Lecture & Proseminar 250078/250042
“Quantum Information, Quantum Computation, and Quantum Algorithms” WS 2021/22

— Exercise Sheet #6 —

Problem 13: Quantum channels.

In this problem, we will study some commonly appearing quantum channels. In addition to the problems
listed, verify for each channel that it is a CPTP map (completely positive trace preserving map) and
give its Kraus representation.

1. Dephasing channel. This channel acts as

Ep)=(0—-p)p+pZpZ .

Show that the action of the dephasing channel on the Bloch vector is

(Txaryyrz) — ((1 - 217)%7 (1 - 2p)7’y, rz) ,

i.e., it preserves the component of the Bloch vector in the Z direction, while shrinking the X and
Y component.

2. Amplitude damping channel. The amplitude damping channel is giving by the Kraus operators

Mo = \A10)(1], My = |0){0] + /1 —~1){1]
where 0 < < 1. Here, My describes a decay from |1) to |0), and ~ corresponds to the decay rate.

(a) Consider a single-qubit density operator with the following matrix representation with respect
to the computation basis
Y e

where 0 < p < 1 and 7 is some complex number. Find the matrix representation of this
density operator after the action of the amplitude damping channel.

(b) Show that the amplitude damping channel obeys a composition rule. Consider an amplitude
damping channel & with parameter v; and consider another amplitude damping channel &,
with parameter 5. Show that the composition of the channels, £ = & 0 &, E(p) = E1(E2(p)),
is an amplitude damping channel with parameter 1 — (1 —y1)(1 — 72). Interpret this result in
light of the interpretation of the v’s as a decay probability.

3. Twirling operation. Twirling is the process of applying a random Pauli operator (including the
identity) with equal probability. Explain why this corresponds to the channel

Elp)=3p+ 3 XpX +LYpY +12pZ .

Show that the output of this channel is the maximally mixed state for any input, £(p) = %I .
Hint: Represent the density operator as p = %(I + 7, X +1,Y +7.Z) and apply the commutation

rules of the Pauli operators.

Problem 14: Gate teleportation.

Gate teleportation is a variation of quantum teleportation that is being used in fault-tolerant quantum
computation (a topic which will be covered later in the course of the lecture).

Suppose that we would like to perform a single-qubit gate (i.e., unitary) U on a qubit in state |¢), but
the gate is difficult to perform — e.g., it might fail and thereby destroy the state on which we act on. On
the other hand, Uc;UT, where o is any one of the three Pauli matrices, is easy to perform.

1. Verify that such a situation is given when the difficult operation is U = ((1) eiS /4 ), while Paulis and

S =(§9) are easy to realize.



2. Consider the following protocol to implement U on a state |¢))

e Prepare |x)ap = (14 @ Upg)|®T) ap (with |®T) as before. (Up is still hard, but we can try as
many times as we want without breaking anything.)

e Perform a measurement of A’A in the Bell basis (A’ is the register used to store [1) a/).

e Depending on the measurement outcome, apply Uc,;UT on the B system.

Show that this protocol works as it should — that is, it yields the state U|t) in the B register with
unit probability.

Problem 15: LOCC protocols.

A general LOCC protocol can involve an arbitrary number of rounds of measurement and classical
communication. In this problem, we will show that any LOCC protocol can be realized in a single round
with only one-way communication, i.e., a protocol involving just the following steps: Alice performs a
single measurement described by POVM operators M, sends the result j to Bob, and Bob performs a
unitary operation U; on his system.

The idea is to show that the effect of any measurement which Bob can do can be simulated by Alice —
in a specific sense, namely up to local unitaries — so all of Bob’s actions can be replaced by actions by
Alice, except for a final unitary rotation.

1. First, suppose Alice and Bob share the state 1)) = > A|l)a|l) 5, and suppose Bob performs a
measurement with POVM operators K; = >, K; 11|k) (l|s. Let us denote the post-measurement
state by |a;). On the other hand, suppose that Alice does a measurement with POVM operators
with operators L; = ", K ri|k) a(l| 4, and denote the post-measurement state by |3;).

Show that there exist unitaries V; on system A and W; on system B such that |a;) = (V;@W;)|5;).

2. Use this to explain how Alice can simulate any POVM measurement of Bob, and how this can
be used to implement an arbitrary multi-round protocol with a single POVM measurement {M;}
performed by Alice, followed by a unitary operation {U;} on Bob’s side by Bob which depends on
Alice’s outcome.

(Hint: The bases |I) 4 and |I) g above could be an arbitrary orthonormal basis!)



