I. lutroduction

What is Quantum Information Theory?
\rightarrow The study of neformation processing using the laws of quantum suechaciics

Quantum mechavies/quautimen theory; The wort geueval frameuolk to desonte motter at the fundamental (microscopor) Cevel.

Quautum theorics exst for aluost all classical plugsid theorins: uechavics (i.e. motion of particles susfect to forces), electrodyuamics,... -exept gronity.
Here, q. uechames (or q. Hhory, or 9. phynes) always refes to the giunal framewsh.

Why should we sthdy infoniation processing in the framewoh of grantica Heerry?
Even furthes: Why should cre sthely mpormation procesting in the contect of pleppses?

Information is a priori a concept uniteldeded in 2 to its phyoical realitatia (moden computer, puuchcard, relays, paper,...) - clastical uformathe theory (Shavurn theory) mever folks about pleysis.

Laudawe (1961): Erasig informatso creates Leaf:

particle re box at unkown posizo:

1 Sot of nermatiam entropy $S_{0}=k \ln 2$

partide in box at kuoun porsia sit erased (reset) entropy $S_{1}=0$

$$
\Delta S_{\text {sys }}=-k \ln 2 \Rightarrow \Delta Q_{\text {ew }}=-T \Delta S_{\text {sys }}=k T \ln 2
$$

\Rightarrow Erasing 1 bit releases $\Delta Q=k T \ln 2$ heat rudepandent of realization!

Laudavo: "luformation is plyysical"
(i.e. we need to take at Least the pundamental pluys. poikaples moto account when thinkry atort info. processig in real systes.)

On the other hand: "Moore's Raw"
\rightarrow \# transistors/clip dontles every 18 montles
\rightarrow transistor size eventually approaches atomic, size!
\rightarrow wnst take quartwen effects into accont: eitlers foght Heem or nese them.
\rightarrow Quantum luformatis Reory
\rightarrow huformatio processing takéng ruto accovent the fundavental principles of q. Heerory - redependent of specifor pleysical realitatio.

Basic prinaples, Ideas, and applicaprs cbpterQTPg

Classical meformatio: bit $S=0,1$
Quantum riff: quantucu bit (quit)
with two basis rectors $\vec{e}_{0}=\binom{1}{0}, \overrightarrow{e_{1}}=\binom{0}{1}$.
Ceucral quest configuration ("stet") is a superposition

$$
\binom{\alpha}{\beta} \in \mathbb{C}^{2},|\alpha|^{2}+|\beta|^{2}=1
$$

For simplicity, consider $\alpha=\cos \varphi / 2, \beta=\sin \varphi / 2$:

$$
\binom{\alpha}{\beta}=\binom{\cos \varphi / 2}{\sin \varphi / 2} \quad(\varphi \in[0, \pi))
$$

Has +imilaritios to prot. destritutions over classical sits, $\binom{p_{0}}{p_{1}}$ wite $p_{0}, p_{1} \geqslant 0, \quad p_{0}+p_{1}=1$, tut also key differences.

Visualizacha:

Clastical: prosablisthe:

0
1.

$$
0 \text { or } 1 \quad\binom{p_{0}}{p_{1}}
$$

$$
\binom{\cos \varphi / 2}{\sin \varphi / 2}
$$

Key process: "ueasurcucent",
i.e. check (test, measure, rad out) Hee velue of a classical of (e.g., a corn in a for) poepared in a state ($\left.\begin{array}{c}p_{0} \\ p_{1}\end{array}\right)$.

$$
\binom{p_{0}}{p_{1}} \xrightarrow[\text { meas. }]{\text { prol. Po }} \xrightarrow{\text { cesult } " 0 "} \text { cepdated shate }\binom{1}{0}
$$

$$
\xrightarrow[\text { prob. } p_{1}]{\text { uneas. }} \text { result "1" } \longrightarrow \text { up lated stak }\binom{0}{\mathbf{2}}
$$

(2nd cucasurement gires same renet (ur new ruto). \rightarrow measurment "collapses" phate.

Or: Chapter I, pg 6
$P_{0}=1 \Rightarrow$ tulted reveas. \longrightarrow ajain rekira 0.

Reapurcuccul of a quantume fot:
Casc a) Reapurencent in the "Cruputatial Sasp"

Po:
achouco

$P_{1}:$

veeaturevent cleauges ("collaptes") state: sustequcut vecasurenculs ixll reprodees ontrone.

