Lecture & Proseminar 250078/250042 "Quantum Information, Quantum Computation, and Quantum Algorithms" WS 2023/24

— Exercise Sheet #1 —

Problem 1: Pauli matrices.

Recall the Pauli matrices from the lecture, which in the computational basis $\{|0\rangle, |1\rangle\}$ are of the form

$$X = \sigma_x = \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \sigma_y = \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \sigma_z = \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- 1. Show that the Pauli matrices are all hermitian, unitary, square to the identity, and different Pauli matrices anticommute.
- 2. Check the relation $\sigma_{\alpha}\sigma_{\beta} = \sum_{\gamma} i\varepsilon_{\alpha\beta\gamma}\sigma_{\gamma} + \delta_{\alpha\beta}I \ (\alpha, \beta, \gamma = 1, 2, 3)$, with $\varepsilon_{\alpha\beta\gamma}$ the fully antisymmetric tensor (i.e. $\varepsilon_{123} = \varepsilon_{231} = \varepsilon_{312} = 1$, $\varepsilon_{321} = \varepsilon_{213} = \varepsilon_{132} = -1$, and zero otherwise).
- 3. The trace $\operatorname{tr}[X]$ is defined as the sum of the diagonal elements of X, i.e., $\operatorname{tr}[X] := \sum_i X_{ii}$. Determine $\operatorname{tr}[I]$, $\operatorname{tr}[\sigma_{\alpha}]$, and $\operatorname{tr}[\sigma_{\alpha}\sigma_{\beta}]$.
- 4. Write each operator X, Y and Z using bra-ket notation with states from the computational basis.
- 5. Find the eigenvalues e_i and eigenvectors $|v_i\rangle$ of the Pauli matrices (expressed in the computational basis), and write them in their diagonal form $e_1|v_0\rangle\langle v_0| + e_1|v_1\rangle\langle v_1|$.
- 6. Write all tensor products of Pauli matrices $\sigma_{\alpha} \otimes \sigma_{\beta}$ (including the identity $\sigma_0 = I$) as 4×4 matrices.

Problem 2: Matrix spaces as Hilbert spaces.

Let \mathcal{V}_d be the space of all complex $d \times d$ matrices, and $\mathcal{W}_d \subset \mathcal{V}_d$ the space of all hermitian complex $d \times d$ matrices (i.e. for $M \in \mathcal{W}_d$, $M = M^{\dagger}$).

- 1. Show that \mathcal{V}_d forms a vector space over \mathbb{C} , and \mathcal{W}_d forms a vector space over \mathbb{R} , but not over \mathbb{C} . We will in the following always consider \mathcal{V}_d as a complex and \mathcal{W}_d as a real vector space.
- 2. Show that the Pauli matrices together with the identity, $\Sigma := \{\sigma_i\}_{i=0}^3$, form a basis for both \mathcal{V}_2 (over \mathbb{C}) and \mathcal{W}_2 (over \mathbb{R}).
- 3. Show that

$$(A,B) = \operatorname{tr}[A^{\dagger}B]$$

defines a scalar product (the "Hilbert-Schmidt scalar product") both for \mathcal{V}_d and for \mathcal{W}_d . Here, $\operatorname{tr}[X]$ is the trace, i.e., the sum of the diagonal elements.

- 4. Show that the Pauli matrices Σ form an orthonormal basis (ONB) with respect to the suitably rescaled Hilbert-Schmidt scalar product.
- 5. Use the fact that for any scalar product (\vec{v}, \vec{w}) and a corresponding ONB \vec{w}_i , we can write

$$\vec{v} = \sum_i \vec{w}_i(\vec{w}_i, \vec{v}) \; ,$$

to express a general matrix in $M \in \mathcal{V}_2$ as

$$M = \sum m_i \sigma_i$$

What is the form of the m_i ? What special property do the m_i satisfy for $M \in \mathcal{W}_2$?

6. Show that a hermitian orthonormal basis also exists for \mathcal{V}_d and \mathcal{W}_d . (Ideally, explicitly construct such a basis.)

Problem 3: Eigenectors.

- 1. Let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint, i.e. $A = A^{\dagger}$. Show that if $|v\rangle$ is an eigenvector with λ and $|w\rangle$ is an eigenvector with $\mu \neq \lambda$, then $\langle w | v \rangle = 0$.
- 2. Let $A \in \mathcal{B}(\mathcal{H})$, and let the set $\{\lambda_i\}_{i=1}^n$ be a subset of its eigenvalues. For each $i = 1, \ldots, n$ let $|v_i\rangle$ be an eigenvector. Show that the set $\{|v_i\rangle\}_{i=1}^n$ is linearly independent. *Hint:* consider the polynomial $\frac{(A-\lambda_2I)(A-\lambda_3I)\dots(A-\lambda_nI)}{(\lambda_1-\lambda_2)\dots(\lambda_n-\lambda_1)}$.
- 3. Let $A \in \mathcal{B}(\mathcal{H})$, and let $\{\lambda_i\}_{i=1}^n$ be all of its eigenvectors. Show that the spaces $V_i = \operatorname{Ker}((A \lambda_i)^{m_i})$ are linearly independent for any $m_i \in \mathbb{Z}^+$.
- 4. Let $A, B \in \mathcal{B}(\mathcal{H})$ such that AB = BA. Show that if $|v\rangle$ is an eigenvector of A with eigenvalue λ , then $B|v\rangle$ is either 0 or also an eigenvector with eigenvalue λ .
- 5. Let $A \in \mathcal{B}(\mathcal{H})$ be such that $AA^{\dagger} = A^{\dagger}A$. Let $|v\rangle$ be an eigenvector of A with eigenvalue λ . Show that $|v\rangle$ is an eigenvector of A^{\dagger} as well with eigenvalue $\overline{\lambda}$.