2. Oracle - based algonthuns
a) The Durtirl algonthen

Consider $f:\{0,1\} \longrightarrow\{0,1\}$
tet f be "very hard to compute" - erg. .aug circuit
Want to keos: Is $f(0)=f(1)$?
(cog.: will a specific chess more affect result?)
Hos often do we have to mun the circuit for f

$$
(=\text { "evaluate } f \text { ")? - We think of } f \text { as a "Slack box" }
$$

or "orate": Hor cuany oracle quench are uce-bed?
Classically, we clearly need 2 quines:
compute $f(0)$ and $f(1)$.
Can quantum physics help?

Consider reversible implecuentatia of f :

$$
f^{R}:(x, y) \longmapsto(x, y \oplus f(x))
$$

$$
|x\rangle|y\rangle \longmapsto|x\rangle|y \oplus f(x)\rangle
$$

Try to use supespositions as reput?
Fint altceupt:

$$
\left.\left.\frac{|0\rangle+(1)}{\sqrt{2}}(0\rangle=\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|0\rangle) \stackrel{u_{f}}{\longmapsto} \frac{1}{\sqrt{2}}(\mid 0)|f(0)\rangle+|1| f(1)\right\rangle\right)
$$

\rightarrow Have eveluated for boln outponts!
But leor can we extract the clevant riformatian (i.e. do a measurcmant)?

- Reas. in comp. doisi collopre supupos. To one care!
- Geverally: $f(0) \neq f(1):$ netputs $\left.\frac{1}{\sqrt{2}}(\mid 0)|0\rangle+(1\rangle|1\rangle\right)$,

$$
\left.\left.\frac{1}{\sqrt{2}}(10) / 10+\mid 1 / 0\right)\right)
$$

$$
\begin{aligned}
& f(0)=f(1): \text { outpats } \quad|+\rangle|0\rangle, \\
&\mid t) \mid(\rangle),
\end{aligned}
$$

\Longrightarrow uot orthoganal, i.e. ust (determ.) distiuguishatle!

Second atterept:

$$
\begin{aligned}
&|x\rangle\left(\frac{|0\rangle-11\rangle}{\sqrt{2}}\right) \stackrel{u_{f}}{\longmapsto}|x\rangle\binom{(f(x)\rangle-|1 \oplus f(x)\rangle}{\sqrt{2}}= \\
&=\left\{\begin{array}{l}
f(x)=0:|x\rangle \frac{|0\rangle-11\rangle}{\sqrt{2}} \\
f(x)=1:|x\rangle \frac{|1\rangle-(0)}{\sqrt{2}}
\end{array}\right\} \\
&=|x\rangle\left[(-1)^{f(x) \frac{|0\rangle-|1\rangle}{\sqrt{2}}}\right]
\end{aligned}
$$

$$
=(-1)^{f(x)}(x)\left(\frac{(0)-11)}{\sqrt{2}}\right)^{\text {chppter IV, pg } 25}
$$

Not cescfur of itself: $f(x)$ only ceecoded in glotal phate for cad classical ruput $1 x$?.

Con tine abcupts:

$$
\begin{aligned}
& \frac{|0\rangle+|1\rangle}{\sqrt{2}}=\frac{|0\rangle-|1\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(|0\rangle \frac{\mid 0)-1\rangle}{\sqrt{2}}+(1\rangle \frac{|0\rangle-\mid(\rangle}{\sqrt{2}}\right) \\
&=\frac{1}{\sqrt{2}}\left(\left.(-1)^{f(0)}(0) \frac{\mid 0)-(1)}{\sqrt{2}}+(-1)^{f(1)} \right\rvert\,(1) \frac{(0)-(1\rangle}{\sqrt{2}}\right) \\
&=\frac{(-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle}{\sqrt{2}}
\end{aligned}
$$

Observatious:
\rightarrow No entayflement created (!)
\rightarrow 2nd qubt - Hu me where Ufyaptettontis ${ }^{26}$ the funchie value - is menchanged (!!)
\rightarrow Ios quint pets a plase $(-1)^{f(x)}$
("phan kid-bad kohcijue")
Shate of 108 quetit:

$$
\begin{array}{ll}
f(0)=f(1) \longleftrightarrow \frac{10)+11)}{\sqrt{2}} & \begin{array}{l}
\text { (up to } \\
\text { irrelevaut }
\end{array} \\
f(0) \neq f(1) \longleftrightarrow \frac{(0)-11)}{\sqrt{2}} & \text { global phat) }
\end{array}
$$

OMhgonal states! \Rightarrow meearuccuent of lot quotit in babs $\{|t\rangle|-\rangle\}$ (or apply - $H-1$ - \& measure in $\{|0\rangle,|1\rangle\}$) allous to decide of $f(0) \stackrel{?}{=} f(1)$! Deutreh algorithe:

out put $i^{\prime}=0: \Longrightarrow f(0)=f($ thapter IV, pg 27

$$
i=1: \quad \Rightarrow \quad f(0) \neq f(1)
$$

One application of Uf heos been refirment!'
\Rightarrow Speed-up coupared to clsss. algorith (1 us. 2 orade queres).
luteresbing to note: 2ud guetst wever needs to be meatured - and it contains wo mformoho.

