Lecture & Proseminar 250078/250042
“Quantum Information, Quantum Computation, and Quantum Algorithms” WS 2022/23

— Exercise Sheet #3 —

Problem 8: Ambiguity of ensemble decomposition.

Complete the proof given in the lecture for the relation
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of different ensemble decompositions
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1. Show that for any ensemble decomposition p = " ¢;|¢;)(¢;| with ¢; > 0 Vi, it holds that |¢;) €
supp(p). Here, supp(p) is the support of p as a linear map, that is, the orthogonal complement of
its kernel ker(p). How does this justify the restriction g; # 0 made in the lecture?

2. Show that any ensemble decomposition must have at least as many terms as the eigenvalue decom-
position p = > Agler){ek|.

3. Show that the proof from the lecture extends to the case where the other decomposition has more
terms than the eigenvalue decomposition, to show
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What property does this imply for U = (u;x)?
4. Show that that the relation (%) can be inverted to give a formula for v/Ag|ex).

5. Now consider the case where neither of the two ensembles is an eigenvalue decomposition. Use the
fact that there are U = (u;) and V' = (v;) which connect them to the eigenvalue decomposition
to derive the general relation between two ensemble decompositions of a given state p. What is
the form of the transformation matrix W = (w;;) in terms of U and V? What properties do WTW
and WWT satisfy?

Problem 9: Measurements and filtering
Suppose that a bipartite system AB is initially in the state

[oa) = VA[00) + v/1 — A|11) .
The goal of Alice and Bob is to obtain a maximally entangled state
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with some probability by applying local operations only. Specifically, the plan is that Alice will apply a
POVM measurement to achieve that.
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1. Show that the operators My = (|0)(0] + \/7[1)(1])a ® Ip and M; = /T —~|1){1|a ® Ip, with
0 <~ <1, define a POVM measurement. (Note that these describe measurements carried out on
Alice’s side only!)

2. Determine the outcome probabilities and the post-measurement states for both measurement out-
comes.

3. Find a value = such that one of post-measurement states becomes a maximally entangled state.
Calculate the corresponding probability with which the initial state becomes a maximally entangled
state.



4. In the lecture, we have shown that any POVM measurement can be implemented by adding an
auxiliary system in state |0), applying a unitary, and measuring the auxiliary system in the com-
putational basis. Construct such a unitary for the POVM of Alice above.

Problem 10: SIC-POVMs

A symmetric informationally complete POVM (SIC-POVM) in d dimensions is a POVM {F;},—1 a2
consisting of d? operators F; = AII;, where the II; = |¢;)(¢;| are rank-1 projectors 117 = II;, such that

d2
i) > F; =1 (i.e. the F; form a POVM), and

=1

ii) tr(F;F;) = K for i # j, where K is independent of i and j (that is, the POVM is symmetric).

1. Use the two conditions (i) and (ii) to determine the values of A and K.

2. Now consider d = 2 (qubits). Consider four states |¢;) sitting at the four corners of a tetrahedron.
(Any tetrahedron is good, but it might be convenient to have one corner along the z axis and
another one in the z-z-plane.) Derive the form of |¢;), and show that they give rise to a SIC-
POVM (following the convention above).

3. Show that the operators {F;} of a SIC-POVM (with the conditions (i) and (ii) above, for arbitary
d) are linearly independent. (FEasier version: Show this only for the qubit SIC-POVM constructed
in point 2.)

4. Show that the linear independence of the {F;} implies that there exist K; such that we can write

d2
p= Z Gitr[Kip]
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— that is, the POVM is informationally complete, i.e., we can reconstruct any state p from the
outcome probabilities of the POVM. What is the form of the K;?



