— Exercise Sheet #5 —

Problem 13: Entanglement witness for a given state.

In this problem we will construct an entanglement that detects the entanglement of a given pure state.

- 1. Show that any separable state can be written as the convex combination of pure separable states (i.e. pure states of the form $|\phi\rangle \otimes |\chi\rangle$).
- 2. Let $|\Psi\rangle$ be a pure entangled state. Show that there is a separable state ρ_0 such that for any other separable state ρ , $\langle \Psi | \rho | \Psi \rangle \leq \langle \Psi | \rho_0 | \Psi \rangle$.
- 3. Let $W = \langle \Psi | \rho_0 | \Psi \rangle \cdot \mathbb{I} | \Psi \rangle \langle \Psi |$. Show that $\operatorname{tr} \{ \rho W \} \ge 0$ for all separable ρ .
- 4. Show that W is an entanglement witness that detects the entanglement of $|\Psi\rangle$.

Problem 14: Majorization

Let $x, y \in \mathbb{R}^n_{\geq 0}$. Assume that $x_1 \geq x_2 \geq \ldots x_n$ and $y_1 \geq y_2 \geq \ldots y_n$. We say that y majorizes x, and write $x \prec y$, if for all $k = 1, 2, \ldots, n$,

$$x_1 + \dots + x_k \le y_1 + \dots + y_k.$$

In this problem, we prove that $x \prec y$ implies that $x = \sum_j q_j P_j y$ for some probability distribution q_j and permutation matrices P_j , where $x, y \in \mathbb{R}^d_{\geq 0}$. The proof will proceed by induction in the dimension d of the space.

- 1. Show that there exist k and $t \in [0,1]$ such that $x_1 = ty_1 + (1-t)y_k$. For which k does this work? For the following steps, we choose the *smallest such* k.
- 2. Define D = tI + (1 t)T, where T is the permutation matrix which transposes the 1st and k-th matrix elements. What are the components of the vector Dy?
- 3. Define x' and y' by eliminating the first entry from x and Dy, respectively. Show that $x' \prec y'$.
- 4. Show that this way, we can inductively prove the claim.

Problem 15: Fidelity.

1. Prove that for normalized vectors $|\psi\rangle$ and $|\phi\rangle$,

$$\left| \langle \psi | O | \psi \rangle - \langle \phi | O | \phi \rangle \right| \le \sqrt{8} \sqrt{1 - |\langle \psi | \phi \rangle|} \, \| O \|_{\infty}$$

with $||O||_{\infty} = ||O||_{\text{op}} = \sup_{|\psi\rangle} \frac{||O|\psi\rangle||}{||\psi\rangle||}$. Use this to prove

$$\left| \langle \psi | O | \psi \rangle - \langle \phi | O | \phi \rangle \right| \le 2\sqrt{\delta} \| O \|_{\infty} , \qquad (*)$$

to leading order in δ , where $\delta = 1 - F$, with $F = |\langle \psi | \phi \rangle|^2$ the fidelity.

2. Use the operator Hölder inequality

$$\operatorname{tr}(AB)| \le ||A||_1 ||B||_{\infty} ,$$

where the *trace norm* $||A||_1$ is the sum of the singular values of A (i.e. for hermitian A the sum of the absolute value of the eigenvalues) to prove (*) directly (and without the need for a leading-order approximation).

(Of course, any alternative proof is also fine.)