Problem 23: Phase estimation

Consider a unitary U with an eigenvector $U|\phi\rangle=e^{2 \pi i \phi}|\phi\rangle$. Assume that

$$
\phi=0 . \phi_{1} \phi_{2} \ldots \phi_{n}=\frac{1}{2} \phi_{1}+\frac{1}{4} \phi_{2}+\ldots+\frac{1}{2^{n}} \phi_{n},
$$

i.e. ϕ can be exactly specified with n binary digits. Our goal will be to study ways to determine ϕ as accurately as possible, given that we can implement U (and are given the state $|\phi\rangle$).

1. First, consider that we use controlled- U operations $C U|0\rangle|\phi\rangle=|0\rangle|\phi\rangle, C U|1\rangle|\phi\rangle=|1\rangle e^{2 \pi i \phi}|\phi\rangle$. Describe a protocol where we apply $C U$ to $|+\rangle|\phi\rangle$, followed by a measurement in the $| \pm\rangle$ basis, to infer information about ϕ. Which information, and to which accuracy, can we obtain with N iterations? (Bonus question: Could this scheme be refined by changing the measurement?)
2. Now consider a refined scheme. To this end, assume we can also apply controlled- $U^{\left(2^{k}\right)} \equiv C U_{k}$ operations for integer k efficiently.
a) We start by applying $C U_{n-1}$ to $|+\rangle|\phi\rangle$. Which information can we infer? What measurement do we have to make?
b) In the next step, we apply $C U_{n-2}$, knowing the result of step a). What information can we infer? What measurement do we have to make? Rephrase the measurement as a unitary rotation followed by a measurement in the $| \pm\rangle$ basis.
c) Iterating the preceding steps, describe a procedure (circuit) to obtain $|\phi\rangle$ exactly. How many times do we have to evaluate controlled- $U^{\left(2^{k}\right)}$'s?
(Note: This procedure is known as quantum phase estimation, and is closely linked to the quantum Fourier transformation.)

Problem 24: Fast Fourier transform.

In this problem, we will use the expression

$$
\begin{equation*}
\hat{\mathcal{F}}:\left|j_{1}, \ldots, j_{n}\right\rangle \mapsto \frac{1}{2^{n / 2}}\left(|0\rangle+e^{2 \pi i 0 \cdot j_{n}}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i 0 \cdot j_{n-1} j_{n}}|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+e^{2 \pi i 0 \cdot j_{1} j_{2} \ldots j_{n}}|1\rangle\right) \tag{1}
\end{equation*}
$$

for the quantum Fourier transform $\hat{\mathcal{F}}$ derived in the lecture to construct an algorithm for the classical Fourier transformation on vectors of length $N=2^{n}$ which scales as $O\left(2^{n} n\right)=O(N \log N)$ - the fast Fourier transformation (FFT) - as opposed to the naive $O\left(N^{2}\right)$ scaling.
Recall that the classical Fourier transformation $\mathcal{F}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ acts as $\mathcal{F}:\left(x_{0}, \ldots, x_{N-1}\right) \mapsto\left(y_{0}, \ldots, y_{N-1}\right)$, where

$$
\begin{equation*}
y_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i j k / N} x_{j} \tag{2}
\end{equation*}
$$

1. Show that performing the classical Fourier transformation by directly carrying out the sum in Eq. (2) requires $O\left(N^{2}\right)$ elementary operations.
2. As shown in the lecture, $\hat{\mathcal{F}}$ maps $\sum_{j} x_{j}|j\rangle$ to $\sum_{k} y_{k}|k\rangle$. Use this, combined with Eq. (1), to derive an explicit expression for y_{k} in terms of the x_{j} in the spirit of Eq. (1).
3. The resulting expression for y_{k} as a function of the x_{j} should contain a sum over j_{1}, \ldots, j_{n}. Show that this sum can be carried out bit by bit. (What should happen is that in each step, the "input" x_{j} is transformed to a vector where one j_{i} disappears due to the sum, and instead a dependency on one of the k_{ℓ} appears.)
4. What is the number of elementary operations required for each of these transformations? What is the total computational cost of the algorithm?

Problem 25: Factoring 15

Verify the factoring algorithm (i.e., the reduction to period finding described in the lecture - subsection 3.c) for $N=15$ - i.e., consider all $a=2, \ldots, N-1$, check wether $\operatorname{gcd}(a, N)=1$, find r s.th. $a^{r} \bmod N=1$ (you don't have to use a quantum computer), and check if this can be used to compute a non-trivial factor of N. How many different cases do you find? What possible periods r appear?

