2. Bell nequalites
"How un-classical ar entangled stats?"
a) The Bell inequality

Consider the following game played by Ale t Bob with conks, prepared fy a referee R.

(2)

- A\&B play many rounds if the referee. Ia each round, A\&O cad jet 3 conns in cloned boxes (latelled 0,1,2), prepared according to some rule (determinists or random, but the same indep. Nne in every rd.) by R.
- In each rd., A \&B can book at only one conn each $(x=0,1,2 ; y=0,1,2)$. We deut heads $=+1$
and tails $=-1$; and the obtained results ${ }^{\text {chapter }} y^{\text {pg }} 5$ $a_{x}= \pm 1 ; \quad b_{y}= \pm 1$.
- Apter that, the boxes are collected by the referee, and a new round stats.
(ii) By repeatedly measunng the same box, $x=y$, A\&B observe: They always get the same outcome, ice.

$$
a_{x}=b_{x}
$$

(iii) A\&B are smalt: They can use thus to cleat the referee and obtain the value of firocons in a single round.

Idea: A clucks $\cos x, B$ checks $\cos n y=x^{\prime} \neq x$. Then, since $a_{x^{\prime}}=b_{x^{\prime}}$, they know a_{x} and $a_{x^{\prime}}$ in the same round!

This clearly works in a classical scenario (ide., with cons- we wall formalize thur late).

Consequence: $A \& B$ can wise this to eshmate

$$
p\left(a_{x}=b_{x^{\prime}}\right)=p\left(a_{x}=a_{x^{\prime}}\right)
$$

using that $a_{x}{ }^{\prime}=b_{x^{\prime}}$
(requires classical corks)
Observation:

$$
\begin{aligned}
& \quad p\left(a_{0}=a_{1}\right)+p\left(a_{1}=a_{2}\right)+p\left(a_{2}=a_{0}\right) \geq 1, \\
& \uparrow \\
& \uparrow \sim N\left(a_{0}=a_{1}\right) \\
& N_{\text {tot }}+\frac{N\left(a_{1}=a_{2}\right)}{N_{\text {tor }}}+\frac{N\left(a_{2}=a_{0}\right)}{N_{\text {tor }}}
\end{aligned}
$$

since in each round, at least two corks cemst be equal (or all 3)!

Using Heat (classically) $a_{x}=b_{x}$:

$$
\Longrightarrow p\left(a_{0}=b_{1}\right)+p\left(a_{1}=b_{2}\right)+p\left(a_{2}=b_{0}\right) \geqslant 1
$$

is satisfied for any classical Kerry (which satisfies $\left.a_{x}=b_{x} \forall x\right)$.
(5) is called Bell mequalk!
 classical theornis, and Lave a ponori uothony to do inth quaukien keory!)

But: In a suitatle quantum mechacical versin of the game, \otimes is nolated!

Queantuce versice of the game:

- R destritutes bipartite state $14>$.
- $A \& B$ perforen a meaturcment dep. on x / y, w/ rutcome a_{x} / b_{y}.
(l.e: Which box to open $=$ which meas. to
perform - A\&B can dways aly chaperer IIII $\underbrace{\text { comeg } 8}$ ureas, each on original state).
Setup: $\cdot|\psi\rangle=\left|\psi^{-\rangle}=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)\right.$
- A\&S do propzctive measurcanent aloyg axes $\overrightarrow{\mu_{x}}$ and $\overrightarrow{u_{y}}$, i.e. Khy meature the operators $\vec{u}_{x} \cdot \vec{\sigma}^{4}$ and $\overrightarrow{u_{y}} \cdot \overrightarrow{\sigma^{A}}$.
- We whl specify $\vec{\mu}_{x}$ and ${\overrightarrow{u_{y}}}_{y}$ cato m,

It holes that $\left(\vec{\sigma}^{A}+\vec{\sigma}^{B}\right)\left|\psi^{-}\right\rangle=0$

$$
\begin{aligned}
& \equiv \vec{\sigma}_{A}^{\otimes} \otimes I_{D} \quad \oint I_{A} \otimes \vec{\sigma}^{0} \\
\text { (i.e. }\left(\sigma_{\alpha}^{A}+\sigma_{\alpha}^{B}\right) \mid \psi \overrightarrow{ }> & =0 \quad \forall \alpha=x, y, z ;
\end{aligned}
$$

by direct muspection, or sunce $\left|\psi^{-}\right\rangle$has ypen 0).

