IV Quanturn Compritigy and Quantucn Magororticu go 1

1. The circent madel
a) Classical computation

Use of clasical computes (abstractly):
Solve protlems \equiv compnte functias

$$
\begin{aligned}
& f:\{0,1\}^{\mu} \\
& \longrightarrow\{0,1\}^{m} \\
& \underline{x}=\left(x_{1}, \ldots, x_{2}\right) \longmapsto f\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

The functron of depueds an the protlen we want to solve, x cucodes the raftance of the prottimen.
E.g.i Rroblem $=$ multricicatio: $(a, s) \mapsto a \cdot b$

$$
\begin{aligned}
\underline{x}= & \left(\frac{x^{1}}{\hat{1}}, \frac{x^{2}}{y}\right) \longmapsto f(\underline{x})=\underline{x}^{1} \\
& \text { encoded in brivary }
\end{aligned}
$$

Problem = Factoritaha:
x: integes $f(\underline{x})$: list of porme factors (suitably cucoded)

More precitely:
Each protlem is encoded by a focmly of frucpions $f \equiv f^{(c)}:\{0,1\}^{\mu} \rightarrow\{0,1\}^{\mu_{n}}$, with $m=\operatorname{poly}(u), u \in \mathbb{N}$ - oue for cach ryput site.
i.e.: an grous at moot polynomially with μ (technically, $\exists \alpha>0$ s.th. $\frac{e^{\alpha}}{u^{\alpha}} \rightarrow 0$).
(Techinical pornt: It wenst ts poststle to "coustrnct the frenctins $f^{(n)}$ systematically and ffiraty", see (ater!)

Which nygreditats do we veed to compute a fuesal fuechan f?
(i)

$$
\begin{aligned}
& f:\{0,1\}^{\mu} \longrightarrow\{0,1\}^{m} \\
& f(x)=\left(f_{1}(\underline{x}), f_{2}(\underline{x}), \ldots, f_{m}(\underline{x})\right)
\end{aligned}
$$

where $f_{k}(\underline{x}):\{0,1\}^{\mu} \rightarrow\{0,1\}$
\Rightarrow can restrict audyois to boolean functions

$$
f:\{0,1\}^{m} \longrightarrow\{0,1\} .
$$

(ii) Define $L=\{y \mid f(y)=1\}=\left\{y^{\prime}, y^{2}, \ldots, y^{e}\right\}$.

Deprue $\underline{\delta}_{y}(\underline{x})=\left\{\begin{array}{ll}0 ; & \underline{x} \neq y \\ 1 ; & \underline{x}=y\end{array}\right.$ Sitaste equal!!

Then, $f(\underline{x})=\underline{\delta}_{y^{1}}(\underline{x}) v \underline{\delta}_{y^{2}}(\underline{x}) v \ldots v \underline{\delta}_{y^{e}}(\underline{x})$
"v": Logical "or": 0 0 " $=0$

$$
\begin{array}{ll}
(0 \equiv \text { "gosse" } & 0 \vee 1=1 \\
1 \equiv \text { true") } & 1 \vee 0=1 \\
& 1 \vee 1=1
\end{array}
$$

" v "is associative:-

$$
a v b v c:=(a v b) v c=a v(b v c)
$$

and commutative: a vb $=6 \mathrm{va}$.
(iii) Define bithrise δ :

$$
\delta_{y}(x)=\left\{\begin{array}{cc}
0: & y \neq x \\
1: & y=x
\end{array}\right.
$$

Then,

$$
\begin{aligned}
& \underline{\delta}_{y}(\underline{x})=\delta_{y_{1}}\left(x_{1}\right) \wedge \delta_{y_{2}}\left(x_{2}\right) \wedge \ldots \wedge \delta_{y_{n}}\left(x_{2}\right) \\
& " \wedge ": \text { logical "and": } 0 \wedge 0=0 \\
&(0 \equiv \text { "Selse", } 0 \wedge 1=0 \\
& 1 \equiv \text { true" } 1 \wedge 0=0 \\
& 1 \wedge 1=1
\end{aligned}
$$

" A "is associative \& commutative;
" A " \& "v" are distributive:

$$
(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c) .
$$

(ln essence, same rales as $1 \rightarrow \cdots, v \rightarrow+$)
(iv)

$$
\delta_{y}(x)= \begin{cases}x & \text { if } y=1 \\ 7 x & \text { if } y=0\end{cases}
$$

logical "not".
TO Chapter IV, pg 5

$$
71=0
$$

Condone (i) -(ir):
Any $f(\underline{X})$ can te constructed from 4 rufredints: "and", "or", "not" gates, plus a "Copy" gate $x \longmapsto(x, x)$.

This is called a universal gate set.
(Note: In fact, already either 7 (xi) "wand", or 7 (xvy) "ur" are universal, together with "copy",

This gives nite to the
Circuit model of computata:
The fruchous $f \equiv f^{(a)}$ which we can compute are constructed by concatenating gates from a
simple universal gate set (e.g. and tray $\varepsilon_{0} x_{0} \neq / c^{20} / 5^{6}$) sequentially in the (ide., there are us loops allowed). Tues gites nite to a circuit for f^{4}.

The difficulty ("computational hardens") of a prothem in the circent mod is measured ty the runcuter $K(n)$ of elementary gates uneded to compute $f(u) \quad(\hat{=} \#$ of time steps).

We offer distinguish two qualitatively deferent regimes:
$K(n) \sim$ poly $(c):$ efficiently solvable (class) easy protlene

$$
K(u)>p \circ l y(n)-e \cdot g . \quad K(e) \sim \exp \left(u^{\alpha}\right):
$$

hard protlen
(Technical note: We mutt repose that the circuits
used for flu) are ucuiform, i.e. They creaser itepg 7 jeucrated efficicutly - e.g. by a simple u-independent computer program. More formally, $f(a)$ derould te jeucated of a Tuning enachine.)

