Lecture & Proseminar 250078/250042
“Quantum Information, Quantum Computation, and Quantum Algorithms” WS 2021/22

— Exercise Sheet #1 —

Problem 1: Pauli matrices and Bloch sphere.

1. Check the relation 0,08 = i€qgy0y + dagl for the Pauli matrices oq, o, 8,7 =1,2,3.

2. The trace tr[X] is defined as the sum of the diagonal elements of X, i.e., tr[X] := >, X;;. Determine
tr[I], trloa], and tr{oaop].

3. Determine the eigenstates (=eigenvectors) and eigenvalues of the Pauli matrices.

4. Determine the angles 6 and ¢ of those eigenstates on the Bloch sphere, and depict their position
on the Bloch sphere.

5. Given a state

) = ex [cos(@/Q)\O) + et sin(9/2)|1>] (1)

show that
|z/)><w|:%(l+17-c?) with ¥ € R? and o] =1, (2)

(i.e., ¥ is a vector on the unit sphere in R?), where 7 - & = Zle v;0;. (You should find that ¥ is
exactly the point on the Bloch sphere with spherical coordinates in 6 and ¢, just as introduced in
the lecture.)

6. Show that the expectation value of the Pauli operators is (¢|o;|1) = v;; i.e., |¢) desribes a spin
which is polarized along the direction 4.

7. Show that for any state |1)) with corresponding Bloch vector ¥, the state |¢) orthogonal to it, i.e.
with (1|¢) = 0 (for qubits, i.e., in C2, this state is uniquely determined up to a phase!), is described
by the Bloch vector —v, i.e., it is located at the opposite point of the Bloch sphere.

(Bonus question: Derive a general expression for the overlap |(¢|y)|? of two arbitrary states in
terms of the corresponding Bloch vectors.)

(Note: A particularly elegant way to check 6. and 7. is to use that (¢|Oy) = tr[|¢) (¥ O] — this is easily
shown by writing this explicitly as a sum over components, but you can just this formula as it is if you
want, as it will be proven in one of the next lectures — together with Eq. (2) and tr[o;0;] = 2d;;, but the
results can of course also be derived directly from Eq. (1) with a bit more brute force.)

Problem 2: Matrix spaces as Hilbert spaces.
Let V,; be the space of all complex d x d matrices, and Wy C V; the space of all hermitian complex d x d
matrices (i.e. for M € Wy, M = MT).

1. Show that V; forms a vector space over C, and Wy forms a vector space over R, but not over C.
We will in the following always consider V; as a complex and W, as a real vector space.

2. Show that the Pauli matrices together with the identity, 3 := {0;}?_,, form a basis for both Vs,
(over C) and W, (over R).

3. Show that
(A, B) = tr[ATB]
defines a scalar product (the “Hilbert-Schmidt scalar product”) both for V4 and for Wy. Here,
tr[X] is the trace, i.e., the sum of the diagonal elements.

4. Show that the Pauli matrices ¥ form an orthonormal basis (ONB) with respect to the Hilbert-
Schmidt scalar product.



5. Use the fact that for any scalar product (7, @) and a corresponding ONB oj;, we can write
U= sz(wmﬁ) )
i
to express a general matrix in M € V; as

M = Z m;o; .
What is the form of the m;? What special property do the m; satisfy for M € W57

6. Show that a hermitian orthonormal basis also exists for V; and W;. (Ideally, explicitly construct
such a basis.)

Problem 3: Unitary invariance and Bell states.

1. Show that the singlet state
1

V2

is invariant under joint rotations by the same 2 x 2 unitary U, i.e.,

|v™) (|01) 4B — [10) 4B)

™) = UeU)w)
for any special unitary matrix U € SU(2), i.e. UTU = I, det(U) = 1.

2. Show that this implies that if we measure the spin in any direction ¥, |0] = 1 — this measurement
is described by the measurement operator Sz = Zle v;04, i.e. the projectors onto its eigenvectors
— we obtain perfectly random and opposite outcomes.
(Hint: An elegant way of doing so is to first show that any Sy has the same eigenvalues as the Z
matrix and therefore can be rotated to it, i.e., there exists a Uy s.th. UgSgUg = Z. Note that there
are very elegant ways to show that the eigenvalues are +1 as well!)

3. Determine the states

Xenem), (X)),
Yenwr), (eY)v),
(Zonw ), (I@2)¥).

In the light of point 1, why are they pairwise equal?
Note: Together with |U™), these are known as the four Bell states.

4. Show that the maximally entangled state

d
) = li0)

of two qu-d-its (i.e., systems with a Hilbert space C¢) is invariant under U ® U, where U is any
d X d unitary, that is, -
Q) =(UeU)Q) .



