Problem 13: Entanglement witness for a given state.

In this problem we will construct an entanglement that detects the entanglement of a given pure state.

1. Show that any separable state can be written as the convex combination of pure separable states (i.e. pure states of the form $|\phi\rangle \otimes|\chi\rangle$).
2. Let $|\Psi\rangle$ be a pure entangled state. Show that there is a separable state ρ_{0} such that for any other separable state $\rho,\langle\Psi| \rho|\Psi\rangle \leq\langle\Psi| \rho_{0}|\Psi\rangle$.
3. Let $W=\langle\Psi| \rho_{0}|\Psi\rangle \cdot \mathbb{I}-|\Psi\rangle\langle\Psi|$. Show that $\operatorname{tr}\{\rho W\} \geq 0$ for all separable ρ.
4. Show that W is an entanglement witness that detects the entanglement of $|\Psi\rangle$.

Problem 14: Majorization

Let $x, y \in \mathbb{R}_{\geq 0}^{n}$. Assume that $x_{1} \geq x_{2} \geq \ldots x_{n}$ and $y_{1} \geq y_{2} \geq \ldots y_{n}$. We say that y majorizes x, and write $x \prec y$, if for all $k=1,2, \ldots, n$,

$$
x_{1}+\cdots+x_{k} \leq y_{1}+\cdots+y_{k} .
$$

In this problem, we prove that $x \prec y$ implies that $x=\sum_{j} q_{j} P_{j} y$ for some probability distribution q_{j} and permutation matrices P_{j}, where $x, y \in \mathbb{R}_{\geq 0}^{d}$. The proof will proceed by induction in the dimension d of the space.

1. Show that there exist k and $t \in[0,1]$ such that $x_{1}=t y_{1}+(1-t) y_{k}$. For which k does this work? For the following steps, we choose the smallest such k.
2. Define $D=t I+(1-t) T$, where T is the permutation matrix which transposes the 1 st and k-th matrix elements. What are the components of the vector $D y$?
3. Define x^{\prime} and y^{\prime} by eliminating the first entry from x and $D y$, respectively. Show that $x^{\prime} \prec y^{\prime}$.
4. Show that this way, we can inductively prove the claim.

Problem 15: Fidelity.

1. Prove that for normalized vectors $|\psi\rangle$ and $|\phi\rangle$,

$$
|\langle\psi| O| \psi\rangle-\langle\phi| O|\phi\rangle \mid \leq \sqrt{8} \sqrt{1-|\langle\psi \mid \phi\rangle|}\|O\|_{\infty}
$$

with $\|O\|_{\infty}=\|O\|_{\mathrm{op}}=\sup _{|\psi\rangle} \frac{\| O|\psi\rangle \|}{\||\psi\rangle\rangle}$. Use this to prove

$$
\begin{equation*}
|\langle\psi| O| \psi\rangle-\langle\phi| O|\phi\rangle \mid \leq 2 \sqrt{\delta}\|O\|_{\infty} \tag{*}
\end{equation*}
$$

to leading order in δ, where $\delta=1-F$, with $F=|\langle\psi \mid \phi\rangle|^{2}$ the fidelity.
2. Use the operator Hölder inequality

$$
|\operatorname{tr}(A B)| \leq\|A\|_{1}\|B\|_{\infty},
$$

where the trace norm $\|A\|_{1}$ is the sum of the singular values of A (i.e. for hermitian A the sum of the absolute value of the eigenvalues) to prove ($*$) directly (and without the need for a leading-order approximation).
(Of course, any alternative proof is also fine.)