Sut: In quanthen keeory, other weecturvents ${ }^{\text {chapter }}$ eart, egg.
Cak b)

p+:
ackouc +

Again, measure cucut "collapses" take in a way wher subsejucut ideutial inecasucenemts give the same out conee.

What of we alternate "Case a)" and "Case J)" ceecas.?

probability:

Measuning me "proporty" can affect other:

- Propertires ar uof redependent.
- There is wo 1-to-t corresprndence tetwreea the unceders $\binom{\alpha}{\beta}$ or point on the corcle and propertion we can ureasure,

- "Incompatitle" proportios caunô te meonerd simultaneasly.

Consequeraces:

- "No-clocn2y-Heeoren

Quantum Information canuot be copied, i.e. a desice $\binom{\alpha}{\beta} \rightarrow-\binom{\alpha}{\beta}$ does not exist!
(Otherwise, we conld detcrmive $\binom{\alpha}{1}$ exacttly, and measure deff. quantities at the same trine.)
(Nok: The same hold for class. pobl distritutans.)

- Quantum Crypto gropley

Doing uneas. distorts quankem tot:

Reasurcment disherts state \longrightarrow
Eve caucused obtain information about state scut without $A \& B$ urtiony \rightarrow can be used to estatherk secret keys.

- Elutarylement, Kelepstato, Bell inequalities A B

个 $A \& B$ share monet state: distritatio over

$$
00,01,10,11: \quad\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right)
$$

Can choose state such that outcomes are perfectly corrected for all measurements.

This can also coppen in a classical theory; Chapter I, pg 10 A "Lidden variatle cnodel" has an independent pre-detercuned ontcome for every test (like a corz). But: A lozal leiddan nanable (LHV) unodal

$$
\operatorname{Var}(A)<a \rightarrow \operatorname{Vars}(B)
$$

where the bores cannet cominumicate (\rightarrow relatinity!) satisfies special inequalitios ("Bell inequalitio") which are nolated by quankem stotes d

\rightarrow Q.M. stetes can display un-clastical correlations.
But: No fastor-than-Cight comcucucnicatio possitle!!

This also bighlejhb a facedencutal alfermere Sehreen protability theory and quantum theory! in prot. Th, values are real ndep. of meoturenent, and the state ($\left.\begin{array}{c}P_{0} \\ P_{1}\end{array}\right)$ verely sijuifies a lack of kuowledge. Quantum theory does not allow for nel an interpretatio.

Relepertation: A wants to get g, Stete Foharger Iupoit iskiy to Gse state. But, No-clocening them $\rightarrow A$ cannut make copirs!
\rightarrow releportatio: :

\rightarrow Does this allors for fastr-than-Light crucm?
\rightarrow No! State an B's side is "scrautled", and requits A 's cueas. outcome (sent as clastical nefo at speed of light) to be decoded!

Note: The state of the systam is tellepostod, ust the syskem itself.
(Asher Peres: "disembodided rumcanatia")

- Quantim Comproty:

Tuprical hard compntatioal protkem:
"NP protlems": Solution may te heard to fond, but cany to checle.
E.g. groph colory:

Can ure color give. froph with e.g. 3 colors sflout same color on ad,acent vertices?

Given solution eary to check!
Quantrecen congater! Work inth quantumen bit!
\rightarrow supsposition of all posridiletics!
\rightarrow Nught be atle to cleck all jolubns at the same thene!
\longrightarrow But: How can we single out Hoxe good solutions? Non-trinal protken!

CNote: For class. prob. disto. it also looks che wre can test "all possitilitis", fut shere, thes on lyy
dìsustes raudoully tenty possibstitiaspter I, pg 13 What is defferint in QI? \rightarrow Negable numfors!)

Shor '94: Quantum computers can factor numbers exprumtially faster than any Lensasn classical algoritur.

Quantum Error Correche:

Nrise can dertroy quantum neformake!
\uparrow
Ang kind of influence from the outside!

Horr can we protect Q.I, from erros (crlecu storing, transmittry, processiy it)?

Clastical refo: Copy!
$0 \rightarrow 000$ enror, e.g. 001 correcho
$1 \rightarrow 111 \underset{\text { jepsit } 3}{ } 110 \underset{\text { majiste }}{\text { corrche }} 0$
\rightarrow Decreases efechue error rate!

Quantum lufo: scoural isfues)

- cloning nupossifle!
- uncas. destroys q. 隹te \rightarrow lers to do wapsisy vote?
- erross can de contínuous
\rightarrow is it eve posntle to rdentify the croo?

\longrightarrow Quantum Error Gorrecho!
Use quantum superpositions to protect quantum superpositas!