Example:

$$
\begin{aligned}
& f=\text { Multipliats }: \\
& \text { Efricut: } \\
& \frac{\left.\frac{e}{10110 \times 1} \frac{e^{\prime}}{10110} \begin{array}{r}
10110 \\
10110
\end{array}\right\} e^{\prime}}{\frac{110100010}{1,1} 1} \begin{array}{l}
e \times e^{\prime} \text { adclitions: }
\end{array} \\
& O\left(e e^{\prime}\right) \sim O\left(m^{2}\right) \text { geter. }
\end{aligned}
$$

f: Factorizatia.
E.g.: firve of Erathasteves:
$\{0,1\}^{4} \rightarrow$ try a ount $\sqrt{2^{4}} \sim 2^{5 / 2}$ cascs
\Rightarrow hard/exp. scalizy.
No efficient alforithen kurrs!

Is a typical problem cary or lad?

$$
f:\{0,1\}^{4} \longrightarrow\{0,1\}
$$

But; there are only $c^{\text {pregla }}$ circuit of length poly (u)!
\# of elem. jots
\Longrightarrow As u gets loge, snort f canned te computed efficiently (ix. with poly (n) operations).

Does the computational power depend on the jakeses? Wo! By definite, any universal gate set can simulate any other gate tet with constant overhead!

Remalk. Ruere is a wide rauge of alkninite iviogolds of couputatis, some meore and seres less ralistia:

- CPu
- parallel computers
" "Tuning wecluives" - tape + read/crite head
- cellular antrouata
-... and lot of cuohc meodels...

But; AUl kuros "reasonatle" cuodels of compentolsa can smeulate each other whth pobylu) orerkeed \Longrightarrow same computational power (on the suse adove).

Cleurch-Tusiy-Renss All rasonathe cuodels of compritatio hove the same computatianal powis.
b) Reverstle circuits

For quantion compuntigy - coming soon - we wall use the circuit model.

Gates isl te solaced by uaitancs.
But: Ucitanis are reversible, while classical gates (aced or) ac irreversitle.

Could such a model even do classical computahas-- ire., can we find a reviversal gate set enth only reversible fates?

YES! - Classical computation can te meade reverstle:

Toffoligate:

\rightarrow Toffolijate is revrsisle
(if is is oun inverse, siluce $(z \oplus x y) \oplus x y=z$)
\rightarrow Toffoli jote can simulate and/or/urt/copy, by using aucullas mstate "0" or "1":
E.g.:

"Nand"
\Longrightarrow gives reverstle umiversal gate tet
(but requirs aucllas)

This can te used to coneponte any $f(\underline{E})$ reversitly, using aucillas, with essentidy ther same \# of gates:

$$
f^{R}(\underline{x}, y) \longmapsto(\underline{x}, f(\underline{x}) \oplus \underset{\sim}{\oplus} y)
$$

bitwite Xor.
(Idea: Replace any jate by a rversitle Chapter IV, pg 12 aucillas. Then xore the result suto the y register, Fihally, run the crrcuit backarards to "uncompente" the aucillas. Ancilla coment can to ophrecited for $\rightarrow o f$. Proskill's uoter.)
\Rightarrow Everyklizy can te computed reveritly.
BuT: 3-bit jate is requared!
$(\rightarrow$ Honework)
c) Quanturn Grouts

Nott comenor uodel for quantum computatio.: The cercuit model:

- Quantimen system consistry of quatib. tensor product structure.
- Universal gate set $S=\left\{U_{1}, \ldots, U_{k}\right\}$ of few-qubit jates (typ. 1- and 2-qutit zoks) uj. (Sec late for definition of "ucuvertal"!)
- Coustruct arcunt by sequentially applyry
elements of S to a subset of quass:.

$$
\left\lvert\, \begin{aligned}
\left|\psi_{m t}\right\rangle= & V_{T} V_{T-1} \cdot \ldots \cdot V_{1}\left|\psi_{m}\right\rangle \\
& u_{j} \text { acting on subset of quids }
\end{aligned}\right.
$$

- Iuctial state:

$$
\begin{aligned}
\left|\psi_{n}\right\rangle & =\left|x_{1}\right\rangle\left|x_{2}\right\rangle \ldots\left|x_{u}\right\rangle \frac{e}{|0\rangle(0) \ldots|0\rangle} \\
& =\left|\frac{x}{\lambda}\right\rangle\left|\frac{0}{}\right\rangle
\end{aligned}
$$

encodes mistance of problem

- alkmatively, we cam also have

$$
\left.\left|\psi_{m}\right\rangle=|\underline{0}\rangle \equiv \mid 0\right)^{\Omega}
$$

and encode the instance in the circuit.

- At the end of the compentobo, meotuc the final state Your $>$ in the computation basis $\{|0\rangle, 11\rangle\}$
\longrightarrow outcome $|y\rangle$ u/ probe $p(y)=\mid\langle y|$ pout $\left.\right|^{2}$
dotes; - Thes is a probabilishe schcume - itapterfivito ${ }^{14}$ y $5 /$ some prob. $p(y)$. In princigle, we shatd compare to class. probabinsic sheunes - see Coter.
- We need not ruecsur all qutitsnot cucasuring $=$ hacing $=$ meaturiny and ignorig outcome
- Povirs don't help- wr can simulate them $(\rightarrow$ Naicuath). Simbarly, $C P$ maps don't help wre can sinulate them (Sivesporing t trace acucilla).
- Reasurments ot carlor times don'f help: Can always post pone them (they cormmente). If gote at later time wonld depend on neceas. ontcome: This dependence can be realited puside the circuit w/ "controlled gater" (f. Lato + konucworle)

What gate sit Bhould we cleoos??

- Reere is a contiuuun of gotes - sithatio much more sik.
- Defferent uotrons of ucuiversality exist:
- exact universality: Auy u-qubst gate cam te realized exactly.
\rightarrow Requites a contiunuons facenty of umiveral gates (comutiy argument!)
- approximate uceiversality: Auy u-qutit gate can be approcimated well by gate set (Fimie gate set reffirint;

Solovay-Kitacu-Reorn: ε-apprakimatia (in $\|\cdot\|_{\infty}-\mathrm{N}_{\infty}$) of 1 -quatit gate requites $O($ poly $(\log (1 / \varepsilon)))$ gates from a suitatle frunte set.)

