2. Mixed states
a) The density operator

Consider a bipartite state $|\psi\rangle_{A B}=\sum C_{j}|i\rangle|j\rangle$. We have access to A only.

Can we characterize the measurement outcomes for uneas, on A in a simple way?
(1.e. without harry to consider B, while we anyway camel access!)

Consider measurement operator M. (eng. $\Pi=\epsilon_{i}$ protector, or sep. value,...)

Teasurcucent of $\Pi \equiv \Pi_{A}$ on A
\Leftrightarrow measurement of $\Pi_{A} \otimes I_{\Delta}$ on $A \& B$.

$$
\begin{aligned}
\langle\psi| \Pi_{A} \otimes I_{B}|\psi\rangle & =\sum_{\substack{i, j \\
i_{j}^{\prime}}} \overline{c_{i^{\prime \prime},}}\left\langle i^{\prime}\right|\left\langle\left\langle_{j}^{\prime}\right|\left(\Pi_{A} \otimes I_{B}\right) \mid i\right\rangle|j\rangle c_{i j} \\
& =\sum \overline{c_{i^{\prime \prime}}}, c_{i j}\left\langle i^{\prime \prime}\right| \Pi_{A}|i\rangle \underbrace{\left\langle j^{\prime} \mid j\right\rangle}_{=\delta_{j j}}
\end{aligned}
$$

$$
\left.=\left.\sum_{i i^{\prime}}\left(\sum_{j} \bar{c}_{i^{\prime \prime} j} c_{i j}\right)\left\langle i^{\prime}\right| \Pi_{A}^{\text {Chapter II, }}\right|_{i}\right\rangle \stackrel{\text { pg }}{=}(*)
$$

Nov: Define $\rho_{A}-a d_{A} \times d_{A}$ enatrix - ria

$$
\left(\rho_{A}\right)_{i i^{\prime}}=\sum_{j} c_{i j^{\prime}} \overline{c_{i i^{\prime}}}=\left(c \cdot c^{+}\right)_{i i^{\prime}},
$$

with the matrix $C=\left(c_{i j}\right)_{i j}$,
or equivalently $\rho_{A}=\sum_{i^{\prime}, i^{\prime}, j} c_{i j} \overline{c_{i^{\prime} j}}\left|i X_{i^{\prime}}\right|$
and introduce the trace
can be any ONB, not necessaniz comp. bass.

Not: The trace is

- cydic: $\operatorname{tr}(A B)=\sum_{k}\langle k| A B|k\rangle$

Note: A,B need wot be square!

$$
\begin{aligned}
& =\sum_{k}\langle k| A\left(\sum_{e}|e X e|\right) B|k\rangle \\
& =\sum_{k e}\langle k| A|l\rangle\langle e| B|k\rangle \\
& =\sum_{k e}\langle l| B|k X k| A|e\rangle=\operatorname{tr}(B A)
\end{aligned}
$$

- and thus basis-molependent:

$$
\operatorname{tr}\left(u^{+} \times u\right)=\operatorname{tr}\left(x u u^{+}\right)=\operatorname{tr}(x),
$$

and thus $\left.\operatorname{to}(x)=\sum<k|x| k\right\rangle$

$$
\begin{aligned}
& =\sum \underbrace{\left(\langle k| u^{t}\right)}_{\left\langle v_{k}\right|} \times \frac{(u|k\rangle)}{\left|v_{k}\right\rangle} \\
& =\sum\left\langle v_{k}\right| \times\left|v_{k}\right\rangle \text { for any ONB, }
\end{aligned}
$$

- the sum e of the eigenvalues:

$$
\operatorname{fr}(x)=f r\left(x A A^{-1}\right)=\operatorname{tr}\left(A^{-1} x A\right),
$$

with $A^{-1} \times A$ the eigenvalue decomposition.

