilde{k}}$ from the spet.

Then, $\langle\psi[x]| H|\psi[x]\rangle$ can to companaterd I iva 9 $O(1)$ opschine (indep. of N), and after updating $A^{i_{k_{0}}},\left(k_{0}\right)$ and moving to the opt t (left), $\mathcal{L}_{k_{0}}\left(R_{k_{0}}\right)$ can te efficien斯y computed from $\mathcal{L}_{k_{0}-1}\left(R_{k o t 1}\right)$ with $O(1)$ operations.
vii) With these optimisations, the entire procedure takes $O\left(D^{3}\right)$ per step, and thus $O\left(N D^{3}\right)$ operations per sweep.
If \# sweeps \sim constant (Option the case), the total effort x calces as $O\left(N D^{3}\right)$ (and of $D \sim \operatorname{poly}\left(\frac{N}{c}\right)$, as $O\left(\operatorname{poly}\left(\frac{N}{\varepsilon}\right)\right)$ itself).

This is the heart of the DreG algonte!
b) rTPO eucoding of Hamitruan

Keepring track of the deffernt Ham 2towan terms Supdatry Heren is techaicatly ckatleugrong.

Better: Express Hawiltowian as a Matrix Proluct Opuator.

Matix Rroduct Opvators
Definitian: A Matrix Product Opsator (MPO) is an opsator $O:\left(C^{d}\right)^{\otimes N} \rightarrow\left(C^{d}\right)^{O N}$ of the form

$$
\sigma=\left.\sum_{\substack{i_{1}, \cdots, i_{i} \\ j_{1}, \cdots, j_{N}}} \operatorname{tr}\left[c^{i_{j} j_{1}(1)} c^{i_{4} j_{2}(2)} \ldots . c^{i_{\omega}, j_{i}(N)}\right]\right|_{i_{11}, i_{N}} X_{i, \ldots, j \omega} \mid
$$

where the $C^{i_{k, j} j_{k}(2)}$ are $D_{k-1} \times D_{k}$-matrices,
(lu csscuce, an TOPS in 2 pheys. a-lives chapter TVY, where one is the lat \& one the sra of σ.)

MPOs cauke used to descoste deuntry opsators (IPPDOS), unitarios (IPles), or Hawltruians.

Hamiltorious as RPOS
Loral Hamiltorious can he uaturally expressed as rPos.

General constructio: Houewolk (\#...) Her, we give srue exacuples.

Example 1:

$$
H_{\text {long }}=-\sum \sigma_{z}^{i} \sigma_{z}^{i+1}-l \sum \sigma_{x}^{i} \text { (sigy model) }
$$

tiuv. OBC repo.
Coustmictio: Use "agent" pichere.
Stalt on left in 0 , end up in 2 , On the way, inplecuent exactly once
either $-h \cdot \sigma_{x}$,
or $\left(-\sigma_{z}\right)$, immediately follored by σ_{z}, and evergwhere else II.

11
arrou: passble trausitia
induced by MPO 太cursor
\& corresp. "pluyizal state"
(i.e., operation a thet sote)

Encode Has mito MPO teusoss:
playsical

wrmal
adices

$$
\begin{aligned}
& \left(C_{0_{2}}^{i j}\right)_{i j}^{i j}=-l \sigma_{x i} \\
& \left(C_{0_{1}}^{i j}\right)_{i j}=-\sigma_{z} ; \quad\left(C_{12}^{i j}\right)_{i j}=\sigma_{z} .
\end{aligned}
$$

and zero otherwise.

Or shorthand uotaho - use urthal indices as matrix indices and put pleypical achoo as matrix entry:

$$
C=\left(\begin{array}{c|c|c}
\mathbb{1} & -\sigma_{z} & -h \sigma_{x} \\
\hline 0 & 0 & \sigma_{z} \\
\hline 0 & 0 & \mathbb{1}
\end{array}\right)
$$

\& choose $\langle 01$ and 12) as boundary conditions:

$$
H_{\text {ling }}=\left\langle 01-\frac{1}{c}-\frac{1}{c}-\ldots-\frac{c}{c}-k\right\rangle
$$

Example 2:

$$
\begin{aligned}
H_{\text {Hes }} & =\sum \vec{\sigma}^{i} \cdot \vec{\sigma}^{i+1} \\
& =\sum\left(\sigma_{x}^{i} \sigma_{x}^{i+1}+\sigma_{y}^{i} \sigma_{y}^{i+1}+\sigma_{z}^{i} \sigma_{z}^{i+1}\right)
\end{aligned}
$$

$C=\left(\begin{array}{l|l|l|l|l}\underline{1} & \sigma_{x} & \sigma_{y} & \sigma_{z} & 0 \\ \hline & & & & \sigma_{x} \\ \hline & & & & \sigma_{y} \\ \hline & & & & \sigma^{2} \\ \hline & & & & 1\end{array}\right)$.
c) DreG with MPOS

- Normalization:

- Elucrgy;

- contraction of the Hawltruia:

Work in wired gauge around a working site k_{0}. For the working ste ko, define

sits left of k_{0}
and

Then, $\mathcal{L}^{\left(k_{0}\right)}$ and $\mathbb{R}^{\left(\varepsilon_{0}\right)}$ can te updated n O(1) operations when nosing ko, as lay as are shore $f^{(a)}$ and $R^{(a)} \forall k$ left/right of k_{0}.

