IV Quanturn Compritigy and Quantucn Magororticu go 1

1. The circent madel
a) Classical computation

Use of clasical computes (abstractly):
Solve protlems \equiv compnte functias

$$
\begin{aligned}
& f:\{0,1\}^{\mu} \\
& \longrightarrow\{0,1\}^{m} \\
& \underline{x}=\left(x_{1}, \ldots, x_{2}\right) \longmapsto f\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

The functron of depueds an the protlen we want to solve, x cucodes the raftance of the prottin.
E.g.i Rroblem $=$ multiplicatio: $(a, s) \mapsto a \cdot b$

$$
\begin{aligned}
\underline{x}= & \left(\frac{x^{1}}{\hat{1}}, \frac{x^{2}}{y}\right) \longmapsto f(\underline{x})=\underline{x}^{1} \\
& \text { encoded in brivary }
\end{aligned}
$$

Problem = Factoritaha:
x: integes $f(\underline{x})$: list of porme factors (suitably cucoded)

More precitely:
Each protlem is encoded by a focmly of frucpions $f \equiv f^{(c)}:\{0,1\}^{\mu} \rightarrow\{0,1\}^{\mu_{n}}$, with $m=\operatorname{poly}(u), u \in \mathbb{N}$ - oue for cach ryput site.
i.e.: an grous at moot polynomially with μ (technically, $\exists \alpha>0$ s.th. $\frac{e^{\alpha}}{u^{\alpha}} \rightarrow 0$).
(Techinical pornt: It wenst ts poststle to "coustrnct the frenctins $f^{(n)}$ systematically and ffiraty", see (ater!)

Which nygreditats do we veed to compute a fuesal fuechan f?
(i)

$$
\begin{aligned}
& f:\{0,1\}^{\mu} \longrightarrow\{0,1\}^{m} \\
& f(x)=\left(f_{1}(\underline{x}), f_{2}(\underline{x}), \ldots, f_{m}(\underline{x})\right)
\end{aligned}
$$

where $f_{k}(\underline{x}):\{0,1\}^{\mu} \rightarrow\{0,1\}$
\Rightarrow can restrict audyois to boolean functions

$$
f:\{0,1\}^{m} \longrightarrow\{0,1\} .
$$

(ii) Define $L=\{y \mid f(y)=1\}=\left\{y^{\prime}, y^{2}, \ldots, y^{e}\right\}$.

Deprue $\underline{\delta}_{y}(\underline{x})=\left\{\begin{array}{ll}0 ; & \underline{x} \neq y \\ 1 ; & \underline{x}=y\end{array}\right.$ Sitaste equal!!

Then, $f(\underline{x})=\underline{\delta}_{y^{1}}(\underline{x}) v \underline{\delta}_{y^{2}}(\underline{x}) v \ldots v \underline{\delta}_{y^{e}}(\underline{x})$
"v": Logical "or": 0 0 " $=0$

$$
\begin{array}{ll}
(0 \equiv \text { "gosse" } & 0 \vee 1=1 \\
1 \equiv \text { true") } & 1 \vee 0=1 \\
& 1 \vee 1=1
\end{array}
$$

" v "is associative:-

$$
a v b v c:=(a v b) v c=a v(b v c)
$$

and commutative: a vb $=6 \mathrm{va}$.
(iii) Define bithrise δ :

$$
\delta_{y}(x)=\left\{\begin{array}{cc}
0: & y \neq x \\
1: & y=x
\end{array}\right.
$$

Then,

$$
\begin{aligned}
& \underline{\delta}_{y}(\underline{x})=\delta_{y_{1}}\left(x_{1}\right) \wedge \delta_{y_{2}}\left(x_{2}\right) \wedge \ldots \wedge \delta_{y_{n}}\left(x_{2}\right) \\
& " \wedge ": \text { logical "and": } 0 \wedge 0=0 \\
&(0 \equiv \text { "Selse", } 0 \wedge 1=0 \\
& 1 \equiv \text { true" } 1 \wedge 0=0 \\
& 1 \wedge 1=1
\end{aligned}
$$

" A "is associative \& commutative;
" A " \& "v" are distributive:

$$
(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c) .
$$

(ln essence, same rules as $1 \rightarrow \cdots, v \rightarrow+$)
(iv)

$$
\delta_{y}(x)= \begin{cases}x & \text { if } y=1 \\ 7 x & \text { if } y=0\end{cases}
$$

logical "not".
TO Chapter IV, pg 5

$$
71=0
$$

Condone (i) -(ir):
Any $f(\underline{X})$ can te constructed from 4 rufredints: "and", "or", "not" gates, plus a "Copy" gate $x \longmapsto(x, x)$.