- and of cons linear,

$$
\operatorname{tr}(A)+\operatorname{tr}(B)=\operatorname{tr}(A+A B) .
$$

Reen,

$$
\begin{aligned}
& (*)=\sum_{i i^{\prime}}\left(\sum_{j} \bar{c}_{i^{\prime \prime} j} c_{i j}\right)\left\langle i^{\prime} \mid \pi_{A} / i\right\rangle \\
& \text { trace of a } \\
& \text { itry! } \\
& =\sum_{i i^{\prime}}\left(\sum_{j} \overline{c_{i^{\prime} j}} \varepsilon_{i^{\prime}}\right) \operatorname{tr}\left[\left\langle i^{\prime}\right| \Pi_{A}|i\rangle\right] \\
& \int \text { cyclins of mace! } \\
& =\sum_{i^{\prime}}\left(\sum_{j} c_{i^{\prime}} \overline{c_{i^{\prime \prime}}}\right) \text { tr }\left[|i\rangle\left\langle i^{\prime}\right| \Pi_{A}\right]
\end{aligned}
$$

liveanty of trace!

$$
\begin{aligned}
& \stackrel{1}{=} \operatorname{tr}\left[\frac{\left.\left(\sum_{i i^{\prime \prime}} c_{i j} \overline{c_{i j}^{\prime \prime}}\left|i X_{i}^{\prime}\right|\right) \Pi_{A}\right]}{=\rho_{A}}\right. \\
& =\operatorname{tr}\left[\rho_{A} \Pi_{A}\right]
\end{aligned}
$$

l.e.: $\langle\psi| \Pi_{A} \otimes I_{B}|\psi\rangle=\operatorname{tr}\left[\rho_{A} \Pi_{A}\right]$,
wher $\rho_{A}=\sum_{i^{\prime}{ }^{\prime} j} c_{i j} \overline{c_{i^{\prime} j}}\left|i X_{i^{\prime}}\right|$,
or $\rho_{A}=C C^{+}$, with $C=\left(c_{i j}\right)_{i j}$.
ρ_{A} is called the density operator, densithotwiation 45 or mixed state. It characterizes systems where we only have partial harsledge, such as access to only pats of the system.

In contrast, a state $|\psi\rangle \in \mathscr{H}$ is called a pure state. If ere noun to highlight that PA comes from a la gee boston, we can also refer to t as the reduced density matrix of system A.
Rropestres of ρ_{A}

$$
\text { - } \rho_{A}=C C^{+} \Rightarrow \rho_{A}^{+}=\left(c c^{+}\right)^{+}=c C^{+}=\rho_{A}
$$

- ρ_{A} is positive secuidefinik:

$$
\begin{gathered}
\langle\phi| \rho_{A}|\phi\rangle=\langle\phi| c c^{+}|\phi\rangle=\left(c^{+}|\phi\rangle\right)^{+}(\underbrace{\left(\phi^{\prime} \mid \phi\right.}_{=:\left|\phi^{\prime}\right\rangle}) \\
=\left\langle\phi^{\prime} \mid \phi^{\prime}\right\rangle \geqslant 0 \quad \forall \phi .
\end{gathered}
$$

We write $p_{A} \geqslant 0$,
Wok : $\quad x \geqslant 0$, ie. $\langle\phi| x|\phi\rangle \geqslant 0 \forall|\phi\rangle$

$$
\Longleftrightarrow x=x^{t} \& \text { all equenvelues of } x \text { ar } \geq 0 \text {. }
$$

(ln part., $x \geqslant 0 \Rightarrow x=x^{+}$)

Proposties of deusity oquators:

- $P_{A} \geqslant 0$ (implis $\rho_{A}=p_{A}^{+}$)
- $\operatorname{tr}\left(\rho_{A}\right)=1$.

Will see soou: Thes prosides an alteriative fundomental deprition of a state - iie, any ρ_{A} with the propothes abrve cau anse if we only have access to patt of the system.

Note: All P_{A} with the asore propesty form a carrex rets, i.e.:

$$
p, \sigma \in S \Rightarrow p \rho+(1-p) \sigma \in S, 0 \leq p \leq 1
$$

Is there an auntiguing in P_{t}, inst as the plase andijuity for pur staks?

Theorem: ρ_{A} is uniquely determined by a chapter encaturement outcomes $\operatorname{tr}\left[\rho_{A} \Pi\right]$ for $\Pi=\pi^{+}$.
(1.e., by all averages, though prababilition, ie. 1 orth. proji, also suffices.)