$$
\begin{aligned}
\Rightarrow\left\langle\psi^{-}\right| & \left(\vec{\sigma}^{A} \cdot \vec{u}^{\prime}\right) \frac{\left(\vec{\sigma}^{A} \cdot \vec{m}\right)\left|\psi^{-}\right\rangle}{\left.=-\vec{\sigma}^{A} \cdot \vec{u} / \psi\right\rangle \text { from the atare }}= \\
& =-\left\langle\psi^{-}\right|\left(\vec{\sigma}^{A} \cdot \vec{u}\right)\left(\vec{\sigma}^{\wedge} \cdot \vec{m}\right)\left(\psi^{-}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
&\left.=-\sum_{k e} u_{k} u_{e} \frac{\langle\psi-| \sigma_{k}^{A} \sigma_{e}^{A} \mid \psi}{-\rangle}\right\rangle^{\text {chapter III, pg } 9} \\
&= \operatorname{tr}\left[\rho_{A} \sigma_{k}^{A} \sigma_{e}^{A}\right] \\
& \quad \frac{1}{2} I_{1} \text { eg from schmidt dec. } \\
&=\frac{1}{2} b\left[\sigma_{k}^{A} \sigma_{R}^{A}\right]=\delta_{k l} \\
&=-\sum_{k} u_{k} u_{k}=-\vec{u} \cdot \vec{u}=-\cos \theta
\end{aligned}
$$

Measurement along \vec{u} : Meas. operators (propectoro)

$$
E_{ \pm 1}(\vec{u})=\frac{1}{2} \quad(I \pm \vec{u} \cdot \vec{\sigma})
$$

Let $p(a, b), a, b= \pm 1$ denote prob. to get outcomes a \& δ, respectively, for $A \& B$. Then,

$$
\begin{aligned}
& p(\pm 1, \pm 1)=\langle\psi| E_{ \pm}^{A}(\vec{u}) E_{ \pm}^{\mathbb{B}}(\vec{m})\left|\psi^{-}\right\rangle \\
& \stackrel{1}{4}\langle\psi-\underbrace{I}_{\equiv 1} \pm \frac{\underbrace{\vec{u} \cdot \vec{\sigma}^{A}}_{\equiv 0 \text { mace }} \pm \frac{\vec{u} \cdot \vec{\sigma}^{B}}{=0}+\frac{\left(\vec{u} \cdot \vec{\sigma}^{A}\right)\left(\vec{u} \cdot \vec{\sigma}^{\sigma} \sigma\right.}{})|\psi\rangle}{\equiv-\cos \theta} \\
& =\frac{1}{4}(1-\cos \theta) .
\end{aligned}
$$

and

$$
\begin{aligned}
p(\pm 1, \mp 1) & =\frac{1}{4}(1+\cos \theta) . \\
\Rightarrow \operatorname{prob}(a=b) & =\frac{1}{2}(1-\cos \theta) \\
\operatorname{prob}(a \neq b) & =\frac{1}{2}(1+\cos \theta)
\end{aligned}
$$

Nos let A choose mencorncments $\vec{u}_{0}, \vec{u}_{1}, \overrightarrow{u_{2}}$:

in the $x z$-plane,
and B along $\overrightarrow{u_{x}}=-\vec{u}_{x}$:

Then:

- $x=y: p\left(a_{x}=b_{y}\right)=\frac{1}{2}\left(1-\cos 180^{\circ}\right)=1$
\Rightarrow Ald alarys got same crult when Heny meature" Hhe same core
- $x \neq y: p\left(a_{x}=b_{y}\right)=\frac{1}{2}\left(1-\frac{\cos \left(\pm 60^{\circ}\right)}{=1 / 2}=\frac{1}{4}\right.$

$$
\Rightarrow p\left(a_{0}=S_{1}\right)+p\left(a_{1}=S_{2}\right)+p\left(a_{2}=S_{0}\right)=\frac{3}{4}<1
$$

(while Bell rueg. stated ≥ 1 for clasr. Heonal!)
Bell mequality nolated!

Frnually, what were the assumptrus of our clastical Hecony?
(1) Realisu: Ontcrmes of measurcments are "clements of raliky" -ie., Kucy lave pre-deterniwed values even prior to meapucment.
(2) Locality: $A \& B B^{\prime}$ boxes cacuot' comennuicate once destrituted.
\Rightarrow Quantum wechanical predichons are rucompatitle wosth ang coeal and realshe Herry - we need to give up ather Cocality or realim.