This is called a universal gate set.
(Note: In fact, already either 7 (xi) "wand", or 7 (xvy) "ur" are universal, together with "copy",

This gives nite to the
Circuit model of computata:
The fruchous $f \equiv f^{(a)}$ which we can compute are constructed by concatenating gates from a
simple universal gate set (e.g. and tray $\varepsilon_{0} x_{0} \neq / c^{20} / 5^{6}$) sequentially in the (ide., there are us loops allowed). Tues gites nite to a circuit for f^{4}.

The difiriulty ("computational hardens") of a prothem in the circent mod is measured ty the runcuter $K(n)$ of elementary gates uneded to compute $f(u) \quad(\hat{=} \#$ of time steps).

We offer distinguish two qualitatively deferent regimes:
$K(n) \sim$ poly $(c):$ efficiently solvable (class) easy protlene

$$
K(u)>p \circ l y(n)-e \cdot g . \quad K(e) \sim \exp \left(u^{\alpha}\right):
$$

hard protlen
(Technical note: We mutt repose that the circuits
used for flu) are ucuiform, i.e. They creaser itepg 7 jeucrated efficicutly - e.g. by a simple u-independent computer program. More formally, $f(a)$ derould te jeucated of a Tuning enachine.)

Example:

$$
\begin{aligned}
& f=\text { Multipliats }: \\
& \text { Efricut: } \\
& \frac{\left.\frac{e}{10110 \times 1} \frac{e^{\prime}}{10110} \begin{array}{r}
10110 \\
10110
\end{array}\right\} e^{\prime}}{\frac{110100010}{1,1} 1} \begin{array}{l}
e \times e^{\prime} \text { adclitions: }
\end{array} \\
& O\left(e e^{\prime}\right) \sim O\left(m^{2}\right) \text { geter. }
\end{aligned}
$$

f: Factorizatia.
E.g.: firve of Erathosteves:
$\{0,1\}^{4} \rightarrow$ try a ount $\sqrt{2^{4}} \sim 2^{5 / 2}$ cascs
\Rightarrow hard/exp. scalizy.
No efficient alforithen kurrs!

Is a typical problem cary or lad?

$$
f:\{0,1\}^{4} \longrightarrow\{0,1\}
$$

But; there are only $c^{\text {pregla }}$ circuit of length poly (u)!
\# of elem. jots
\Longrightarrow As u gets loge, snort f canned te computed efficiently (ix. with poly (n) operations).

Does the computational power depend on the jakeses? Wo! By definite, any universal gate set can simulate any other gate tet with constant overhead!

Remalk. Ruere is a wide rauge of alkninite iviondels of couputatis, some meore and seres less ralistia:

- CPu
- parallel computers
" "Tuning wecluive" - tape + read/crite head
- cellular antrouata
-... and lot of cuohc meodels...

But; AUl kuros "reasonatle" cuodels of compentolsa can smeulate each other whth pobylu) orerkeed \Longrightarrow same computational power (on the suse adove).

Cleurch-Tusiy-Renss All rasonathe cuodels of compritatio hove the same computatianal powis.
b) Reverstle circuits

For quantion compuntigy - coming soon - we wall use the circuit model.

Gates isl te solaced by uaitancs.
But: Unitanis are reverstles, while classical gates (aced or) ac irreversitle.

Could such a model even do classical computahas-- ire., can we find a reviversal gate set enth only reversible fates?