- Optiveizata:

With CF around working oik k_{0}, we need to minimize

Thus can te wolved by solosing the ejencalue protlem (leadily aguralue) of the luear map $(\alpha, s, i) \longmapsto\left(\alpha^{\prime}, s^{\prime}, i^{\prime}\right)$.
(Note: This is a $d D^{2} \times d D^{2}$ cuatri \Rightarrow diagonalizatia requites $d^{3} D^{6}$ opuatious. But we can use a Kry lor method, where we juest apply

$$
X \longmapsto
$$

\Longrightarrow scales as $\left.O\left(D^{3}\right).\right)$
\Rightarrow Lolve egenvalue protlen \& set $A^{\left(k_{0}\right)}$ to the eigenvector wish suallost eifenvalue.

Note: The eijervalue automatioally returus the carrant total energy:

- Full algorthen.

As tefore: buhalix woth $k_{0}=1$, and then do
i) n ㄱL - sweeps:
optimize at ko
$k_{0} \rightarrow k_{0}+1$
repeat unhl $k_{0}=N$.
ii) Ceft-twreps :
optruite at heo
$k_{0} \rightarrow k_{0}-1$
repeat unhl ko $=2$.
unth converguce of eurgy is roched,
d) Two-sik DRRC,

A repuement of the metiol is 2-site DrRG:
There, ove gromps two sites and ophinites over the pont thusor at 2 sites, whale
's Hen split using an OVD: Chapter Iv, pg 19

This allows the optriuitation to explore a bigger space, and is less thely to gut shah in Coal minima.
2. OMer MPS-Sased algoritinus

Bricf orvviter of other MPS-bared algontlems
a) Tiue evolutim (red/iugivan)

Can we usc ress to smulle real/may. tive eoolution:

$$
\begin{aligned}
& |\psi(0)\rangle \mapsto|\psi(t)\rangle=e^{-i H t}|\psi\rangle, \text { or } \\
& |\psi(0)\rangle \mapsto \mid \psi(t))=e^{-H \tau}|\psi\rangle
\end{aligned}
$$

Shere $/ \psi(0)$ is soue rPS?

Trotter expausion
Cousides c.g. NN Ham, $H=\sum h_{i}$.

$$
\begin{aligned}
& H=\sum h_{i}=\underbrace{=: H_{\text {ode }}}_{\frac{\sum_{i \mathrm{Cr}}}{} u_{i}+\sum_{i^{i}+\mathrm{H}_{i}} u_{i}} \\
& e^{-i H t}=e^{-i(H \text { veren }+ \text { Hoded }) t}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(e^{-i(\text { Heven }+ \text { Hodd }) \text { toppotee }) K \operatorname{pg} 21}\right. \\
& \approx\left(e^{-i \text { Heven } t / k} e^{-i H_{\text {ode }} t / k}\right)^{k}
\end{aligned}
$$

Can get better accurecy w/ highe-order expantion!

Teusor wehoote fromulatia

$$
e^{-i G_{i} t / k}=\frac{1}{1} \longleftarrow
$$

$$
\left.\Rightarrow\left|\psi(t / k) S=\left(\prod_{i=v e m} e^{-i h_{i} t / k} \prod_{i_{00 d}} e^{-i h_{i} t / k}\right)\right| \psi(0)\right\rangle
$$

new teusors by bolockng

$$
=-1+1+10+1-1 .
$$

D $(\psi(t / k)>$ is an MPS in x an enlaged band dinucusion $D X$.
\Rightarrow Can uow use some truncata shecue (e.g. as is II.1, or by maximiting the overlap with an MPS inth bend diu, D - Bus can te drue anologous to DRRC) to get the dond dime. Sack to D.
(In fact, for real true cuoletra $e^{-i t t}$, the trencation can to done euticly local if wo use a suitalle caurnical form: the TEBD algonture ("fiuc evolingy floch decimatia").

Can be cercd as an alternative uethod ho proding ground itates, using $\left.\mid \psi) \mapsto e^{-H \tau} / \psi\right\rangle$, or for sivulatizy tive evolutio.

Gareat: The entanglement in these evol, can grow linearly monue (i.e., D grows exprumtially in tive), if whal state has frute luergy denory
\Longrightarrow sizulabion tecones quichly Neaccurate (can te seen from truncato error, or by evolung back again \& ckeclery for consitincy).
Note: Trucation evors don't mattor for nugg, thiee cool,, in case we want to read the ground state!
b) Ingrute systams

Can we simulate prprecte syptuens (crith a time. Hamiltorian $\left.H=\sum \zeta_{i}\right)$?
tusati: thuv. RPS (posintly with lafy cuir cell, e.g.

- also kerued irPS ("infinite MPS") n Hess context.

Cau again either ure variational methods (as DrREG) or ral/ruag. time errlutran suethods.

Variational methods:

- iDIRRG: Stalt with 2 sites, oporimit, and add a site in the widdle, whith is optivited uert, and to on.
No sweeps - Hue "old thutor are plesked to the notsile. The thusoss in the
canter should converge to the shops iverspor:5
- VURPS (variational uniform MPS): Formulate the curry optimization problem directly in the tolyl. limit, by using a canonical form for the iMPS around a working site.
In essence, the problem is Lelecarined by keeping all but the central kusor fixed this gives a quadratic problem, which is then solved. The new tecesor is cepdated everywhere in a shat way (roppecting the canonical form).
- more jeuvelly, we can lleearite the system, by "keeping all but one A fired", and then either wivimite that A (and ken whit it everywhere), or put more along the gradivit.

Thue evolutio (ral/maginary);

- TEBD (for ral tiue evolutar) can also be used in a trev. sctiting

TDVP (trme-degendlut varâtional pricujle)
Cousider the pace of iPPPS w/ boud dim. D as a unanifold.

Cousider evolution

$$
|\psi(t+\delta t)\rangle=e^{-i H \delta t}|\psi(t)\rangle
$$

evolution Lcads out of macu fold

find test proitcha back neto inamfers,
"ruprocid" proderint vethod, shil takes frometry of space nuto account.