- 1- and - 2 quatr jatte aloue are renkersal! (y.classical: 3-bit gates ueeded!!)
 two-qubt gate will do!
- More univ. rets: Cato!
d) Universal gate set

Our exact universal gate set:
(i) 1-quat rotators about $x \& z$ axis:

$$
\begin{array}{ll}
R_{x}(\phi)=e^{-i x \phi / 2} ; & x=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), x^{2}=I \\
R_{z}(\phi)=e^{-i z \phi / 2} ; & z-\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), z^{2}=I .
\end{array}
$$

For $\Pi^{2}=I: e^{-i \pi \phi / 2}=\cos \phi / 2 I-i \sin \phi / 2 \pi$

$$
\begin{aligned}
\Longrightarrow R_{x}(\phi) & =\left(\begin{array}{cc}
\cos \phi / 2 & -i \sin \phi / 2 \\
-i \sin \phi / 2 & \cos \phi / 2
\end{array}\right) \\
R_{z}(\phi) & =\left(\begin{array}{cc}
e^{-i \phi / 2} & 0 \\
0 & e^{i \phi / 2}
\end{array}\right)
\end{aligned}
$$

Can be undestrod as rotations on Bloch gipatiere IV, pg 17 ofout x / z ous by augle ϕ (i.e., rotations in $\operatorname{So}(3) \cong \sec (2)\left(z_{2}\right)$.
Tgethe, R_{x} and R_{z} jeucrate all rotations in $80(3)$ (Euter angles!), and thens ine su(2) up to a phode.

Lecuma: For any $u \in \operatorname{su}(2)$,

$$
u=e^{i \phi} R_{x}(\alpha) R_{z}(\beta) R_{x}(\gamma) \text { for same } \phi, \alpha, A, x .
$$

Proof: Hancwork.
(iï) one two qubit jate (almost all wabl do!). Typizally, we use "coutrolled-Nor" = "Cavor":

CNOT =

$$
x-x=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

coor flips y iff $x=2$: classical gate!

Can prove: This gote set can create any chapter ivigúgy ${ }^{18}$ U esactly (Sut of conse not efpreathy -4 has $\sim\left(2^{n}\right)^{2}=4^{n}$ real parameters).

Overvices of a numbs of nuportant jates Bidentios (Rroof/cheok: Honecwoth!)
Hadawerd gatc: $H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$

$$
\begin{aligned}
& H=H^{+} ; H^{2}=I . \\
& H R_{x}(\phi) H=R_{z}(\phi) \\
& H R_{z}(\phi) H=R_{x}(\phi)
\end{aligned}
$$

Grephical "crcult" uotaha:

$$
-H-x-H=-z
$$

hemportant:
Natris wotation: tive goes syet to left

Circuit notabo: true goes left to chapter e Iv: pg 19
I.e.: $\left|\psi_{m}\right\rangle \longmapsto\left|\psi_{\text {out }}\right\rangle=\underset{\text { time }}{u_{3} u_{2} \mu_{1}\left|\psi_{\text {m }}\right\rangle}$
time

$$
\left.\left|\psi_{i n}\right\rangle-u_{1}-u_{2}-u_{3}-\psi_{\text {out }}\right\rangle
$$

Geverally: For a umitary $u \in \operatorname{su}(2)$,

Can te muplemented w/ 2 CNOT (\rightarrow HC!!)
thso for $u \in \operatorname{su}\left(2^{n}\right)$:

Gircult Lor Toffol:

with $V=\frac{1-i}{2}(I+i x)$
u to controlled- $-U$:
Given circent for U - in partice lar, a classical reveritle circent - we can also tuld controled-ll:

Just rplace every gate by its controlledt-vieision, in particular Toffoli by

Toffoli w/ 3 controlss can te suitt from normal Toffol' (ennce class. nuiverral!)

Fizally, some futher approx. ucuiversal jate sets:

- CNOT + 2 racedon 1-qutit jates

$$
\text { - } \operatorname{covi}+H+T=R_{z}(\pi / 4) \quad(" \pi / 8 \text { gate") }
$$

2. Oracle - based algonthuns
a) The Durtirl algonthen

Consider $f:\{0,1\} \longrightarrow\{0,1\}$
tet f be "very hard to compute" - erg. .aug circuit
Want to keos: Is $f(0)=f(1)$?
(cog.: will a specific chess more affect result?)
Hos often do we have to mun the circuit for f

$$
(=\text { "evaluate } f \text { ")? - We think of } f \text { as a "Slack box" }
$$

or "orate": Hor cuany oracle quench are uce-bed?
Classically, we clearly need 2 quines:
compute $f(0)$ and $f(1)$.
Can quantum physics help?

Consider reversible implecuentatia of f :

$$
f^{R}:(x, y) \longmapsto(x, y \oplus f(x))
$$

$$
|x\rangle|y\rangle \longmapsto|x\rangle|y \oplus f(x)\rangle
$$

Try to use supespositions as reput?
Fint altceupt:

$$
\left.\left.\frac{|0\rangle+(1)}{\sqrt{2}}(0\rangle=\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|0\rangle) \stackrel{u_{f}}{\longmapsto} \frac{1}{\sqrt{2}}(\mid 0)|f(0)\rangle+|1| f(1)\right\rangle\right)
$$

\rightarrow Have eveluated for boln outponts!
But leor can we extract the clevant riformatian (i.e. do a measurcmant)?

- Reas. in comp. doisi collopre supupos. To one care!
- Geverally: $f(0) \neq f(1):$ netputs $\left.\frac{1}{\sqrt{2}}(\mid 0)|0\rangle+(1\rangle|1\rangle\right)$,

$$
\left.\left.\frac{1}{\sqrt{2}}(10) / 10+\mid 1 / 0\right)\right)
$$

$$
\begin{aligned}
& f(0)=f(1): \text { outpats } \quad|+\rangle|0\rangle, \\
&\mid t) \mid(\rangle),
\end{aligned}
$$

\Longrightarrow uot orthoganal, i.e. ust (determ.) distiuguishatle!

Second atterept:

$$
\begin{aligned}
&|x\rangle\left(\frac{|0\rangle-11\rangle}{\sqrt{2}}\right) \stackrel{u_{f}}{\longmapsto}|x\rangle\binom{(f(x)\rangle-|1 \oplus f(x)\rangle}{\sqrt{2}}= \\
&=\left\{\begin{array}{l}
f(x)=0:|x\rangle \frac{|0\rangle-11\rangle}{\sqrt{2}} \\
f(x)=1:|x\rangle \frac{|1\rangle-(0)}{\sqrt{2}}
\end{array}\right\} \\
&=|x\rangle\left[(-1)^{f(x) \frac{|0\rangle-|1\rangle}{\sqrt{2}}}\right]
\end{aligned}
$$

$$
=(-1)^{f(x)}(x)\left(\frac{(0)-11)}{\sqrt{2}}\right)^{\text {chppter IV, pg } 25}
$$

Not cescfur of itself: $f(x)$ only ceecoded in glotal phate for cad classical ruput $1 x$?.

