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Problem 8: Ambiguity of ensemble decomposition.

Complete the proof given in the lecture for the relation

√
pi|ψi⟩ =

∑
uij

√
qj |ϕj⟩

of different ensemble decompositions

ρ =
∑

pi|ψi⟩⟨ψi| =
∑

qj |ϕj⟩⟨ϕj | .

1. Show that for any ensemble decomposition ρ =
∑
qi|ϕi⟩⟨ϕi| with qi > 0 ∀ i, it holds that |ϕi⟩ ∈

supp(ρ). Here, supp(ρ) is the support of ρ as a linear map, that is, the orthogonal complement of
its kernel ker(ρ). How does this justify the restriction qi ̸= 0 made in the lecture?

2. Show that any ensemble decomposition must have at least as many terms as the eigenvalue decom-
position ρ =

∑
λk|ek⟩⟨ek|.

3. Show that the proof from the lecture extends to the case where the other decomposition has more
terms than the eigenvalue decomposition, to show

√
pi|ψi⟩ =

∑
uik

√
λk|ek⟩ . (∗)

What property does this imply for U = (uik)?

4. Show that that the relation (∗) can be inverted to give a formula for
√
λk|ek⟩.

5. Now consider the case where neither of the two ensembles is an eigenvalue decomposition. Use the
fact that there are U = (uik) and V = (vjk) which connect them to the eigenvalue decomposition
to derive the general relation between two ensemble decompositions of a given state ρ. What is
the form of the transformation matrix W = (wij) in terms of U and V ? What properties do W †W
and WW † satisfy?

Problem 9: Measurements and filtering

Suppose that a bipartite system AB is initially in the state

|ϕλ⟩ =
√
λ|00⟩+

√
1− λ|11⟩ .

The goal of Alice and Bob is to obtain a maximally entangled state

|Ω⟩ = 1√
2
|00⟩+ 1√

2
|11⟩

with some probability by applying local operations only. Specifically, the plan is that Alice will apply a
POVM measurement to achieve that.

1. Show that the operators M0 = (|0⟩⟨0| + √
γ|1⟩⟨1|)A ⊗ IB and M1 =

√
1− γ|1⟩⟨1|A ⊗ IB , with

0 ≤ γ ≤ 1, define a POVM measurement. (Note that these describe measurements carried out on
Alice’s side only!)

2. Determine the outcome probabilities and the post-measurement states for both measurement out-
comes.

3. Find a value γ such that one of post-measurement states becomes a maximally entangled state.
Calculate the corresponding probability with which the initial state becomes a maximally entangled
state.



4. In the lecture, we have shown that any POVM measurement can be implemented by adding an
auxiliary system in state |0⟩, applying a unitary, and measuring the auxiliary system in the com-
putational basis. Construct such a unitary for the POVM of Alice above.

Problem 10: SIC-POVMs

A symmetric informationally complete POVM (SIC-POVM) in d dimensions is a POVM {Fi}i=1,...,d2

consisting of d2 operators Fi = λΠi, where the Πi = |ϕi⟩⟨ϕi| are rank-1 projectors Π2
i = Πi, such that

i)
d2∑
i=1

Fi = I (i.e. the Fi form a POVM), and

ii) tr(FiFj) = K for i ̸= j, where K is independent of i and j (that is, the POVM is symmetric).

1. Use the two conditions (i) and (ii) to determine the values of λ and K.

2. Now consider d = 2 (qubits). Consider four states |ϕi⟩ sitting at the four corners of a tetrahedron.
(Any tetrahedron is good, but it might be convenient to have one corner along the z axis and
another one in the x-z-plane.) Derive the form of |ϕi⟩, and show that they give rise to a SIC-
POVM (following the convention above).

3. Show that the operators {Fi} of a SIC-POVM (with the conditions (i) and (ii) above, for arbitary
d) are linearly independent. (Easier version: Show this only for the qubit SIC-POVM constructed
in point 2.)

4. Show that the linear independence of the {Fi} implies that there exist Ki such that we can write

ρ =

d2∑
i=1

Gi tr[Kiρ]

– that is, the POVM is informationally complete, i.e., we can reconstruct any state ρ from the
outcome probabilities of the POVM. What is the form of the Ki?


