
Lecture & Proseminar 250078/250042

“Quantum Information, Quantum Computation, and Quantum Algorithms” WS 2023/24

— Exercise Sheet #1 —

Problem 1: Pauli matrices.

Recall the Pauli matrices from the lecture, which in the computational basis {|0⟩, |1⟩} are of the form

X = σx = σ1 =

(
0 1
1 0

)
, Y = σy = σ2 =

(
0 −i
i 0

)
Z = σz = σ3 =

(
1 0
0 −1

)
.

1. Show that the Pauli matrices are all hermitian, unitary, square to the identity, and different Pauli
matrices anticommute.

2. Check the relation σασβ =
∑

γ iεαβγσγ +δαβI (α, β, γ = 1, 2, 3), with εαβγ the fully antisymmetric
tensor (i.e. ε123 = ε231 = ε312 = 1, ε321 = ε213 = ε132 = −1, and zero otherwise).

3. The trace tr[X] is defined as the sum of the diagonal elements ofX, i.e., tr[X] :=
∑

i Xii. Determine
tr[I], tr[σα], and tr[σασβ ].

4. Write each operator X, Y and Z using bra-ket notation with states from the computational basis.

5. Find the eigenvalues ei and eigenvectors |vi⟩ of the Pauli matrices (expressed in the computational
basis), and write them in their diagonal form e1|v0⟩⟨v0|+ e1|v1⟩⟨v1|.

6. Write all tensor products of Pauli matrices σα⊗σβ (including the identity σ0 = I) as 4×4 matrices.

Problem 2: Matrix spaces as Hilbert spaces.

Let Vd be the space of all complex d× d matrices, and Wd ⊂ Vd the space of all hermitian complex d× d
matrices (i.e. for M ∈ Wd, M = M†).

1. Show that Vd forms a vector space over C, and Wd forms a vector space over R, but not over C.
We will in the following always consider Vd as a complex and Wd as a real vector space.

2. Show that the Pauli matrices together with the identity, Σ := {σi}3i=0, form a basis for both V2

(over C) and W2 (over R).

3. Show that
(A,B) = tr[A†B]

defines a scalar product (the “Hilbert-Schmidt scalar product”) both for Vd and for Wd. Here,
tr[X] is the trace, i.e., the sum of the diagonal elements.

4. Show that the Pauli matrices Σ form an orthonormal basis (ONB) with respect to the suitably
rescaled Hilbert-Schmidt scalar product.

5. Use the fact that for any scalar product (v⃗, w⃗) and a corresponding ONB w⃗i, we can write

v⃗ =
∑
i

w⃗i(w⃗i, v⃗) ,

to express a general matrix in M ∈ V2 as

M =
∑

miσi .

What is the form of the mi? What special property do the mi satisfy for M ∈ W2?

6. Show that a hermitian orthonormal basis also exists for Vd and Wd. (Ideally, explicitly construct
such a basis.)



Problem 3: Eigenectors.

1. Let A ∈ B(H) be self-adjoint, i.e. A = A†. Show that if |v⟩ is an eigenvector with λ and |w⟩ is an
eigenvector with µ ̸= λ, then ⟨w|v⟩ = 0.

2. Let A ∈ B(H), and let the set {λi}ni=1 be a subset of its eigenvalues. For each i = 1, . . . , n let
|vi⟩ be an eigenvector. Show that the set {|vi⟩}ni=1 is linearly independent. Hint: consider the

polynomial (A−λ2I)(A−λ3I)...(A−λnI)
(λ1−λ2)...(λn−λ1)

.

3. Let A ∈ B(H), and let {λi}ni=1 be all of its eigenvectors. Show that the spaces Vi = Ker((A−λi)
mi)

are linearly independent for any mi ∈ Z+.

4. Let A,B ∈ B(H) such that AB = BA. Show that if |v⟩ is an eigenvector of A with eigenvalue λ,
then B|v⟩ is either 0 or also an eigenvector with eigenvalue λ.

5. Let A ∈ B(H) be such that AA† = A†A. Let |v⟩ be an eigenvector of A with eigenvalue λ. Show
that |v⟩ is an eigenvector of A† as well with eigenvalue λ̄.