Two mack moights:

- Usc mput $\sum|x\rangle$ to evaluate f on all imputs simultacuernsly.
- This parallelisn alone is not eeeough - uced a sualt wrey to read out the relevant onformotio.

However, a constant speed-up is not that mpressive in patticular, it is luyhly ardnikokr - olepandent! Tuns:
b) The Duble -Jozsa algoritlec

Consider $f:\{0,1\}^{\mu} \rightarrow\{0,1\}$ in ${ }^{\mu}$ prowite (i.e., a condition we huow is met by f) that
either $f(\underline{x})=c \quad \forall \underline{x} \quad$ " f constant")

$$
\text { or }|\{\underline{x} \mid f(\underline{x})=0\}|=|\{\underline{x} \mid f(\underline{x})=1\}| \text { ("f Salanced") }
$$

Wout to kuow: Is f constant or blanced?
How many quenis ueeded?
Use same idea: lupat $\sum|x\rangle$ and $\frac{101-(1\rangle}{\sqrt{2}}$

$$
U_{f}:|\underline{x}\rangle(y) \longmapsto|\underline{x}\rangle|y \oplus f(x)\rangle
$$

Before avalyity circuit i what is acton gheptefy 29

$$
\begin{aligned}
& H:|x\rangle \longmapsto \frac{1}{\sqrt{2}} \sum_{y=0,1}(-1)^{x \cdot y}|y\rangle \\
& H^{\infty u}:\left|x_{1}, \ldots, x_{n}\right\rangle \longmapsto \frac{1}{\sqrt{2^{4}}} \sum_{y}(-1)^{x y_{1}} \ldots \cdot(-1)^{x_{n} y_{n}}\left|y_{1}, \ldots, y_{n}\right\rangle \\
& \underline{\text { or: }} \quad|\underline{x}\rangle \longmapsto \frac{1}{\sqrt{2^{4}}} \sum(-1)^{\underline{x} \cdot y}|y\rangle
\end{aligned}
$$

where $x \cdot y:=x_{1} y_{1} \oplus x_{2} y_{2} \oplus \ldots \notin x_{n} y_{n}$
("scalar product" med 2).
is Nor a scalar product!'
Analysis of circuit:

$$
\begin{aligned}
\mid \underline{0})|1\rangle & \stackrel{H^{\Delta u} H}{\longmapsto}\left(\sum_{\underline{x}}|\underline{x}\rangle\right)(|0\rangle-(1\rangle) \\
& \stackrel{u_{f}}{\longrightarrow}\left(\sum_{\underline{x}}(-1)^{f(x)}|\underline{x}\rangle\right)(|0\rangle-|1\rangle) \\
& \stackrel{H^{\infty u} o \underline{I}}{\longrightarrow}(\sum_{y} \underbrace{\left.\sum_{\underline{x}}(-1)^{f(x)+x^{\prime} y}(y\rangle\right)(|0\rangle-(1))}_{=: a_{y}}
\end{aligned}
$$

$P_{y}:=\left|a_{y}\right|^{2}$ is the probability to measure $\left.y^{\text {chapter }}=\left(y_{1}, \cdots y_{y}^{\text {pg }}\right)^{30}\right)$.
f constant: $f(\underline{x})=c$

$$
a_{y}=(-1)^{c} \frac{\sum_{\underline{x}}(-1)^{\underline{x} \cdot y}}{\alpha \delta_{y, 0}}=(-1)^{c} \delta_{y, 0}
$$

f balanced:

$$
\text { For } y=0: a_{\underline{0}}=\sum_{\underline{x}}(-1)^{f(\underline{x})+\underline{x} \cdot \underline{0}}
$$

$$
\begin{array}{r}
=\sum_{x}(-1)^{f(x)}=0 \\
\hat{\jmath}=0 \\
f \text { balanced! }
\end{array}
$$

Thus:
Output $y=0 \longrightarrow f$ constant
Output $y \neq 0 \Longrightarrow f$ balanced
\Longrightarrow We can unacutgnously distinguish the 2 cases wt one query to the oracle for f!!