Proof: Let $V=\left\{\Pi \mid \Pi=\Pi^{+}\right\}$. V is a vector space over R. $(\Pi, N):=\operatorname{tr}\left[\Pi^{+} N\right]$ defines a salas product on V (H he "Heistot-Schuider scalar product").
Pick an ONB $\left\{\pi_{i}\right\}$ of V, $\quad \operatorname{tr}\left[\pi_{i}^{+} \pi_{j}\right]=\delta_{i j}$.
Then, the map $X \longmapsto \sum \Pi_{i} \operatorname{tr}\left[\Pi_{i}^{+} x\right]$

$$
=\sum \pi_{i}\left(\pi_{i}, x\right)
$$

acts as the identity on V. Tuns,

$$
\rho_{A}=\left[\pi_{i} \operatorname{tr}\left[\pi_{i \beta}\right]\right.
$$

ie., P_{A} is fully specified by all uveas, ont comes (and tens, there canst be a unique P_{1} for any given physical state.
(Note: We didu't coly use that we have caper ir hermitian matrices - the same ibleas work for $V_{\mathbb{C}}=\{\Pi\}$ over \mathbb{C}. Then the ${ }^{t}$ are muportant - and we neut t show that V_{C} has a hermitian bans ord \mathbb{C} - whirl it does.)
lu particular: No aentijuiky in P_{A}
\Rightarrow all numbers uncaviryful! Where did the place $\left|\psi_{A}\right\rangle \sim e^{i \phi}\left|\psi_{A}\right\rangle$ go? Density matin for a pure stack $\mid \psi_{A}>$:

$$
\begin{gathered}
\left\langle\psi_{A}\right| \cap\left|\psi_{A}\right\rangle \stackrel{\downarrow}{=} \operatorname{tr}\left[\left\langle\psi_{A}\right| \cap\left|\psi_{A}\right\rangle\right] \\
=\operatorname{tr}[\Pi \underbrace{\left|\psi_{A} X \psi_{A}\right|}_{=\rho_{A}}]
\end{gathered}
$$

$\Rightarrow P_{A}=\left|\Psi_{A} X \psi_{A}\right|$: prospector rato $\left|Y_{A}\right\rangle$.
(Phase naturally drops cut!)
b) The partial trace

Just sea: Pure state on $A B \rightarrow$ Mixed state or A. What if $A B$ itself is already mixed (e.g .from a pure ABC?)

Same approach: Hor to descrite most general enearurement in A, given a stat SAB?

$$
\begin{aligned}
& \operatorname{tr}\left[\left(\Pi_{A} \otimes I_{B}\right) \rho_{A B}\right]=\sum\langle i j| \Pi \infty I\left|i_{j}^{\prime \prime j}\right\rangle\left\langle i^{\prime \prime j}\right| \rho_{A B}|i j\rangle \\
& =\delta_{j{ }^{\prime}}{ }^{\prime} \\
& =\sum_{i i^{\prime} j}\langle i| \Pi\left|i^{\prime}\right\rangle\left\langle i^{\prime \prime} j^{\prime}\right| \rho_{A B}|i j\rangle \\
& =\operatorname{tr}\left[\pi \cdot\left(\sum_{i i^{\prime} j}\left|i^{\prime}\right\rangle_{A}\left\langle i^{\prime \prime} j\right| P_{A B}\left|i j X_{i}\right|_{A} \mid\right]\right. \\
& =\operatorname{tr}\left[\pi \cdot \rho_{A}\right]
\end{aligned}
$$

where we define

$$
\rho_{A}=\sum\left|i^{\prime} X_{i} i^{\prime} j\right| \rho_{A B}\left|i j X_{i}\right|_{A}
$$

$$
\begin{aligned}
& =\sum_{j}\left(I_{A} \leftrightarrow<\left.j\right|_{B}\right) \rho_{A B}\left(I_{A}-|j\rangle_{B}^{\text {chap }}\right)^{\text {er II, pg } 5} \\
& =\sum_{j}<\left.j\right|_{B} \rho_{A B}|j\rangle_{B} \\
& =: \operatorname{tr}_{B}\left(\rho_{A B}\right): \text { the "partial trace" }
\end{aligned}
$$

In components:

$$
\begin{aligned}
\left(\operatorname{tr}_{B}\left(\rho_{A B}\right)\right)_{i i^{\prime}} & =\left\langle i_{A}\left(\sum_{j}\left\langle\left.\right|_{B} \rho_{A B} \mid j\right\rangle_{B}\right) \mid i^{\prime}\right\rangle \\
& =\sum_{j}\left(\rho_{A B}\right)_{\left(i^{\prime}\right)^{\prime}\left(i^{\prime \prime}\right)}
\end{aligned}
$$

(Note: The partial wace can also bo seen as the canonical euntedding of

$$
\text { tr: } B\left(\mathcal{X}_{A}\right) \rightarrow \mathbb{C}
$$

into $\left.B\left(H_{X}\right) \propto B\left(\mathcal{H}_{B}\right)\right)$
-linear ("Sounded") opcotors ar X_{A}.
Note: P_{A} is alto called reduced dousing matrix (or operator) of $\rho_{A B}$ (or $\left|\psi_{A B}\right\rangle$).
c) Punfications

Is any density matrix $\rho(\rho \geqslant 0, t \rho=1)$ physical (i.e., coming from a pure state, as by our aximus)?

