Lecture \& Proseminar 250078/250042

Problem 4: Measurements.

1. Find a measurement that differentiates between the states $\rho=\frac{1}{2}(\mathbb{1}+a X)$ and $\sigma=\frac{1}{2}(\mathbb{1}+b Y)$, for any $a, b \in \mathbb{R},|a|<1,|b|<1, a \neq 0, b \neq 0$. (That is, find a measurement that has different outcome probabilities in the two states.)
2. Find a measurement differentiating between $\rho=\frac{1}{2}(\mathbb{1}+a X)$ and $\sigma=\frac{1}{2}(\mathbb{1}+b X)$.
3. Give the outcome probabilities, post measurement states and the expectation value of measuring Y in the state

$$
\rho=\frac{1}{2}(\mathbb{1}+a X+b Y+c Z) .
$$

Problem 5: Bloch sphere.

1. Recall that all mixed qubit states are of the form

$$
\rho=\frac{1}{2}(\mathbb{1}+a X+b Y+c Z),
$$

with $a, b, c \in \mathbb{R}, a^{2}+b^{2}+c^{2} \leq 1$. Show that the pure states are exactly those where $a^{2}+b^{2}+c^{2}=1$.
2. Show that one can parametrize any unit vector in two dimensions as

$$
\begin{equation*}
|\psi\rangle=e^{i \chi}\left[\cos (\theta / 2)|0\rangle+e^{i \phi} \sin (\theta / 2)|1\rangle\right] . \tag{1}
\end{equation*}
$$

Find a, b, c such that

$$
\begin{equation*}
|\psi\rangle\langle\psi|=\frac{1}{2}(\mathbb{1}+a X+b Y+c Z) . \tag{2}
\end{equation*}
$$

Where does this point lie on the Bloch sphere?
3. Show that if $\langle\phi \mid \psi\rangle=0$, then $|\phi\rangle\langle\phi|$ lies on the exact opposite side of the Bloch sphere.

Problem 6: Ensemble decompositions. In the following we construct different ensemble decompositions of the state

$$
\rho=p|0\rangle\langle 0|+(1-p)|1\rangle\langle 1|, \quad p \in[0,1] .
$$

1. Check that the above sum is already an ensemble decomposition of ρ.
2. Let $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$. Let

$$
\sigma=\frac{1}{1-\mu}(\rho-\mu|+\rangle\langle+|) .
$$

For which values of μ is σ a density matrix? Check that for these values of $m u$ the decomposition $\rho=\mu|+\rangle\langle+|+(1-\mu) \sigma$ is an ensemble decomposition of ρ.
3. For which value of μ is σ a pure state? For this μ give the vector $|\psi\rangle$ such that $\sigma=|\psi\rangle\langle\psi|$.
4. Check that for this value of μ there is a unitary matrix U such that

$$
\begin{array}{r}
\sqrt{\mu}|+\rangle=U_{00} \sqrt{p}|0\rangle+U_{01} \sqrt{1-p}|1\rangle \\
\sqrt{1-\mu}|\psi\rangle=U_{10} \sqrt{p}|0\rangle+U_{11} \sqrt{1-p}|1\rangle .
\end{array}
$$

5. Find an ensemble decomposition of ρ with three pure states.