Bell inequalities can be used to certify that a syotum tehaves quantum meckanically (i.e. non-classically): If we ucasure a solatia of the Bell mequality - urte that $p\left(a_{x}=b_{y}\right)$ can te estimated reliasly sy repeated measurements - we kuow that the segstem camot be dessited classically and coust theus be guantim mecchonical,
5) The CHSH mequale

Bell's mequality has hro downsides:
i) We pirst ueed to separctely test that $a_{x}=S_{x}$
ï) Wh ueed I defferent measurement settrugs

- mayte woth muly 2 settrigs, everythuy can te wodelled clastically?

Consider settry with 2 measurcmants: $x=0,1 ; y=0,1$, again with rutcomes $a_{x}, b_{y}= \pm 1$ (micuinal settry).

Suce $a_{x}= \pm 1, \quad b_{y}= \pm 1$:

$$
C=(\underbrace{\left(a_{0}+a_{1}\right.}) b_{0}+\underbrace{\left(a_{0}-a_{1}\right)} b_{1}= \pm 2
$$

sue of these unest to 0 ,
the othe is ± 2.

$$
\Rightarrow|\langle c\rangle| \leqslant\langle | c| \rangle=2
$$

$$
\left|\left\langle a_{0} b_{0}\right\rangle+\left\langle a, b_{0}\right\rangle+\left\langle a_{0} b_{1}\right\rangle-\left\langle a, b_{1}\right\rangle\right| \leqslant 2
$$

"CHSH inequality" (Clanser, Horue, Shimony, Hoer)

Vibletion of CHSH mequaliky in quantion therry:
Take $|\psi\rangle=\left|\psi^{-}\right\rangle$

$$
\begin{aligned}
& a_{x} \leftrightarrow \overrightarrow{u_{x}} \cdot \vec{\sigma}^{\wedge} \\
& b_{y} \leftrightarrow \overrightarrow{u_{y}} \cdot \vec{\sigma}^{B}
\end{aligned}
$$

$x z$ plane
Heare seen:

$$
\begin{aligned}
& \left\langle a_{x} b_{y}\right\rangle=-\cos \theta \\
\Rightarrow & \left\langle a_{0} b_{0}\right\rangle=\left\langle a_{0} b_{1}\right\rangle=\left\langle a_{1} b_{0}\right\rangle=-\frac{1}{\sqrt{2}} \\
& \left\langle a_{1} b_{1}\right\rangle=+\frac{1}{\sqrt{2}} \\
\Rightarrow & \left.\left|\left\langle a_{0} b_{0}\right\rangle+\left\langle a_{1} b_{0}\right\rangle+\left\langle a_{0} b_{1}\right\rangle-\left\langle a, b_{1}\right\rangle\right|=2 \sqrt{2}\right\rangle 2
\end{aligned}
$$

CHSH mequalih nolaked!
Nbte: Thus volation is optinal (maxineal) wikn QT.
(But: Wikh a geueral Cocal theory, $|\langle C\rangle|^{\text {Chapter }} \mid=4^{\text {III }} 4^{\text {pg } 15}$ can de obtained : QII is enore restroctive than general Cocal theories.)
c) Formal rethp and Lord lidden vasithe theonies Fornal schup for physical theories in sipartite settry:
(A)

a 6

A: impent x (meas. setting), output a (meas. result)
B : repent y, contput b.

Auy physical theory is choractented Chapter III. couditional probability distribution

$$
P(a, b \mid x, y)
$$

to ostain a \& b given x \&y, where

$$
\sum_{a, b} P(a, b \mid x, y)=1 \quad \forall x, y .
$$

Question: Which $P(a, b \mid \times, y)$ are cousstent with a given pluysical therry?

Classical plysios:
"Cacal hidden-variatle (LHU) model":
All ontcomes ar pre-deternined by some "Liddlan" varatle λ, which ischosce according to some distritution lgive to ARB, who act independently (i.c., lozelly) conditioned ond.
(Loral realisn": Ontcomes exist ndep. of ueas. -ralisn - and no (sasker-than-liget)
connurucuication behreen A 4S- Cochaty. .iri, pg 17
1.e:

* $P(a, b \mid x, y)=\sum_{\lambda} g(\lambda) P_{\lambda}^{A}(a \mid x) P_{\lambda}^{B}(b \mid y)$
probe distr.
over λ

can be made deternuivithe by putting all randomwess in $\lambda \& q(t)$.

