
Lecture & Proseminar 250078/250042

“Quantum Information, Quantum Computation, and Quantum Algorithms” WS 2023/24

— Exercise Sheet #9 —

Problem 23: Phase estimation

Consider a unitary U with an eigenvector U |ϕ⟩ = e2πiϕ|ϕ⟩. Assume that

ϕ = 0.ϕ1ϕ2 . . . ϕn = 1
2ϕ1 +

1
4ϕ2 + . . . + 1

2nϕn ,

i.e. ϕ can be exactly specified with n binary digits. Our goal will be to study ways to determine ϕ as
accurately as possible, given that we can implement U (and are given the state |ϕ⟩).

1. First, consider that we use controlled-U operations CU |0⟩|ϕ⟩ = |0⟩|ϕ⟩, CU |1⟩|ϕ⟩ = |1⟩e2πiϕ|ϕ⟩.
Describe a protocol where we apply CU to |+⟩|ϕ⟩, followed by a measurement in the |±⟩ basis,
to infer information about ϕ. Which information, and to which accuracy, can we obtain with N
iterations? (Bonus question: Could this scheme be refined by changing the measurement?)

2. Now consider a refined scheme. To this end, assume we can also apply controlled-U (2k) ≡ CUk

operations for integer k efficiently.

a) We start by applying CUn−1 to |+⟩|ϕ⟩. Which information can we infer? What measurement
do we have to make?

b) In the next step, we apply CUn−2, knowing the result of step a). What information can we
infer? What measurement do we have to make? Rephrase the measurement as a unitary rotation
followed by a measurement in the |±⟩ basis.
c) Iterating the preceding steps, describe a procedure (circuit) to obtain |ϕ⟩ exactly. How many

times do we have to evaluate controlled-U (2k)’s?

(Note: This procedure is known as quantum phase estimation, and is closely linked to the quantum
Fourier transformation.)

Problem 24: Fast Fourier transform.

In this problem, we will use the expression

F̂ : |j1, . . . , jn⟩ 7→ 1
2n/2

(
|0⟩+ e2πi 0.jn |1⟩

)
⊗

(
|0⟩+ e2πi 0.jn−1jn |1⟩

)
⊗ · · · ⊗

(
|0⟩+ e2πi 0.j1j2...jn |1⟩

)
(1)

for the quantum Fourier transform F̂ derived in the lecture to construct an algorithm for the classical
Fourier transformation on vectors of length N = 2n which scales as O(2nn) = O(N logN) – the fast
Fourier transformation (FFT) – as opposed to the naive O(N2) scaling.

Recall that the classical Fourier transformation F : CN → CN acts as F : (x0, . . . , xN−1) 7→ (y0, . . . , yN−1),
where

yk =
1√
N

N−1∑
j=0

e2πi jk/Nxj . (2)

1. Show that performing the classical Fourier transformation by directly carrying out the sum in
Eq. (2) requires O(N2) elementary operations.

2. As shown in the lecture, F̂ maps
∑

j xj |j⟩ to
∑

k yk|k⟩. Use this, combined with Eq. (1), to derive
an explicit expression for yk in terms of the xj in the spirit of Eq. (1).

3. The resulting expression for yk as a function of the xj should contain a sum over j1, . . . , jn. Show
that this sum can be carried out bit by bit. (What should happen is that in each step, the “input”
xj is transformed to a vector where one ji disappears due to the sum, and instead a dependency
on one of the kℓ appears.)

4. What is the number of elementary operations required for each of these transformations? What is
the total computational cost of the algorithm?

Problem 25: Factoring 15

Verify the factoring algorithm (i.e., the reduction to period finding described in the lecture – subsection
3.c) for N = 15 – i.e., consider all a = 2, . . . , N−1, check wether gcd(a,N) = 1, find r s.th. ar modN = 1
(you don’t have to use a quantum computer), and check if this can be used to compute a non-trivial
factor of N . How many different cases do you find? What possible periods r appear?