Con tine abcupts:

$$
\begin{aligned}
& \frac{|0\rangle+|1\rangle}{\sqrt{2}}=\frac{|0\rangle-|1\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(|0\rangle \frac{\mid 0)-1\rangle}{\sqrt{2}}+(1\rangle \frac{|0\rangle-\mid(\rangle}{\sqrt{2}}\right) \\
&=\frac{1}{\sqrt{2}}\left(\left.(-1)^{f(0)}(0) \frac{\mid 0)-(1)}{\sqrt{2}}+(-1)^{f(1)} \right\rvert\,(1) \frac{(0)-(1\rangle}{\sqrt{2}}\right) \\
&=\frac{(-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle}{\sqrt{2}}
\end{aligned}
$$

Observatious:
\rightarrow No entayflement created (!)
\rightarrow 2nd qubt - Hu me where Ufyaptettontis ${ }^{26}$ the funchie value - is menchanged (!!)
\rightarrow Ios quint pets a plase $(-1)^{f(x)}$
("phan kid-bad kohcijue")
Shate of 108 quetit:

$$
\begin{array}{ll}
f(0)=f(1) \longleftrightarrow \frac{10)+11)}{\sqrt{2}} & \begin{array}{l}
\text { (up to } \\
\text { irrelevaut }
\end{array} \\
f(0) \neq f(1) \longleftrightarrow \frac{(0)-11)}{\sqrt{2}} & \text { global phat) }
\end{array}
$$

OMhgonal states! \Rightarrow meearuccuent of lot quotit in babs $\{|t\rangle|-\rangle\}$ (or apply - $H-1$ - \& measure in $\{|0\rangle,|1\rangle\}$) allous to decide of $f(0) \stackrel{?}{=} f(1)$! Deutreh algorithe:

out put $i^{\prime}=0: \Longrightarrow f(0)=f($ thapter IV, pg 27

$$
i=1: \quad \Rightarrow \quad f(0) \neq f(1)
$$

One application of Uf heos been refirment!'
\Rightarrow Speed-up coupared to clsss. algorith (1 us. 2 orade queres).
luteresbing to note: 2ud guetst wever needs to be meatured - and it contains wo mformoho.

Two mack moights:

- Usc mput $\sum|x\rangle$ to evaluate f on all imputs simultacuernsly.
- This parallelisn alone is not eeeough - uced a sualt wrey to read out the relevant onformotio.

However, a constant speed-up is not that mpressive in patticular, it is luyhly ardnikokr - olepandent! Tuns:
b) The Duble -Jozsa algoritlec

Consider $f:\{0,1\}^{\mu} \rightarrow\{0,1\}$ in ${ }^{\mu}$ prowite (i.e., a condition we huow is met by f) that
either $f(\underline{x})=c \quad \forall \underline{x} \quad$ " f constant")

$$
\text { or }|\{\underline{x} \mid f(\underline{x})=0\}|=|\{\underline{x} \mid f(\underline{x})=1\}| \text { ("f Salanced") }
$$

Wout to kuow: Is f constant or blanced?
How many quenis ueeded?
Use same idea: lupat $\sum|x\rangle$ and $\frac{101-(1\rangle}{\sqrt{2}}$

$$
U_{f}:|\underline{x}\rangle(y) \longmapsto|\underline{x}\rangle|y \oplus f(x)\rangle
$$

Before avalyity circuit i what is acton gheptefy 29

$$
\begin{aligned}
& H:|x\rangle \longmapsto \frac{1}{\sqrt{2}} \sum_{y=0,1}(-1)^{x \cdot y}|y\rangle \\
& H^{\infty u}:\left|x_{1}, \ldots, x_{n}\right\rangle \longmapsto \frac{1}{\sqrt{2^{4}}} \sum_{y}(-1)^{x y_{1}} \ldots \cdot(-1)^{x_{n} y_{n}}\left|y_{1}, \ldots, y_{n}\right\rangle \\
& \underline{\text { or: }} \quad|\underline{x}\rangle \longmapsto \frac{1}{\sqrt{2^{4}}} \sum(-1)^{\underline{x} \cdot y}|y\rangle
\end{aligned}
$$

where $x \cdot y:=x_{1} y_{1} \oplus x_{2} y_{2} \oplus \ldots \notin x_{n} y_{n}$
("scalar product" med 2).
is Nor a scalar product!'
Analysis of circuit:

$$
\begin{aligned}
\mid \underline{0})|1\rangle & \stackrel{H^{\Delta u} H}{\longmapsto}\left(\sum_{\underline{x}}|\underline{x}\rangle\right)(|0\rangle-(1\rangle) \\
& \stackrel{u_{f}}{\longrightarrow}\left(\sum_{\underline{x}}(-1)^{f(x)}|\underline{x}\rangle\right)(|0\rangle-|1\rangle) \\
& \stackrel{H^{\infty u} o \underline{I}}{\longrightarrow}(\sum_{y} \underbrace{\left.\sum_{\underline{x}}(-1)^{f(x)+x^{\prime} y}(y\rangle\right)(|0\rangle-(1))}_{=: a_{y}}
\end{aligned}
$$

$P_{y}:=\left|a_{y}\right|^{2}$ is the probability to measure $\left.y^{\text {chapter }}=\left(y_{1}, \cdots y_{y}^{\text {pg }}\right)^{30}\right)$.
f constant: $f(\underline{x})=c$

$$
a_{y}=(-1)^{c} \frac{\sum_{\underline{x}}(-1)^{\underline{x} \cdot y}}{\alpha \delta_{y, 0}}=(-1)^{c} \delta_{y, 0}
$$

f balanced:

$$
\text { For } y=0: a_{\underline{0}}=\sum_{\underline{x}}(-1)^{f(\underline{x})+\underline{x} \cdot \underline{0}}
$$

$$
\begin{array}{r}
=\sum_{x}(-1)^{f(x)}=0 \\
\hat{\jmath}=0 \\
f \text { balanced! }
\end{array}
$$

Thus:
Output $y=0 \longrightarrow f$ constant
Output $y \neq 0 \Longrightarrow f$ balanced
\Longrightarrow We can unacutgnously distinguish the 2 cases wt one query to the oracle for f!!