Purification of mixed sate ρ :
Consider any decomposition $\rho=\sum \lambda_{i}\left|\phi_{i}\right| \phi_{i} \mid, \lambda_{i}>0$, eng. The eijurvalue decomposition, and define

$$
|\psi\rangle_{A B}:=\sum \sqrt{\lambda_{i}}\left|\phi_{i}\right\rangle_{A}|i\rangle_{B}^{\text {aug ow }]}
$$

Then $\operatorname{tr}_{B}\left[\left|\psi X_{\psi}\right|\right]=\operatorname{tr}_{B}\left[\sum_{j^{\prime}} \sqrt{\lambda_{i} \lambda_{j}}\left|\phi_{i} X_{\phi_{j}}\right| \infty\left|i X_{j}\right|\right]$

$$
\begin{aligned}
& =\sum_{i j} \sqrt{d_{i} d_{j}}\left|\phi_{i} X_{\phi_{j}}\right| \otimes \frac{\operatorname{tr}_{B}\left[\left|i X_{j}\right|\right]}{=\delta_{i j}} \\
& =\sum d_{i}\left|\phi_{i} X_{\phi_{i}}\right|=\rho
\end{aligned}
$$

\Rightarrow Yes, every ρ is physical (in the suse above).
\Longrightarrow Peusity opvators ρ can revve as chaper II, pg 52 alkrwative fundamental definith of a state in quantum theory.

Definita-: $A|\psi\rangle_{\text {ts }}$ s.th. $\quad t r o r|\psi X \psi|=\rho$ is called a purficahtror of P.

Note: The acubizuity of punfications -i.e., knw are two punfications $\mid \psi \geqslant(\phi)$ of P, $\operatorname{tr}_{B}\left(\left|\psi X_{\psi}\right|\right)=\operatorname{tr}_{B}\left(\left|\phi X_{\phi}\right|\right)=\rho$, recated will te addressed later.
d) Eluscuntle intopretation of the deensty chateer cirit

Consider $|\psi\rangle=\alpha|00\rangle+\delta(11\rangle\rangle$:

$$
\begin{aligned}
& \Rightarrow \rho_{A}=\left(\begin{array}{cc}
|\alpha|^{2} & 0 \\
0 & |\beta|^{2}
\end{array}\right)=|\alpha|^{2}\left|0 X_{0}\right|+|\beta|^{2}\left|\Lambda X_{1}\right| \\
& \Rightarrow \operatorname{tr}\left[\Pi \rho_{A}\right]=|\alpha|^{2}\langle 0| \pi|0\rangle+|\beta|^{2}\langle 1| \pi|\Lambda\rangle
\end{aligned}
$$

\Rightarrow Can be nutupreted as lanng the pure stete 10> with probatility $p_{0}=|\alpha|^{2}$, and $|1\rangle$ s/ $p_{1}=|\beta|^{2}$. "eusemble intupretatia" of deusty matrix.

Howere: it have devirad PA from a pure stek $14\rangle_{A B}$ - ac these tiso pospectives consistant?
linagive B does a measurcurant in the Z Sass:

$$
|\psi\rangle=\alpha|00\rangle+\beta|11\rangle\rangle \begin{array}{|c|c|}
p_{1}=|\beta|^{2} \\
\left|\psi_{1}\right\rangle_{A}=|1\rangle_{A}
\end{array}
$$

The poot-measurcment shate of Alice is $\left.t_{0}\right)^{\prime}=\left(0^{2 n}\right\rangle$ with $p_{0}=|\alpha|^{2}$, and $\left|\psi_{1}\right\rangle=|1\rangle$ with $p_{1}=|s|^{2}$.

