Lecture & Proseminar 250120/250122 "Quantum Information, Quantum Computation, and Quantum Algorithms" WS 2020/21

— Exercise Sheet #8 —

Problem 1: Decay of entanglement.

Consider a Bell state $\rho = |\Phi^+\rangle\langle\Phi^+|$, where $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. Superposition states like ρ are typically not stable, but decay over time. A typical evolution is that the populations (i.e., the diagonal elements) become qual, while the off-diagonal elements decay exponentially to zero. Suppose that the state evolves as

 $\rho(t) = p_+ |00\rangle \langle 00| + p_- |01\rangle \langle 01| + p_- |10\rangle \langle 10| + p_+ |11\rangle \langle 11| + \frac{1}{2}e^{-t/T_2} |00\rangle \langle 11| + \frac{1}{2}e^{-t/T_2} |11\rangle \langle 00| ,$

with $p_{\pm} = \frac{1}{4} (1 \pm e^{-t/T_1}).$

- 1. Give the matrix form of $\rho(t)$.
- 2. What is the limit $\lim_{t \to \infty} \rho(t)$? Is it entangled?
- 3. Take the partial transpose $\rho(t)^{T_B}$ and give its matrix form.
- 4. Calculate the eigenvalues of $\rho(t)^{T_B}$.
- 5. Sketch how the eigenvalues change over time for $T_1 = T_2 = 1$. What it the asymptotic limit?
- 6. Determine and plot the negativity $\mathcal{N}(\rho(t))$ and log-negativity $E_N(\rho(t))$ as a function of time.
- 7. Find the time t_{sep} after which $\rho(t_{sep})$ becomes separable.

Problem 2: Bell inequalities and witnesses.

The CHSH operator – that is, the operator measured in the CHSH inequality – can be written as

$$C = \vec{n}_1 \vec{\sigma} \otimes \vec{n}_0 \vec{\sigma} + \vec{n}_1 \vec{\sigma} \otimes \vec{n}_2 \vec{\sigma} + \vec{n}_3 \vec{\sigma} \otimes \vec{n}_2 \vec{\sigma} - \vec{n}_3 \vec{\sigma} \otimes \vec{n}_0 \vec{\sigma}$$

with $\vec{n}_k = (\cos(k\pi/4), 0, \sin(k\pi/4))$. Then, the CHSH inequality states that $|\text{tr}[C\rho]| \leq 2$ for all ρ which are described by a local hidden variable (LHV) model.

- 1. Show that the measurement of C on any separable state $\rho = \sum p_i \rho_i^A \otimes \rho_i^B$ can be described by an LHV model.
- 2. Use C to construct an entanglement witness W. Provide an explicit form of the witness.
- 3. In which range of λ does this witness detect Werner states $\rho(\lambda) = \lambda |\Psi^-\rangle \langle \Psi^-| + \frac{1-\lambda}{4}I$, with $|\Psi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle |10\rangle)$? How does it compare to the entanglement witness $W = \mathbb{F}$ discussed in the lecture?

Problem 3: Witnesses and reduction criterion.

Consider $W = \mathbb{I} - d|\Omega\rangle\langle\Omega|$, with $|\Omega\rangle = \frac{1}{\sqrt{d}}\sum_{i=1}^{d} |i,i\rangle$.

- 1. Show that $tr[W\rho] \ge 0$ for separable states ρ , i.e., W is an entanglement witness.
- 2. Consider the family

$$\rho_{\rm iso}(\lambda) = \lambda \, \frac{\mathbb{I}}{d^2} + (1-\lambda) |\Omega\rangle \langle \Omega|$$

of *isotropic states*. In which range of λ is $\rho_{iso}(\lambda) \ge 0$? In which range of λ does W detect that $\rho_{iso}(\lambda)$ is entangled?

- 3. Consider the case d = 2. What does W do on the antisymmetric state $|\Psi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle |10\rangle)?$
- 4. Derive the positive map Λ corresponding to the witness W. Prove directly that it is indeed a positive map.
- 5. In which range of λ does Λ detect that $\rho_{iso}(\lambda)$ is entangled? What does Λ do on the antisymmetric state?