What is the speed-up us. Classical methods? IV, po 31

Quantum: 1 uss of f.
Classical: Worth case, we have to detersume $2^{n-1}+1$ values of f to tee kure!
\Rightarrow exponential vs. Constant!'
But: If we are ok to get sit aususer with very luik probability $p=1$ - error, then for k quenas to f,

$$
\text { perror } \approx 2 \cdot(\underbrace{\left(\frac{1}{2}\right)^{k}}
$$

prob. to get $k x$ sauce outcome for balanced f, if $k<2^{n}$.

$$
\text { in.: } k \sim \log (1 \text { furor }) \text {. }
$$

Raudrmited classical: Much smaller speed-cep us raudruited classical algorithm (even for exp, small error, $k \sim u$ oracle calls ar sufferer.)
c) Siven's algonthen
... will give us a true exponatial speedcep (also el. to raudouted class. algonthins) in terus of oracle quencs!

Oracle: $f:\{0,1\}^{u} \rightarrow\{0,1\}^{u}$ जTK prowise:

$$
\exists \underline{a} \neq \underline{0} \text { s.t. } f(\underline{x})=f(y) \text { exactly if } y=\underline{x} \oplus \underline{a} \text {. }
$$

("Lidden periodicity")

Task: Find a by querying f.
CCassical: Need to query $f\left(\underline{x}_{i}\right)$ unhl pair $\underline{x}_{i}, \underline{x}_{j}$ whth $f\left(x_{i}\right)=f\left(x_{j}\right)$ is fround.

Roughly: k quen'ss $x_{1}, \ldots, x_{k} \rightarrow \sim k^{2}$ pais, for cach pair: $\operatorname{prob}\left(f\left(x_{i}\right)=f\left(x_{j}\right)\right) \approx 2^{-u}$ \Longrightarrow Psuccess $\sim k^{2} 2^{-4}$
\Rightarrow uecd $k \sim 2^{\text {cu }}$ quenes!

Quantum algorithm (Sivan's algorithM.):
i) Stat with $\frac{1}{\sqrt{2^{n}}} \sum_{\underline{x}}|\underline{\underline{ }}\rangle=H^{\otimes n}|\underline{O}\rangle$
ii) Apply Mf: $|\underline{x}\rangle|f\rangle \longmapsto|\underline{x}\rangle|z \oplus f(\underline{x})\rangle$

$$
u_{f}:\left(\frac{1}{\sqrt{2^{4}}} \sum_{\underline{x}}|\underline{x}\rangle_{A}\right)|\underline{0}\rangle_{0} \longmapsto \frac{1}{\sqrt{2^{4}}} \sum_{\underline{x}}|\underline{x}\rangle_{A}|f(\underline{x})\rangle_{B}
$$

iii) Measure B. \Rightarrow Collapse onto randan $f\left(x_{0}\right)$ (and thus random x_{0}).
\Longrightarrow Register A collapses ruts

$$
\frac{1}{N} \sum_{\underline{x} \cdot f(\underline{x})=f\left(x_{0}\right)}|x\rangle=\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|\underline{x}_{0} \otimes \underline{a}\right\rangle\right)
$$

- How can we extract a? -
(Meas. in comp. bass \rightarrow college on rand, Lo iuseless.)
iv) Apply $H^{\otimes^{u}}$ again:

$$
H^{-n}\left(\frac{1}{\sqrt{2}}\left(\left|\underline{x}_{0}\right\rangle \oplus\left(\underline{x}_{0} \oplus a\right\rangle\right)\right)
$$

$$
\begin{gathered}
=\frac{1}{\sqrt{2^{n+1}}} \sum_{y}^{\sum_{y}\left[(-1)^{\underline{x}_{0} \cdot y}+(-1)^{\left.\left(\underline{x}_{0}+\underline{a}\right)^{\text {Chapter }}\right]^{\text {IV, pg } 34}}(y)^{34}\right.} \\
\therefore \underline{a} \cdot y=0 \Rightarrow 2 \cdot(-1)^{\underline{x}_{0} \cdot y} \\
\underline{a} \cdot y=1 \Rightarrow=0 \\
=\frac{1}{\sqrt{2^{n-1}}} \sum_{y: \underline{a} \cdot y=0}(-1)^{\underline{x}_{0} \cdot y}|y\rangle
\end{gathered}
$$

v) Measure in comp. Sass:
\Longrightarrow obtain random y s.th $\underline{a} \cdot y=0$.
$(u-1)$ lin. ndep. vectors y_{i} (over z_{2}) s.th, $a_{i} y_{i}=0$ allow to determine a (solve lu. eq, - eng, Gaussian clicunation).

Space of lan. dep. vectors of k vectors grows as 2^{k} \Rightarrow (1) chance to find raudoully a lox. nolep vector $\Rightarrow O(n)$ randrm y are enough
$\Rightarrow O(a)$ oracle quencs ar euough (onapairrtyep ${ }^{\text {pg }} 35$

Nbtes: - We don't have to measure B - we wever use the ontione! (But: Derivation easior thus way!)

- $H^{\text {oun }} \hat{A}$ (discrte) Founer transform over $z_{2}^{x u}$
\rightarrow period pudiy na Fonner traupen

3. The quantum Tousv transform, periodingaterevijo ${ }^{\text {pg }} 36$ and Shor's factoring algorith-

Can we go begoend Founire trafo on \mathbb{Z}_{2}
(to \mathbb{Z}_{N}, for $N \sim 2^{n}$)?

- What is the oflet trausformatia?
- Cau it to ruplemanted effricutly?
- What is it good for?