YES! - Classical computation can te meade reverstle:

Toffoligate:

\rightarrow Toffolijate is revrsisle
(if is is oun inverse, siluce $(z \oplus x y) \oplus x y=z$)
\rightarrow Toffoli jote can simulate and/or/urt/copy, by using aucullas mstate "0" or "1":
E.g.:

"Nand"
\Longrightarrow gives reverstle umiversal gate tet
(but requirs aucllas)

This can te used to coneponte any $f(\underline{E})$ reversitly, using aucillas, with essentidy ther same \# of gates:

$$
f^{R}(\underline{x}, y) \longmapsto(\underline{x}, f(\underline{x}) \oplus \underset{\sim}{\oplus} y)
$$

bitwite Xor.
(Idea: Replace any jate by a rversitle Chapter IV, pg 12 aucillas. Then xore the result suto the y register, Fihally, run the crrcuit backarards to "uncompente" the aucillas. Ancilla coment can to ophrecited for $\rightarrow o f$. Proskill's uoter.)
\Rightarrow Everghluy can te computed reversily.
BuT: 3-bit jate is requared!
$(\rightarrow$ Honework)
c) Quanturn Grouts

Nott comenor uodel for quantum computatio.: The cercuit model:

- Quantimen system consistry of quatib. tensor product structure.
- Universal gate set $S=\left\{U_{1}, \ldots, U_{k}\right\}$ of few-qubit jates (typ. 1- and 2-qutit zoks) uj. (Sec late for definition of "ucuvertal"!)
- Coustruct arcunt by sequentially applyry
elements of S to a subset of quass:.

$$
\left\lvert\, \begin{aligned}
\left|\psi_{m t}\right\rangle= & V_{T} V_{T-1} \cdot \ldots \cdot V_{1}\left|\psi_{m}\right\rangle \\
& u_{j} \text { acting on subset of quids }
\end{aligned}\right.
$$

- Iuctial state:

$$
\begin{aligned}
\left|\psi_{n}\right\rangle & =\left|x_{1}\right\rangle\left|x_{2}\right\rangle \ldots\left|x_{u}\right\rangle \frac{e}{|0\rangle(0) \ldots|0\rangle} \\
& =\left|\frac{x}{\lambda}\right\rangle\left|\frac{0}{}\right\rangle
\end{aligned}
$$

encodes mistance of problem

- alkmatively, we cam also have

$$
\left.\left|\psi_{m}\right\rangle=|\underline{0}\rangle \equiv \mid 0\right)^{\Omega}
$$

and encode the instance in the circuit.

- At the end of the compentobo, meotuc the final state Your $>$ in the computation basis $\{|0\rangle, 11\rangle\}$
\longrightarrow outcome $|y\rangle$ i/ pool. $p(y)=\mid\langle y|$ tout $\rangle\left.\right|^{2}$
dotes; - Thes is a probabilishe schcume - itapterfivito ${ }^{14}$ y $5 /$ some prob. $p(y)$. In princigle, we shatd compare to class. probabinsic sheunes - see Coter.
- We need not ruecsur all qutitsnot cucasuring $=$ hacing $=$ meaturiny and ignorig outcome
- Povirs don't help- wr can simulate them $(\rightarrow$ Naicuath). Simbarly, $C P$ maps don't help wre can sinulate them (Sivesporing t trace acucilla).
- Reasurments ot carlor times don'f help: Can always post pone them (they cormmente). If gote at later time would depend on neceas. ontcome: This dependence can be realited puside the circuit w/ "controlled gater" (f. Lato + konucworle)

What gate sit Bhould we cleoos??

- Reere is a contiuuun of gotes - sithatio much more sil.
- Defferent uotrons of ucuiversality exist:
- exact universality: Auy u-qubst gate cam te realized exactly.
\rightarrow Requites a contiunuons facenty of umiveral gates (comutiy argument!)
- approximate uceiversality: Auy u-qutit gate can be approcimated well by gate set (Fimie gate set reffirint;

Solovay-Kitacu-Reorn: ε-apprakimatia (in $\|\cdot\|_{\infty}-\mathrm{N}_{\infty}$) of 1 -quatit gate requites $O($ poly $(\log (1 / \varepsilon)))$ gates from a suitatle frunte set.)

