Lecture & Proseminar 250078/250042 "Quantum Information, Quantum Computation, and Quantum Algorithms" WS 2023/24

— Exercise Sheet #2 —

Problem 4: Measurements.

- 1. Find a measurement that differentiates between the states $\rho = \frac{1}{2}(\mathbb{1} + aX)$ and $\sigma = \frac{1}{2}(\mathbb{1} + bY)$, for any $a, b \in \mathbb{R}$, |a| < 1, |b| < 1, $a \neq 0$, $b \neq 0$. (That is, find a measurement that has different outcome probabilities in the two states.)
- 2. Find a measurement differentiating between $\rho = \frac{1}{2}(\mathbb{1} + aX)$ and $\sigma = \frac{1}{2}(\mathbb{1} + bX)$.
- 3. Give the outcome probabilities, post measurement states and the expectation value of measuring Y in the state

$$\rho = \frac{1}{2}(\mathbb{1} + aX + bY + cZ).$$

Problem 5: Bloch sphere.

1. Recall that all mixed qubit states are of the form

$$\rho = \frac{1}{2}(\mathbb{1} + aX + bY + cZ),$$

with $a, b, c \in \mathbb{R}$, $a^2 + b^2 + c^2 \leq 1$. Show that the pure states are exactly those where $a^2 + b^2 + c^2 = 1$.

2. Show that one can parametrize any unit vector in two dimensions as

$$|\psi\rangle = e^{i\chi} \left[\cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle\right].$$
 (1)

Find a, b, c such that

$$|\psi\rangle\langle\psi| = \frac{1}{2}(\mathbb{1} + aX + bY + cZ).$$
⁽²⁾

Where does this point lie on the Bloch sphere?

3. Show that if $\langle \phi | \psi \rangle = 0$, then $| \phi \rangle \langle \phi |$ lies on the exact opposite side of the Bloch sphere.

Problem 6: Ensemble decompositions. In the following we construct different ensemble decompositions of the state

$$\rho = p|0\rangle\langle 0| + (1-p)|1\rangle\langle 1|, \quad p \in [0,1].$$

- 1. Check that the above sum is already an ensemble decomposition of ρ .
- 2. Let $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$. Let

$$\sigma = \frac{1}{1-\mu}(\rho - \mu | + \rangle \langle + |).$$

For which values of μ is σ a density matrix? Check that for these values of mu the decomposition $\rho = \mu |+\rangle \langle +| + (1 - \mu)\sigma$ is an ensemble decomposition of ρ .

- 3. For which value of μ is σ a pure state? For this μ give the vector $|\psi\rangle$ such that $\sigma = |\psi\rangle\langle\psi|$.
- 4. Check that for this value of μ there is a unitary matrix U such that

$$\sqrt{\mu}|+\rangle = U_{00}\sqrt{p}|0\rangle + U_{01}\sqrt{1-p}|1\rangle$$
$$\sqrt{1-\mu}|\psi\rangle = U_{10}\sqrt{p}|0\rangle + U_{11}\sqrt{1-p}|1\rangle.$$

5. Find an ensemble decomposition of ρ with three pure states.