Further reading:
Quantum computatition and Shor's factoring algorithm, Rev. Mod. Phys 68, 733 (1996)
https:///doi.org/10.1103/RevMo
https.///doi.org/10.1103/RevModPhys.68.733
a) The Quantum Foune Trausfon

Discrek Founer trafe (FT) on \mathbb{C}^{N} :

$$
\begin{aligned}
& x=\left(x_{0}, \ldots, x_{N-1}\right) \in \mathbb{C}^{N} \\
& y=\left(y_{0}, \ldots, y_{N-1}\right) \in \mathbb{C}^{N} \\
& \text { FT: } \mathcal{F}: x \longmapsto y \text { s.th. } y_{k}=\frac{1}{N} \sum_{j=0}^{N-1} x_{j} e^{2 \pi i j / N}
\end{aligned}
$$

Depructor QFT

$$
|j\rangle \longmapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\cos j^{2} / \omega}|k\rangle
$$

Observe.

$$
\sum_{j} x_{j}|j\rangle \stackrel{\text { QFT }}{\longmapsto} \sum_{j^{k}} x_{j} e^{2 \pi j k / \omega}|k\rangle=\sum y_{k}|k\rangle
$$

i.e.: QFT ach as divcrek FT rn auplindes!

Computational cost of Clasical FT:

- $O\left(N^{2}\right)$ opesations.
- $N \sim 2^{n} \Rightarrow$ exponcential in \#g bitin N.
- Fast FT (FFT): only $O(N \operatorname{cog} N)$, but shll exponatial!
- $O(N)$ is lowro boundi reciceinal bine to even just intpent y_{k} !

Willsee; QFT can be ruplemented on a guenthe state in $O\left(n^{2}\right)$ steps
\rightarrow exponcutial speedup?
(But ouly ustud of mport is give as 9, shate!)

Step I : Rewnk QFT in binary

- Consider case $N=2^{"}$.
- Wite j eke. m sivarg:

$$
j=j_{1} j_{2} j_{j} \cdots j_{u}=j_{i} \cdot 2^{u-1}+j_{2} 2^{u-2}+\ldots+j_{u} 2^{0}
$$

- "Decimal" pout notation:

$$
0 . j_{e} j_{e+1}-j_{n}=\frac{1}{2} j_{e}+\frac{1}{4} j_{e+1}+\ldots+\frac{1}{2^{n-e r 1}} j_{n}
$$

Then:

$$
\begin{aligned}
|j\rangle & \longmapsto \frac{1}{2^{n / 2}} \sum_{k=0}^{2^{n}-1} e^{2 \pi i \cdot\left(2^{2}\right)}|k\rangle \\
& =\frac{1}{2^{n / 2}} \sum_{k_{1}=0}^{1} \cdots \sum_{k_{n}=0}^{n} e^{2 \pi j j\left(\sum_{e=1}^{m} k_{e} 2^{-e}\right)}\left|k_{1}, \ldots, k_{n}\right\rangle k_{n} \\
& =\frac{1}{2^{n / 2}} \sum_{k_{i}=0}^{1} \cdots \sum_{k_{n}=0}^{1}\left[\bigotimes_{e=1}^{n}\left(e^{2 \pi j j k_{e} 2^{-e}}\left|k_{e}\right\rangle\right)\right] \\
& =\bigotimes_{e=1}^{n}\left[\frac{1}{\sqrt{2}} \sum_{k_{e}=0}^{1} e^{2 \pi j k_{e} 2^{-e}}\left|k_{e}\right\rangle\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\bigotimes_{e=1}^{u} \frac{1}{\sqrt{2}}[|0\rangle+\underbrace{2 \pi i j 2^{-e}}|1\rangle]^{\text {chapter IV, pq }}=\ldots \\
& j^{\prime} \cdot 2^{-l}=\underbrace{j_{1} j_{2} \cdots j_{u-e}}_{\text {mhages }} \cdot j_{u-e+1} \cdots j_{h} \\
& e^{2 \pi i\left(j \cdot 2^{-c}\right)}=e^{2 n^{i} \cdot\left(n \mathrm{k} \text { 的 } \omega+0 . j_{u-c+1} \cdots j_{u}\right)} \\
& =e^{2 n \cdot 0 \cdot j_{n-c t r} \cdots j_{n}} \\
& \ldots=\frac{|0\rangle+e^{2(0 i 0 . j n}|1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle+e^{20 i(0 . j \operatorname{sur} j n}|1\rangle}{\sqrt{2}} \propto \ldots \\
& \ldots \otimes \frac{|0\rangle+e^{2 \Delta i 0 . j \sqrt[j]{2} \cdots j u}|1\rangle}{\sqrt{2}}
\end{aligned}
$$

Step II: Eneplement thes as a circuit.
Cousides first mily spermost term:

$$
\begin{aligned}
& \left.10)+e^{2 \pi(i) / 2} 11\right\rangle \\
& 102+e^{2 \pi-i j / 2} e^{2 \pi \dot{j} 2 / 4} / 11
\end{aligned}
$$

Achier of gates:

$$
\begin{aligned}
& H:\left|J_{1}\right\rangle \\
& C-R_{1}:\left(|0\rangle+e^{2 a^{i} 0_{0} j}|1\rangle\right)\left|j_{2}\right\rangle \quad\left(|0\rangle+e^{2 \dot{i} 0 \cdot j_{1 j} j_{2}}|1\rangle\right)\left|j_{2}\right\rangle \\
& C-R_{2}:\left(|0\rangle+e^{2 \pi 0 \cdot j\left(j_{2}\right)}\left|\hat{j}_{2}\right\rangle\left|\hat{j}_{3}\right\rangle \longmapsto\left(|0\rangle+e^{2 \Delta \dot{j} \cdot j_{j} \hat{j}_{3}}|1\rangle\right)\left|j_{2}\right\rangle\left|j_{3}\right\rangle\right.
\end{aligned}
$$

: and so on.
\longrightarrow Oretpents the n-th quetot of the QFT on $18 t$ quit.

Continue on this vern:

Gate count: $\frac{u(u+1)}{2}=O\left(u^{2}\right)$ gates!