But: Alize dbes ust leun outcones of Bob
\Longrightarrow nucas. of Δ produces an cusecuth

$$
\begin{aligned}
& \left\{\left(p_{0},|0\rangle\right),\left(p_{1},|1\rangle\right)\right\}= \\
& =p_{0}|0\rangle\langle 0|+p_{1}|1\rangle\langle 1|=\left(\begin{array}{ll}
p_{0} & \\
& p_{1}
\end{array}\right)=\left(\begin{array}{ll}
|\alpha|^{2} & \\
& |\beta|^{2}
\end{array}\right) .
\end{aligned}
$$

(But urte: Bob kuows outcame $=0$ his descrpotion is different: he would lesente Aticen's state ether as 10×01 or as $11 \mathrm{Xil}_{11}$!
1.e.: Slate assijued dep. in kuorledge!

But: Bot could alro measure in defferet Soss, e.g. $|t\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)!$

Euscuntle $\left.\left\{\left(p_{+},\left|\psi_{+}\right\rangle\right),\left(p_{-},\left.\right|_{+}\right\rangle\right)\right\}$
Indeed, $P_{+}\left|\psi_{+} X_{\psi_{+}}\right|+p_{-}\left|\psi_{-} X_{+-}\right|=\rho_{A}!$
Differnt ensentle for same stete
\Longrightarrow ententle ntoprotation is aentjuous!
(Erem \# of terns can vary, ete. \rightarrow Hes)
Depruitia: We call a sytran (or e collechor of systens) cruich is a state $\left|\psi_{i}\right\rangle$ (or $\left.\rho_{i}\right)$ with prote. p_{i} an euscentle. (We corte $\left\{\left(p_{i}\left|\psi_{i}\right\rangle\right)\right\}$, or $\left\{\left(p_{i} p_{i}\right)\right\}$.

Observahio: Rearurument ontcomen for an Chateqgetitide ${ }^{56}$ $\left\{\left(p_{i} p_{i}\right) S\right.$ ace descated by

$$
\begin{aligned}
&\langle\pi\rangle:=\sum p_{i} \operatorname{tr}\left[\pi \rho_{i}\right]=\operatorname{tr}[\Pi \underbrace{\left(\sum p_{i} \rho_{i}\right)}_{=: \rho}] \\
& \text { arg. } \\
&=\operatorname{tr}\left[\Pi_{\rho}\right]
\end{aligned}
$$

\Rightarrow Diffend eusentles $\sum p_{i} p_{i}=\sum p_{i}^{\prime} \rho_{i}^{\prime}$ are indistriguithatle.

How are twro defererent cuscentle decmpostras related?

Theoremi $\sum_{i} g_{i}\left|\psi_{i} X_{y_{i}}\right|=\sum q_{j}\left|\phi_{j} X_{\phi} \phi_{j}\right|^{\text {chapter II, pg } 57}$ \uparrow uo und for owss.! If and only if there exptst $U=\left(u_{i j}\right)$ s. th.

$$
\nabla_{p_{i}}\left|\psi_{i}\right\rangle=\sum_{j} u_{i j} \sqrt{q_{j}}\left(\phi_{j}\right),
$$

wher $u=\left(u_{j}\right)$ satitios
(i) If $\sum q_{j}^{\prime}\left(\phi_{j} X \phi_{j}\right)$ is an eigenvalue decompositia: $u^{+} U=I$, i.e. U sis an sonectiry
(ii) jeueral case: $u=v \cdot \omega^{+}, v^{+} v=\omega^{+} \omega=I$, i.e, U is a partial itometry (i.e. U'U, luet are propections)

Proof: We will firt prove case (2).

$$
" \Longleftarrow ": \operatorname{Let} \sqrt{p_{i}}\left|\psi_{i}\right\rangle=\sum u_{i j} \cdot \sqrt{q_{j}}\left|\phi_{j}\right\rangle \text {. }
$$

Then $\sum_{i^{i}} p_{i}\left|\psi_{i} X_{y_{i}}\right|=\sum_{i}\left(\sum_{j} u_{i j}, \sqrt[q_{j}]{ }\left|\phi_{j}\right\rangle\right)\left(\sum_{j^{\prime}} \overline{u_{i j}}\left(q_{j^{i}}\left\langle\phi_{j^{\prime}}\right|\right)\right.$

$$
\begin{aligned}
& =\sum_{j j^{\prime}} \sqrt{q_{j}}\left|\phi_{j}\right| X_{j^{\prime}} \left\lvert\, \sqrt{q_{j}} \frac{\left(\sum_{i} \overline{u_{i j}} u_{i j}\right)}{\left(u^{+} u\right)_{j^{\prime} \prime}=\delta_{j \prime}}\right. \\
& =\sum_{j} q_{j}\left|\phi_{j}\right| \phi_{j} \mid . \quad
\end{aligned}
$$

