
Lecture & Proseminar 250078/250042

“Quantum Information, Quantum Computation, and Quantum Algorithms” WS 2022/23

— Exercise Sheet #10 —

Problem 26: Grover’s algorithm with multiple marked elements.

Consider the Grover search problem of finding x0 such that f(x0) = 1 for a given function f : {0, N−1} →
{0, 1}. In the lecture, we derived Grover’s algorithm which finds x0 given that it is unique. In this
problem, we will derive a generalization of Grover’s algorithm which allows to tackle the search problem
in the case where there are K > 1 solutions x to the equation f(x) = 1. The goal is to find one x with
f(x) = 1 with high probability.

The oracle is constructed the same way as before, i.e., it acts as

Of = I− 2
∑

x:f(x)=1

|x⟩⟨x| .

The algorithm proceeds the same way as before, namely, by starting in the state |ω⟩ (given in the lecture),
repeatedly applying Grover iterations G = −OωOf (with Oω as in the lecture), and finally measuring in
the computational basis.

1. Show that Of can be obtained from Uf : |x⟩|y⟩ 7→ |x⟩|y ⊕ f(x)⟩.

2. Show that the Grover iteration G leaves the space S = span(|ω⟩, |x0⟩) invariant, where |ω⟩ is as in
the lecture, and

|x0⟩ ∝
∑

x:f(x)=1

|x⟩ .

3. What is the action of G on a state in S?

4. For a given number of solutions K, how many times do we have to apply G to get a good overlap
with |x0⟩? What result will we get when measuring in the computational basis?

5. Compare this to the scaling of the classical algorithm (i.e. trying random x until a solution is
found).

Problem 27: Quantum counting.

Consider the same setting and notation as in Problem 26. Here, we will use a combination of Grover
iterations G and phase estimation (Problem 25 on Sheet #9) to estimate (“count”) the number K of
solutions up to some error δK. Our goal will be to understand how the accuracy δK scales with the
number Q of queries to f (or Uf).

1. First, determine the scaling δK for classical counting: Since we assume that f is a black-box
function, the best we can classically do is to sample Q random values xi, i = 1, . . . , Q, compute
f(xi), and use this to estimate K. What is the error δK as a function of Q (and K, N)?

2. We will now construct a quantum algorithm for estimating K. First, determine the eigenvalues
eiθk , k = 1, 2, of G restricted to the subspace S. (This is most easily done by observing that G is
a rotation by an angle 2ϕ with sinϕ =

√
K/N – cf. Problem 26 – in this two-dimensional space.)

3. Now assume we are given one of the corresponding eigenvectors |θk⟩. We can now use the phase
estimation algorithm to determine the phase θk/2π corresponding this eigenvector up to some
number d of digits. What is the number of queries to Of required for that? What is the resulting
accuracy of θk? (You can assume that the phase estimation is exact, i.e. neglect the additional
error arising from the fact that θk/2π does not stop after d digits.)

4. From θk, we can estimate K. What is the error δK as a function of Q (and K, N)?

5. Show that this algorithm can be adapted to work also if we cannot prepare the state |θk⟩, but
rather start in some other easy-to-prepare state in the subspace S.

Problem 28: Fast Fourier transform.

In this problem, we will use the expression

F̂ : |j1, . . . , jn⟩ 7→ 1
2n/2

(
|0⟩+ e2πi 0.jn |1⟩

)
⊗

(
|0⟩+ e2πi 0.jn−1jn |1⟩

)
⊗ · · · ⊗

(
|0⟩+ e2πi 0.j1j2...jn |1⟩

)
(1)

for the quantum Fourier transform F̂ derived in the lecture to construct an algorithm for the classical
Fourier transformation on vectors of length N = 2n which scales as O(2nn) = O(N logN) – the fast
Fourier transformation (FFT) – as opposed to the naive O(N2) scaling.

Recall that the classical Fourier transformation F : CN → CN acts as F : (x0, . . . , xN−1) 7→ (y0, . . . , yN−1),
where

yk =
1√
N

N−1∑
j=0

e2πi jk/Nxj . (2)

1. Show that performing the classical Fourier transformation by directly carrying out the sum in
Eq. (2) requires O(N2) elementary operations.

2. As shown in the lecture, F̂ maps
∑

j xj |j⟩ to
∑

k yk|k⟩. Use this, combined with Eq. (1), to derive
an explicit expression for yk in terms of the xj in the spirit of Eq. (1).

3. The resulting expression for yk as a function of the xj should contain a sum over j1, . . . , jn. Show
that this sum can be carried out bit by bit. (What should happen is that in each step, the “input”
xj is transformed to a vector where one ji disappears due to the sum, and instead a dependency
on one of the kℓ appears.)

4. What is the number of elementary operations required for each of these transformations? What is
the total computational cost of the algorithm?