Notes:

- Outport quatitin reverse ord (can r-odds if uecded: u/2 swaps).
- $\frac{\sqrt{R_{d}}}{\square}=\frac{\square}{\left.-R_{d}\right]} \Rightarrow$ can flip $C-R_{d}$ gates

Then, upper live acts as control in comp. babi.
\Longrightarrow If we measure directly after QFT in comp. basso, we can measure before the $C-k d$ gates \& control them clestivally:

Ouly one-quitt fates wecded (!!)
("Where is the quention-ness?")
b) Pendd pudiry

Application of QFT: Find perod of a funchan? (of Simn's algonthe)

Cousider a periodic fuechin $f: \mathbb{N} \rightarrow\{0, \ldots, \Pi-1\}$, such that $\exists r>0$ wh
$f(x)=f(x+1)$, and $f(x) \neq f(y)$ othernte.
Ou a coupnto, we can only compute fon a truecated reput,

$$
f: \begin{aligned}
& f:\{0, \ldots, N-1\} \\
&=\{0,1\}^{m}
\end{aligned} \frac{\{0, \ldots, N 1\}}{=\{0,1\}^{m}}
$$

(he particulas, the periodicity of f is troken Chapteris IV Hekg ${ }^{43}$ Loundory, if we think of $f(x+r) \equiv f((x+r) \bmod N)$)

Can we find r better than classiadly?
(i.e., with wuch less than rr querre tof)

Choose u such that $2^{n} \gg$
Cinll ruake thos specífic lates.
Goal: mupofection at tud. regligitle.

Implement Uf n quankum computor as Lefore:

$$
U_{f}:|x\rangle_{A}|y\rangle_{B} \longmapsto|x\rangle_{A}|y \oplus f(x)\rangle_{\delta}
$$

Algorthe:
(1) Hadamard on A, then Mf:

$$
\left.\frac{1}{2^{4 / 2}} \sum|x\rangle_{A} 10\right\rangle_{3} \stackrel{u_{f}}{\longrightarrow} \frac{1}{2^{4 / 2}} \sum|x\rangle_{A}|f(x)\rangle_{15}
$$

(2) Reasure B register. For result $\left|f\left(x_{0}\right)\right\rangle_{0}$, A colleapses to

$$
\frac{1}{\sqrt{k_{0}}} \sum_{k=0}^{k_{0}-1}\left|x_{0}+k_{r}\right\rangle
$$

-here, $0 \leqslant x_{0}<r$, and $\frac{2^{4}}{r}-1<t_{0} \leqslant \frac{\text { chap } \underline{t a x}^{4} \mathrm{IV} \text {, }}{r}$.
(3) Apply QFT:

$$
\begin{gathered}
\longmapsto \frac{1}{2^{k / 2} \sqrt{k_{0}}} \sum_{k=0}^{k_{0}-1} \sum_{e=0}^{2^{u}-1} e^{2 \pi i\left(x_{0}+k r\right) l / 2^{n}}|e\rangle_{A} \\
=\sum_{l=0}^{2^{u}-1} e^{2 \pi x x_{0} l / 2^{n}} \sum_{=: \hat{a}_{e}}^{\sum_{k=0}^{k_{0}-1} \frac{1}{2^{4 / 2} \sqrt{k_{0}}} e^{2 \pi i k r e / 2^{n}}|e\rangle_{A}}
\end{gathered}
$$

$$
=: a_{e}
$$

(4) Neasure in compntational basi5:
$\left|\hat{a}_{e}\right|^{2}$: probabiling to ostain outcone 1
lutuincly: $\hat{a}_{e} \propto \sum_{k} e^{2 \pi i k(r e / 2 u)}$
peaked around points l shere $\frac{r e}{2^{n}}$ is close to an ruteges!
$(\rightarrow$ Will quantify thes in a moment!)
luthative picture:
(Geueral featues of Fouerer tracesforms cottery quantuc!)

perider function
\downarrow after uncas, of $B \rightarrow x_{0}$
$f(x)$
nuknown offoct to! V Fonner trofo

nakuren ofsef: absorted in phats of a_{e} !
\Longrightarrow can dekrume multiple of $\frac{24}{r}$ chapter IV, pg 46 measuring l (How to get r ? Late!)

Detailed avalyos of $\mid \mathrm{ae}^{2}$:
How much total welt is in all $\mid \mathrm{ael}^{2}$ ink

$$
l=\frac{2^{4}}{r} \cdot s+\delta_{s} ; \quad \delta_{s} \in\left[-\frac{1}{2} ; \frac{1}{2}\right] ; \quad s=0, \ldots, r-1
$$

(ire. only those e whirl are closest to $\frac{2^{4}}{r}$'s
\rightarrow from those, we can uniquely refers $\frac{2^{4}}{r} \cdot s_{0}$)
Then, $\hat{a}_{e}=\frac{1}{2^{4 / 2} \sqrt{k_{0}}} \sum_{k=0}^{k_{0}-1} e^{2 \pi i k\left(s+\frac{r}{2^{a}} \delta_{s}\right)}$

$$
=\frac{1}{2^{4 / 2} \sqrt{k_{0}}} \frac{e^{2 \pi \frac{r}{2^{4}} \delta_{s} k_{0}}-1}{e^{2 n i \frac{r}{2^{4}} \delta_{s}}-1}
$$

... since $\frac{2^{4}}{r}-1<k_{0} \leqslant \frac{2^{n}}{r}$, and $r \ll 2^{4}$:

$$
\frac{k_{0} r}{2^{n}}=1-\varepsilon, \quad 0 \leqslant \varepsilon<\frac{r}{2^{4}} \ll 1
$$

$$
=\frac{1}{2^{4 / 2} \sqrt{k_{0}}} \frac{e^{2 \pi^{n} \delta_{s}(1-\varepsilon)}-1}{e^{2 \pi \frac{r}{2^{4} \delta_{s}}}-1}
$$

$\sin x \geqslant \frac{x}{\pi / 2}$ un clev.intorad

$$
\begin{aligned}
& \Rightarrow\left|a_{e}\right|^{2}=\frac{1}{2^{n} k_{0}}\left(\frac{\sin \left(\pi \delta_{s}(1-\varepsilon)\right)}{\sin \left(\frac{\pi r}{\left.2^{n} \delta_{s}\right)}\right.}\right)^{2} \\
& \sin x \leqslant x \\
& \geqslant \frac{1}{2^{n} k_{0}} \frac{\frac{\pi^{2} \delta_{s}^{2}(1-\varepsilon)^{2}}{\pi^{2} / 4}}{\frac{\pi^{2} r^{2}}{\left(2^{4}\right)^{2}} \delta_{s}} \\
& =\frac{4}{\pi^{2}} \frac{1}{r} \frac{(1-\varepsilon)^{2}}{\frac{k_{0} r}{2^{4}}} \\
& =1-\varepsilon \\
& =\frac{4}{\pi^{2}} \frac{1}{\gamma}(1-\varepsilon) \approx \frac{4}{\pi^{2}} \frac{1}{\gamma}
\end{aligned}
$$