$" \Longrightarrow "$ Fist, assume $\left|\phi_{j}\right\rangle$ is an eyculatis of ρ, and that all $9, \neq 0$.
Deprue $u_{i j}=\left\langle\phi_{j} / \psi_{i}\right\rangle \frac{\sqrt{P_{i}}}{\sqrt{g_{j}}}$.
Then, $\left.\sum_{j} u_{i j} \sqrt{q_{j}}\left|\phi_{j}\right\rangle=\sum_{j} \sqrt{q_{j}}\left|\phi_{j} X_{\phi_{j}}\right| \psi_{i}\right\rangle \frac{\sqrt{p_{i}}}{\sqrt{q_{j}}}$

$$
=\sqrt{p_{i}}\left|\varphi_{i}\right\rangle,
$$

and $\sum_{i} u_{i j} \overline{u_{i j^{\prime}}}=\sum_{\sum_{i}}\left\langle\phi_{j} \mid \psi_{i}\right\rangle\left\langle\psi_{i} \mid \phi_{j} \prime\right\rangle \frac{P_{i} \mid}{\sqrt{q_{j} q_{j} \prime}}$

$$
=\underbrace{\left.\left\langle\phi_{j}\right| \rho^{n}\left|\phi_{j}\right|\right\rangle}_{=q_{j} \delta_{j \prime \prime}} \frac{1}{\sqrt{p_{j} q_{j} \prime}}=\delta_{j i} x_{\psi_{i} \mid}
$$

$\Rightarrow\left(u_{i j}\right)$ Is an isometry.

Geuval cass: Firt, restrict to sepp (ρ), sinece adt $\left.\mid \phi_{j}\right),\left|\psi_{i}\right\rangle \in \operatorname{nepp}(\rho) ;$ thece, all $q_{i}, p_{j} \neq 0$. Theer, relate
\& combine ke isometrios vik \& w jk
\rightarrow Honcework.
e) Unitay evolution \& propective cucaturement for cuixed states

Hor does a unied state evolve under a unitayll?

- Cau be assessed in deff. srays, e.g. Merough punifications (here), or eusecutle intepretatia, or "Keisubory priture" (= evolny meas. opudor). Consider state ρ \& unitary M. Let $|\psi\rangle=|\psi\rangle_{\text {is }}$ be a punficatha of ρ,

$$
\operatorname{tr}_{B}\left|\psi X_{4}\right|=\rho_{A} .
$$

Then, $|\psi\rangle \longmapsto\left(U_{A}-I_{\Delta}\right)|\psi\rangle$

$$
\begin{aligned}
\Longrightarrow \rho_{A} & =\operatorname{tr}_{B}\left|\psi X_{4}\right| \\
& \longmapsto t_{B}\left[\left(U_{A} \otimes I_{B}\right) 1+X_{4} \mid\left(U_{A}^{+} \otimes I_{B}\right)\right] \\
& =U_{A} \operatorname{tr}_{B}\left[\left(I_{A} \otimes I_{B}\right)\left|+X_{4}\right|\left(I_{A} \otimes I_{B}\right)\right] u_{A}^{+} \\
& =U_{A} \rho_{A} U_{A}^{+}
\end{aligned}
$$

Hov does profit' measurement \{EU\} ~ a e t ~ i n ~ ρ_{A} ?
By construction of $P_{A}, \quad P_{a}=\operatorname{tr}\left[E_{u} \rho_{A}\right]$.
Pot-cucas. State:

$$
\begin{aligned}
\rho_{A, u} & =\frac{1}{p_{u}} t_{B}\left[\left(E_{u} \otimes I\right) 1+X_{4} /\left(E_{u}^{+} \otimes I\right)\right] \\
& =\frac{1}{p_{u}} E_{u} \rho_{A} E_{u}^{+}
\end{aligned}
$$

(Note: Both derivations ndep. of Cleoran purification

$$
\rightarrow \text { well-defined,) }
$$

