Lecture & Proseminar 250078/250042 "Quantum Information, Quantum Computation, and Quantum Algorithms" WS 2021/22

— Exercise Sheet #1 —

Problem 1: Pauli matrices and Bloch sphere.

- 1. Check the relation $\sigma_{\alpha}\sigma_{\beta} = i\varepsilon_{\alpha\beta\gamma}\sigma_{\gamma} + \delta_{\alpha\beta}I$ for the Pauli matrices σ_{α} , $\alpha, \beta, \gamma = 1, 2, 3$.
- 2. The trace $\operatorname{tr}[X]$ is defined as the sum of the diagonal elements of X, i.e., $\operatorname{tr}[X] := \sum_i X_{ii}$. Determine $\operatorname{tr}[I]$, $\operatorname{tr}[\sigma_{\alpha}]$, and $\operatorname{tr}[\sigma_{\alpha}\sigma_{\beta}]$.
- 3. Determine the eigenstates (=eigenvectors) and eigenvalues of the Pauli matrices.
- 4. Determine the angles θ and ϕ of those eigenstates on the Bloch sphere, and depict their position on the Bloch sphere.
- 5. Given a state

$$|\psi\rangle = e^{i\chi} \left[\cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle\right]$$
(1)

show that

$$|\psi\rangle\langle\psi| = \frac{1}{2}(I + \vec{v}\cdot\vec{\sigma}) \text{ with } \vec{v}\in\mathbb{R}^3 \text{ and } |\vec{v}| = 1, \qquad (2)$$

(i.e., \vec{v} is a vector on the unit sphere in \mathbb{R}^3), where $\vec{v} \cdot \vec{\sigma} = \sum_{i=1}^3 v_i \sigma_i$. (You should find that \vec{v} is exactly the point on the Bloch sphere with spherical coordinates in θ and ϕ , just as introduced in the lecture.)

- 6. Show that the expectation value of the Pauli operators is $\langle \psi | \sigma_i | \psi \rangle = v_i$; i.e., $|\psi\rangle$ desribes a spin which is polarized along the direction \vec{v} .
- 7. Show that for any state $|\psi\rangle$ with corresponding Bloch vector \vec{v} , the state $|\phi\rangle$ orthogonal to it, i.e. with $\langle\psi|\phi\rangle = 0$ (for qubits, i.e., in \mathbb{C}^2 , this state is uniquely determined up to a phase!), is described by the Bloch vector $-\vec{v}$, i.e., it is located at the opposite point of the Bloch sphere.

(Bonus question: Derive a general expression for the overlap $|\langle \phi | \psi \rangle|^2$ of two arbitrary states in terms of the corresponding Bloch vectors.)

(*Note:* A particularly elegant way to check 6. and 7. is to use that $\langle \psi | O | \psi \rangle = \text{tr}[|\psi\rangle \langle \psi | O]$ – this is easily shown by writing this explicitly as a sum over components, but you can just this formula as it is if you want, as it will be proven in one of the next lectures – together with Eq. (2) and $\text{tr}[\sigma_i \sigma_j] = 2\delta_{ij}$, but the results can of course also be derived directly from Eq. (1) with a bit more brute force.)

Problem 2: Matrix spaces as Hilbert spaces.

Let \mathcal{V}_d be the space of all complex $d \times d$ matrices, and $\mathcal{W}_d \subset \mathcal{V}_d$ the space of all hermitian complex $d \times d$ matrices (i.e. for $M \in \mathcal{W}_d$, $M = M^{\dagger}$).

- 1. Show that \mathcal{V}_d forms a vector space over \mathbb{C} , and \mathcal{W}_d forms a vector space over \mathbb{R} , but not over \mathbb{C} . We will in the following always consider \mathcal{V}_d as a complex and \mathcal{W}_d as a real vector space.
- 2. Show that the Pauli matrices together with the identity, $\Sigma := \{\sigma_i\}_{i=0}^3$, form a basis for both \mathcal{V}_2 (over \mathbb{C}) and \mathcal{W}_2 (over \mathbb{R}).
- 3. Show that

$$(A,B) = \operatorname{tr}[A^{\dagger}B]$$

defines a scalar product (the "Hilbert-Schmidt scalar product") both for \mathcal{V}_d and for \mathcal{W}_d . Here, $\operatorname{tr}[X]$ is the trace, i.e., the sum of the diagonal elements.

4. Show that the Pauli matrices Σ form an orthonormal basis (ONB) with respect to the Hilbert-Schmidt scalar product.

5. Use the fact that for any scalar product (\vec{v}, \vec{w}) and a corresponding ONB $\vec{w_i}$, we can write

$$\vec{v} = \sum_i \vec{w}_i(\vec{w}_i, \vec{v}) \; ,$$

to express a general matrix in $M \in \mathcal{V}_2$ as

$$M = \sum m_i \sigma_i \; .$$

What is the form of the m_i ? What special property do the m_i satisfy for $M \in \mathcal{W}_2$?

6. Show that a hermitian orthonormal basis also exists for \mathcal{V}_d and \mathcal{W}_d . (Ideally, explicitly construct such a basis.)

Problem 3: Unitary invariance and Bell states.

1. Show that the singlet state

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}} \left(|01\rangle_{AB} - |10\rangle_{AB}\right)$$

is invariant under joint rotations by the same 2×2 unitary U, i.e.,

$$|\Psi^{-}\rangle = (U \otimes U)|\Psi^{-}\rangle$$

for any special unitary matrix $U \in SU(2)$, i.e. $U^{\dagger}U = I$, det(U) = 1.

2. Show that this implies that if we measure the spin in any direction \vec{v} , $|\vec{v}| = 1$ – this measurement is described by the measurement operator $S_{\vec{v}} = \sum_{i=1}^{3} v_i \sigma_i$, i.e. the projectors onto its eigenvectors – we obtain perfectly random and opposite outcomes.

(*Hint:* An elegant way of doing so is to first show that any $S_{\vec{v}}$ has the same eigenvalues as the Z matrix and therefore can be rotated to it, i.e., there exists a $U_{\vec{v}}$ s.th. $U_{\vec{v}}S_{\vec{v}}U_{\vec{v}}^{\dagger} = Z$. Note that there are very elegant ways to show that the eigenvalues are ± 1 as well!)

3. Determine the states

$$\begin{array}{ll} (X \otimes I) | \Psi^- \rangle \ , & (I \otimes X) | \Psi^- \rangle \ , \\ (Y \otimes I) | \Psi^- \rangle \ , & (I \otimes Y) | \Psi^- \rangle \ , \\ (Z \otimes I) | \Psi^- \rangle \ , & (I \otimes Z) | \Psi^- \rangle \ . \end{array}$$

In the light of point 1, why are they pairwise equal? Note: Together with $|\Psi^{-}\rangle$, these are known as the four *Bell states*.

4. Show that the maximally entangled state

$$|\Omega\rangle = \sum_{i=1}^d |i,i\rangle$$

of two qu-*d*-its (i.e., systems with a Hilbert space \mathbb{C}^d) is invariant under $U \otimes \overline{U}$, where U is any $d \times d$ unitary, that is,

$$|\Omega\rangle = (U \otimes \overline{U})|\Omega\rangle$$
.