How have we deen using the LHV form © adove th the denvation of Bell-type nequalitas?
E.g. CHSH:

$$
\begin{aligned}
\langle c\rangle & =\left\langle a_{0} b_{0}\right\rangle+\left\langle a_{1} b_{0}\right\rangle+\left\langle a_{0} b_{1}\right\rangle-\left\langle a_{,} b_{1}\right\rangle \\
& =\sum_{x, y}(-1)^{x y}\left\langle a_{x} b_{y}\right\rangle \\
& =\sum_{x, y}(-1)^{x y}\left[\sum_{a_{x}, b_{y}} a_{x} b_{y} \quad P\left(a_{x}, b_{y} \mid x_{i, y}\right)\right] \\
& =\sum_{q}(\lambda) P_{\lambda}^{A}\left(a_{x} \mid x\right) P_{\lambda}^{B}\left(b_{y} \mid y\right) \\
& =\sum_{=: E_{\lambda}} q(\lambda) \underbrace{\sum_{x_{y}}(-1)^{x y}\left[\sum_{a_{x}, b_{y}} a_{x} b_{y} P_{\lambda}^{A}\left(a_{x} \mid x\right) P_{\lambda}^{B}\left(a_{y} \mid y\right)\right]}_{x y}
\end{aligned}
$$

Then, $|\langle c\rangle| \leq \sum_{\lambda} q(\lambda)\left|E_{\lambda}\right|$, and

$$
\begin{aligned}
\left|E_{\lambda}\right| & =\mid \sum_{x, y}(-1)^{x y}(\underbrace{\left.\sum_{a_{x}} a_{x} p_{\lambda}^{A}\left(a_{x} \mid x\right)\right)}_{=\left\langle a_{x}\right\rangle_{\lambda}})_{=\left\langle b_{y}\right\rangle_{\lambda}}^{\sum_{y} b_{y} p_{\lambda}^{B}\left(b_{y} \mid y\right) \mid} \\
& =\left|\left(\left\langle a_{0}\right\rangle_{\lambda}+\left\langle a_{1}\right\rangle_{\lambda}\right)\left\langle b_{0}\right\rangle_{\lambda}+\left(\left\langle a_{0}\right\rangle_{\lambda}-\left\langle a_{1}\right\rangle_{\lambda}\right)\left\langle b_{1}\right\rangle_{\lambda}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant\left|\left\langle a_{0}\right\rangle_{\lambda}+\left\langle a_{1}\right\rangle_{\lambda} \frac{| |\left\langle s_{0}\right\rangle_{\lambda} \mid}{\leqslant 1}+\right|\left\langle a_{0}\right\rangle_{\lambda}-\left\langle a_{1}\right\rangle_{\lambda}\left[\frac{\text { Chapter }\left[\begin{array}{l}
\text { Yr, pg } \\
\mid\left\langle\left. s_{1} \lambda_{\lambda}\right|^{19}\right.
\end{array}\right.}{\leqslant 1}\right. \\
& \leq\left|\left\langle a_{0}\right\rangle_{\lambda}+\left\langle a_{1}\right\rangle_{\lambda}\right|+\left|\left\langle a_{0}\right\rangle_{\lambda}-\left\langle a_{1}\right\rangle_{\lambda}\right| \\
& \leq 2 \max \left\{\left|\left\langle a_{0}\right\rangle_{\lambda}\right|,\left|\left\langle a_{1}\right\rangle_{\lambda}\right|\right\} \leq 2 \text {. }
\end{aligned}
$$

Where have we used the LHV canine \otimes
\rightarrow In factorizing

$$
\begin{aligned}
\left\langle a_{x} b_{y}\right\rangle_{\lambda} & =\sum_{a_{x}, b_{y}} a_{x} b_{y} P\left(a_{x}, b_{y} \mid x, y\right) \\
& =\left(\sum_{a_{x}} a_{x} P_{\lambda}^{A}\left(a_{x} / x\right)\right)\left(\sum_{y y} b_{y} P_{\lambda}^{P}\left(b_{y} \mid y\right)\right) \\
& =\left\langle a_{x}\right\rangle_{\lambda}\left\langle b_{y}\right\rangle_{\lambda}
\end{aligned}
$$

- othernoste, it does not make suse to talk about $\left\langle a_{x}\right\rangle$ moles. of the value of y, and $\left\langle a_{0} b_{0}+a_{0} b_{1}+a, b_{0}-a, b_{1}\right\rangle$ cannot be factorized (either as expectation values $\left\langle a_{i}\right\rangle\left\langle b_{j}\right\rangle$, or classical variattes-conk-sterich is in essence the same.)