- 1- and - 2 quatr jatte aloue are renkersal! (y.classical: 3-bit gates ueeded!!)
- For approximate uuivrouliy, almost canter Iysooplele two-qubt gate will do!
- More univ. rets: Cato!
d) Universal gate set

Our exact universal gate set:
(i) 1-quat rotators about $x \& z$ axis:

$$
\begin{array}{ll}
R_{x}(\phi)=e^{-i x \phi / 2} ; & x=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), x^{2}=I \\
R_{z}(\phi)=e^{-i z \phi / 2} ; & z-\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), z^{2}=I .
\end{array}
$$

For $\Pi^{2}=I: e^{-i \pi \phi / 2}=\cos \phi / 2 I-i \sin \phi / 2 \pi$

$$
\begin{aligned}
\Longrightarrow R_{x}(\phi) & =\left(\begin{array}{cc}
\cos \phi / 2 & -i \sin \phi / 2 \\
-i \sin \phi / 2 & \cos \phi / 2
\end{array}\right) \\
R_{z}(\phi) & =\left(\begin{array}{cc}
e^{-i \phi / 2} & 0 \\
0 & e^{i \phi / 2}
\end{array}\right)
\end{aligned}
$$

Can be undestrod as rotations on Bloch gipatiere IV, pg 17 ofout x / z ous by augle ϕ (i.e., rotations in $\operatorname{So}(3) \cong \sec (2)\left(z_{2}\right)$.
Togethe, R_{x} and R_{t} jeucrate all rotations in $S O(3)$ (Euter angles!), and thens ine su(2) up to a phode.

Lecuma: For any $u \in \operatorname{su}(2)$,

$$
u=e^{i \phi} R_{x}(\alpha) R_{z}(\beta) R_{x}(\gamma) \text { for same } \phi, \alpha, A, x .
$$

Proof: Hancwork.
(iï) one two qubit jate (almost all wabl do!). Typizally, we use "coutrolled-Nor" = "Cavor":

CNOT =

$$
x-x=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

coor flips y iff $x=2$: classical gate!

Can prove: This gote set can create any chapter ivigúgy ${ }^{18}$ U esactly (Sut of conse not efpreathy -4 has $\sim\left(2^{n}\right)^{2}=4^{n}$ real parameters).

Overvices of a numbs of nuportant jates Bidentios (Rroof/cheok: Honecwoth!)
Hadawerd gatc: $H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$

$$
\begin{aligned}
& H=H^{+} ; H^{2}=I . \\
& H R_{x}(\phi) H=R_{z}(\phi) \\
& H R_{z}(\phi) H=R_{x}(\phi)
\end{aligned}
$$

Grephical "crcult" uotaha:

$$
-H-x-H=-z
$$

hemportant:
Natris wotation: tive goes syet to left

Circuit notabo: true goes left to chapter e Iv: pg 19
I.e.: $\left|\psi_{m}\right\rangle \longmapsto\left|\psi_{\text {out }}\right\rangle=\underset{\text { time }}{u_{3} u_{2} \mu_{1}\left|\psi_{\text {m }}\right\rangle}$
time

$$
\left.\left|\psi_{i n}\right\rangle-u_{1}-u_{2}-u_{3}-\psi_{\text {out }}\right\rangle
$$

Geverally: For a umitary $u \in \operatorname{su}(2)$,

Can te muplemented w/ 2 CNOT (\rightarrow HC!!)
thso for $u \in \operatorname{su}\left(2^{n}\right)$:

Gircult Lor Toffol:

with $V=\frac{1-i}{2}(I+i x)$
u to controlled- $-U$:
Given circent for U - in partice lar, a classical reveritle circent - we can also tuld controled-ll:

Just rplace every gate by its controlledt-vieision, in particular Toffoli by

Toffoli w/ 3 controlss can te suitt from normal Toffol' (ennce class. nuiverral!)

Fizally, some futher approx. ucuiversal jate sets:

- CNOT + 2 racedon 1-qutit jates

$$
\text { - } \operatorname{covi}+H+T=R_{z}(\pi / 4) \quad(" \pi / 8 \text { gate") }
$$