(can to early made move quantitative, using $\varepsilon<\frac{r}{2^{a}}$!)
 $\left|e-\frac{2^{4}}{r} s\right| \leqslant \frac{1}{2}$ for one such s : $p \geqslant \frac{4}{\pi^{2}} \approx 0.41$

With sufficiently hugh prosatizy - we will see that we can check success and thews repeat until we succeed! - we obtain an e $s . t h, \quad e=\frac{2^{n}}{r} s+\delta_{s}, \quad$ and thess,

$$
\frac{l}{2^{u}} \approx \frac{s}{r}
$$

wheres is chosen uniformly at random.
If we choose $r \ll 2^{\text {n }}$ suitably, there is only ouse such ratio $\frac{s}{r}$ with $\left|e-\frac{2^{4}}{r} s\right| \leqslant 1 / 2$, and it can te found eppritutly. (Scefurther readers.)
Specifically, it mifices to chook $N=2^{u}=\left(2^{m}\right)^{2}=\pi^{2}$, i.e. $u=2 \mathrm{~m}$, and since $\pi \geqslant r: 2^{u}>2^{u / 2}>r$.

If s and r are co-prime, is e $g^{\text {chapped }}\left(r, s^{2 g}\right)=2$, we can mufer r from $\frac{s}{r}$. This happens isth prodaliliz at Least $p(\operatorname{gcd}(s, r)=1) \geqslant 1 / \log r \geqslant \frac{2}{\operatorname{cog} 2} \cdot \frac{1}{u}$. (at least all proves $2 \leq s<r$ are good, and density of prolues goes as $1 / \log r$.)
\Rightarrow isth $d(u)$ iterations, we find a s coprime isth r.

Once we have used this to attach a guess for r, we can tet crhethr $f(x)=f(x+r)$, and repeat auth success!
\Rightarrow Efficient algonthe for period prudery.
$\sim O(u)$ application of f required!
c) Application: Factoring Algorithe

Factoring: Given $N \in \mathbb{N}$ (wot prime), find $f \in N, f \neq 1$, such that $f \mid N$.
(Note: Primality of N can "f divides N" be checked efiricully,)

This can te solved efficiently if were have an effirsurt method for period fruding!

Sketch of algonite.
(1) Select a randi $a, 2 \leq a<N$.

If $\operatorname{gcd}(a, N)>1 \Rightarrow$ dove, $f=\operatorname{gcd}(I, N)!$
\uparrow ep. compantite!'
Thus: Assume $\operatorname{gcd}(a, N)=1$.
(2) Denote by r the smallest $x>0$ chapter $^{\text {IV, }}$ shen 51

$$
a^{x} \cos N=1
$$

- that is, the period of

$$
f_{N, a}(x):=a^{x} \bmod N
$$

r is called the order of a und N.
(Note: Some $z>1$ s.th. $a^{z} \bmod N=L$ sust exist since
$\exists x, y \in\{1, \ldots, N\}: \quad a^{x} \equiv a y$ und N (cometing posinitilits) $\Rightarrow a^{x}\left(1-a^{y-x}\right) \equiv 0 \bmod N$

$$
\Rightarrow \quad N \mid\left(a^{x}\left(1-a^{y-x}\right)\right)
$$

Recall' "Effrivnt"

$$
\begin{aligned}
& \stackrel{\operatorname{gcd}(a, N)=1}{\Longrightarrow} N \mid\left(1-a^{y-x}\right) \\
& \quad \Longrightarrow a^{y-x}=1 \bmod N
\end{aligned}
$$ rucaus" polyurmid m \# of dijits of $N "$

Thertherwore, $f_{N, a}(x)$ can te compunted pfirentl:

$$
\text { Usily } x=x_{m-1} 2^{m-1}+x_{m-2} 2^{m-2}+\ldots,
$$

$$
a^{x} \bmod N=\underbrace{\left(a^{\left(2^{m-1}\right)}\right)^{x_{m-1}} \cdot\left(a^{\left(2^{m-2}\right)}\right)^{\text {then-2 IV, pg } 52_{\text {Ehapter IV }}^{m}} \cdot \ldots \bmod N}
$$

eff. compuntable via repeated spciany $\bmod N: \quad \equiv\left(a^{2} \bmod N\right)^{2} \bmod N$ $a \longmapsto a^{2} \bmod N \mapsto a^{4} \bmod N \mapsto \ldots$, by dony "unodN" in ead step the numbers don't require an exp. number of digots: O(n) wultsplicatias of μ-dyyt numbers.
$\Rightarrow r$ can be found eficikntly with a quantion conputer!
(3) Assleme for uns r even:

$$
\begin{aligned}
& a^{r} \bmod N=1 \\
\Longleftrightarrow & N \mid\left(a^{r}-1\right) \\
\Longleftrightarrow & N \mid\left(a^{r / 2}+1\right)\left(a^{r / 2}-1\right)
\end{aligned}
$$

$$
\Longleftrightarrow N \mid\left(a^{r}-1\right)
$$

However, we also know that $\left.N \nmid\left(a^{\text {chat ter }-\mathrm{IV}}\right)^{\operatorname{pgg}}\right)^{53}$ since otherwise $\left.a^{r / 2} \bmod N=1\right\}^{c}$ dow wot divide
\Longrightarrow either $N \mid a^{r / 2}+1$
or N has urn-hivial conman factors usk both $a^{1 / 2} \pm 1$.
$\Rightarrow 1 \neq f_{i}=\operatorname{gcd}\left(N, a^{r / 2}+1\right) \mid N$
\Rightarrow found a uon-trival factor f of N!
\Longrightarrow ACgonKum int succeed as long as
(i) seven
(ii) $N \nmid\left(a^{r / 2}+1\right)$

This can te slesm to happen int prob. $\geqslant 1 / 2$ for a raudrm choice of a (see further ready) - unless either N is even
(cause checked effrerantly),

$$
\text { or } N=p^{k}, p \text { prime }
$$

(can also be checked efficiently byhatocturtygit 54 roots; there are may $O(\log (N))$ rots which one has to check!)

- and m both cases, shes gives a un-tival factor!
\Longrightarrow efficient Quantum Algor He for Factorny.
"Shoo's algorithe

