Lecture & Proseminar 250120/250122 "Quantum Information, Quantum Computation, and Quantum Algorithms" WS 2020/21

— Exercise Sheet #7 —

Problem 1: Majorization

In this problem, we prove that $x \prec y$ implies that $x = \sum_j q_j P_j y$ for some probability distribution q_j and permutation matrices P_j , where $x, y \in \mathbb{R}^d_{\geq 0}$. The proof will proceed by induction in the dimension d of the space.

- 1. Let $x, y \in \mathbb{R}^d_{\geq 0}$, $x \prec y$, and let the entries of x and y (denoted by x_k, y_k) be ordered descendingly.
- 2. Show that there exist k and $t \in [0, 1]$ such that $x_1 = ty_1 + (1 t)y_k$. For which k does this work? For the following steps, we choose the *smallest such* k.
- 3. Define D = tI + (1 t)T, where T is the permutation matrix which transposes the 1st and k-th matrix elements. What are the components of the vector Dy?
- 4. Define x' and y' by eliminating the first entry from x and Dy, respectively. Show that $x' \prec y'$.
- 5. Show that this way, we can inductively prove the claim.

Problem 2: Fidelity.

1. Prove that for normalized vectors $|\psi\rangle$ and $|\phi\rangle$,

$$\left| \langle \psi | O | \psi \rangle - \langle \phi | O | \phi \rangle \right| \le \sqrt{8} \sqrt{1 - |\langle \psi | \phi \rangle|} \, \| O \|_{\infty} \, ,$$

with $||O||_{\infty} = ||O||_{\text{op}} = \sup_{|\psi\rangle} \frac{||O|\psi\rangle||}{||\psi\rangle||}$. Use this to prove

$$\left| \langle \psi | O | \psi \rangle - \langle \phi | O | \phi \rangle \right| \le 2\sqrt{\delta} \| O \|_{\infty} , \qquad (*)$$

to leading order in δ , where $\delta = 1 - F$, with $F = |\langle \psi | \phi \rangle|^2$ the fidelity.

2. Use the operator Hölder inequality

$$|\mathrm{tr}(AB)| \le ||A||_1 ||B||_{\infty}$$
,

where the *trace norm* $||A||_1$ is the sum of the singular values of A (i.e. for hermitian A the sum of the absolute value of the eigenvalues) to prove (*) directly (and without the need for a leading-order approximation).

Problem 3: Multi-copy protocols.

Consider $|\chi\rangle = \sqrt{\frac{2}{3}}|00\rangle + \sqrt{\frac{1}{3}}|11\rangle$, and $|\Phi^+\rangle = \sqrt{\frac{1}{2}}(|00\rangle + |11\rangle)$.

- 1. Show that the optimal average yield per copy, $\bar{p} = (p_1 + 2p_2)/2$, for the conversion of $|\chi\rangle^{\otimes 2}$ to $|\Phi^+\rangle^{\otimes 2}$ and $|\Phi^+\rangle$ with probabilities p_2 and p_1 , respectively, does not improve over the single-copy protocol.
- 2. Show that the average yield for the conversion of $|\chi\rangle^{\otimes 3}$ into one, two, or three copies, $\bar{p} = (p_1 + 2p_2 + 3p_3)/3$, improves over the single-copy protocol.
- 3. Now let $|\Phi_d\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^d |i,i\rangle$, and consider a protocol where we convert $|\chi\rangle^{\otimes 2}$ into $|\Phi_2\rangle$, $|\Phi_3\rangle$, and $|\Phi_4\rangle$ with probabilities p'_2 , p'_3 , and p'_4 . Show that if we assign the entanglement log d (with the log base 2) to $|\Phi_d\rangle$, we can improve the average yield $\bar{p} = (p'_2 + (\log 3) p'_3 + 2p'_4)/2$ over the single-copy protocol.