What is the speed-up us. Classical methods? IV, po 31

Quantum: 1 uss of f.
Classical: Worth case, we have to detersume $2^{n-1}+1$ values of f to tee kure!
\Rightarrow exponential vs. Constant!'
But: If we are ok to get sit aususer with very luik probability $p=1$ - error, then for k quenas to f,

$$
\text { perror } \approx 2 \cdot(\underbrace{\left(\frac{1}{2}\right)^{k}}
$$

prob. to get $k x$ sauce outcome for balanced f, if $k<2^{n}$.

$$
\text { in.: } k \sim \log (1 \text { furor }) \text {. }
$$

Raudrmited classical: Much smaller speed-cep us raudruited classical algorithm (even for exp, small error, $k \sim u$ oracle calls ar sufferer.)
c) Siven's algonthen
... will give us a true exponatial speedcep (also el. to raudouted class. algonthins) in terus of oracle quencs!

Oracle: $f:\{0,1\}^{u} \rightarrow\{0,1\}^{u}$ जTK prowise:

$$
\exists \underline{a} \neq \underline{0} \text { s.t. } f(\underline{x})=f(y) \text { exactly if } y=\underline{x} \oplus \underline{a} \text {. }
$$

("Lidden periodicity")

Task: Find a by querying f.
CCassical: Need to query $f\left(\underline{x}_{i}\right)$ unhl pair $\underline{x}_{i}, \underline{x}_{j}$ whth $f\left(x_{i}\right)=f\left(x_{j}\right)$ is fround.

Roughly: k quen'ss $x_{1}, \ldots, x_{k} \rightarrow \sim k^{2}$ pais, for cach pair: $\operatorname{prob}\left(f\left(x_{i}\right)=f\left(x_{j}\right)\right) \approx 2^{-u}$ \Longrightarrow Psuccess $\sim k^{2} 2^{-4}$
\Rightarrow uecd $k \sim 2^{\text {cu }}$ quenes!

Quantum algorithm (Sivan's algorithM.):
i) Stat with $\frac{1}{\sqrt{2^{n}}} \sum_{\underline{x}}|\underline{\underline{ }}\rangle=H^{\otimes n}|\underline{O}\rangle$
ii) Apply Mf: $|\underline{x}\rangle|f\rangle \longmapsto|\underline{x}\rangle|z \oplus f(\underline{x})\rangle$

$$
u_{f}:\left(\frac{1}{\sqrt{2^{4}}} \sum_{\underline{x}}|\underline{x}\rangle_{A}\right)|\underline{0}\rangle_{0} \longmapsto \frac{1}{\sqrt{2^{4}}} \sum_{\underline{x}}|\underline{x}\rangle_{A}|f(\underline{x})\rangle_{B}
$$

iii) Measure B. \Rightarrow Collapse onto randan $f\left(x_{0}\right)$ (and thus random x_{0}).
\Longrightarrow Register A collapses ruts

$$
\frac{1}{N} \sum_{\underline{x} \cdot f(\underline{x})=f\left(x_{0}\right)}|x\rangle=\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|\underline{x}_{0} \otimes \underline{a}\right\rangle\right)
$$

- How can we extract a? -
(Meas. in comp. bass \rightarrow college on rand, Lo iuseless.)
iv) Apply $H^{\otimes^{u}}$ again:

$$
H^{-n}\left(\frac{1}{\sqrt{2}}\left(\left|\underline{x}_{0}\right\rangle \oplus\left(\underline{x}_{0} \oplus a\right\rangle\right)\right)
$$

$$
\begin{gathered}
=\frac{1}{\sqrt{2^{n+1}}} \sum_{y}^{\sum_{y}\left[(-1)^{\underline{x}_{0} \cdot y}+(-1)^{\left.\left(\underline{x}_{0}+\underline{a}\right)^{\text {Chapter }}\right]^{\text {IV, pg } 34}}(y)^{34}\right.} \\
\therefore \underline{a} \cdot y=0 \Rightarrow 2 \cdot(-1)^{\underline{x}_{0} \cdot y} \\
\underline{a} \cdot y=1 \Rightarrow=0 \\
=\frac{1}{\sqrt{2^{n-1}}} \sum_{y: \underline{a} \cdot y=0}(-1)^{\underline{x}_{0} \cdot y}|y\rangle
\end{gathered}
$$

v) Measure in comp. Sass:
\Longrightarrow obtain random y s.th $\underline{a} \cdot y=0$.
$(u-1)$ lin. ndep. vectors y_{i} (over z_{2}) s.th, $a_{i} y_{i}=0$ allow to determine a (solve lu. eq, - eng, Gaussian clicunation).

Space of lan. dep. vectors of k vectors grows as 2^{k} \Rightarrow (1) chance to find raudoully a lox. nolep vector $\Rightarrow O(n)$ randrm y are enough
$\Rightarrow O(a)$ oracle quencs ar euough (onapairrtyep ${ }^{\text {pg }} 35$

Nbtes: - We don't have to measure B - we wever use the ontione! (But: Derivation easior thus way!)

- $H^{\text {oun }} \hat{A}$ (discrte) Founer transform over $z_{2}^{x u}$
\rightarrow period pudiy na Fonner traupen

