Lecture & Proseminar 250078/250042

“Quantum Information, Quantum Computation, and Quantum Algorithms” WS 2022/23

— Exercise Sheet #1 —

Problem 1: Pauli matrices.

Recall the Pauli matrices from the lecture, which in the computational basis {|0),|1)} are of the form

0 1 0 —i 1 0
X:al.zolz(l 0), Yzayzcm:(i OZ) Z:UZ:O'3:(0 _1>.

. Show that the Pauli matrices are all hermitian, unitary, square to the identity, and different Pauli

matrices anticommute.

Check the relation 0q05 = 3 i€apy0y +0apl (@, 8,7 = 1,2,3), with €44, the fully antisymmetric
tensor (1e €123 = €231 — €312 = 1, €321 = €213 — €132 = 717 and zero otherwise).

The trace tr[X] is defined as the sum of the diagonal elements of X, i.e., tr[X] := >, X;;. Determine
tr[I], tr[on], and tr[oqop].

Write each operator X, Y and Z using bra-ket notation with states from the computational basis.

Find the eigenvalues e; and eigenvectors |v;) of the Pauli matrices (expressed in the computational
basis), and write them in their diagonal form ej|vg){vg| + e1]v1){v1].

Determine the measurement operators {F;} corresponding to a measurement of the Y observ-
able. For a state |¢) = «|0) + 3|1), determine the probabilities for the different outcomes for a
measurement of the Y observable, and find the corresponding post-measurement states.

Write all tensor products of Pauli matrices 0, ®03 (including the identity og = I) as 4 x 4 matrices.

Problem 2: Matrix spaces as Hilbert spaces.

Let V; be the space of all complex d x d matrices, and Wy C Vg the space of all hermitian complex d x d
matrices (i.e. for M € Wy, M = MT).

1.

Show that V; forms a vector space over C, and W, forms a vector space over R, but not over C.
We will in the following always consider V; as a complex and Wy as a real vector space.

. Show that the Pauli matrices together with the identity, ¥ := {0;}?_,, form a basis for both V,

(over C) and W, (over R).

Show that
(A, B) = tr[ATB]

defines a scalar product (the “Hilbert-Schmidt scalar product”) both for V; and for W,. Here,
tr[X] is the trace, i.e., the sum of the diagonal elements.

Show that the Pauli matrices ¥ form an orthonormal basis (ONB) with respect to the suitably
rescaled Hilbert-Schmidt scalar product.

Use the fact that for any scalar product (¢, ) and a corresponding ONB ;, we can write
U= sz(wwﬁ) )
i
to express a general matrix in M € V, as

M:Zmim .

What is the form of the m;? What special property do the m; satisfy for M € W)?



6. Show that a hermitian orthonormal basis also exists for V; and W,. (Ideally, explicitly construct
such a basis.)

Problem 3: Unitary invariance and Bell states.

1. Show that the singlet state

) = % (101) 45 — |10)5)

is invariant under joint rotations by the same 2 x 2 unitary U, i.e.,
™) = UeU)w)

for any special unitary matrix U € SU(2), i.e. UTU = I, det(U) = 1. How does this formula change
when det(U) # 17

2. Show that this implies that if we measure the spin in any direction ¥, |0] = 1 — this measurement
is described by the measurement operator Sz = Z?Zl v;04, i.e. the projectors onto its eigenvectors
— we obtain perfectly random and opposite outcomes.
(Hint: An elegant way of doing so is to first show that any Sz has the same eigenvalues as the Z
matrix and therefore can be rotated to it, i.e., there exists a Uy s.th. UgS,UUg = Z. Note that there
are very elegant ways to show that the eigenvalues are +1 as well!)

3. Determine the states

Xonws), (IeX)v),
Yoher), (IoY)¥),
(ZeI)|v), I®Z)v).

In the light of point 1, why are they pairwise equal (up to global phases)?
Note: Together with |U™), these are known as the four Bell states.

4. Show that the maximally entangled state

d
) =3l

of two qu-d-its (i.e., systems with a Hilbert space C¢) is invariant under U ® U, where U is any
d X d unitary, that is, -
Q) =(UeU)Q) .



