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“Quantum Information, Quantum Computation, and Quantum Algorithms” WS 2023/24

— Exercise Sheet #11 —

Problem 28: Clifford circuits.

Clifford circuits are circuits which are composed only of S = ( 1 0
0 i ), H, and CNOT (Clifford gates). In

this problem, we will show that a quantum computer which starts from the |0 · · · 0⟩ state and then only
applies Clifford gates and measurements in the computational basis (in any order) can be simulated
efficiently classically.

The core idea is that at each point of the computation (i.e., after each operation), the state of the system
is a stabilizer state. It can thus be efficiently described through its stabilizers S1, . . . , Sn, which can be
updated efficiently in any step of the computation.

1. Show that the gate set above allows to obtain all Pauli matrices.

2. Show that Clifford circuits C map products of Paulis P1⊗· · ·⊗Pn (Pi = I,X, Y, Z) to products of
Paulis, C(P1⊗ · · ·⊗Pn)C

† = P ′
1⊗ · · ·⊗P ′

n. Explain why this maps an independent (i.e., minimal)
set of stabilizers to another independent set of stabilizers.

3. In each step, we want to describe a unique state, i.e., for n qubits we have n independent stabilizers.
Show that this implies that for any Pauli product O which commutes with the stabilizers, O or
−O is in the stabilizer.

4. Write a (minimal) set of stabilizers for the state |0 · · · 0⟩.

5. Consider a quantum computation consisting of a sequence of Clifford gates C1, . . . , Cℓ, starting in
the state |ψ0⟩ = |0 · · · 0⟩. Show that in each step of the computation, the state |ψs⟩ = Cs|ψs−1⟩ of
the quantum computer can be described by a set of stabilizers, and that the stabilizers for step s
can be efficiently computed from those for step s− 1 (given a Cs is a one- or two-qubit gate).

6. Finally, let us consider Z measurements. W.l.o.g., we will assume that we measure the first qubit.
a) Show that after the measurement of the first qubit, we are in an eigenstate of ZI · · · I.
b) Show that if ±ZI · · · I is contained in the stabilizer, there exists a minimal basis of stabilizers
which contains ±ZI · · · I, while all other stabilizers are of the form ±I ∗ · · · ∗ (where ∗ can be
arbitrary Paulis.) Show that this implies that the state is a product state of the first (measured)
qubit and the remaining ones, |i⟩|ψ′⟩, i.e., we can discard the first qubit. What are the new
stabilizer for |ψ′⟩?
c) Consider first the case where ±ZI · · · I is contained in the stabilizer before the measurement.
What is the measurement outcome of a Z measurement on the first qubit? What is the new
stabilizer?
d) Second, consider the case where ±ZI · · · I is not contained in the stabilizer.

• Show that if ±ZI · · · I is not contained in the stabilizer, it must anti-commute with at least
one stabilizer, since we have n independent stabilizers.

• Next, show that we can find a minimal basis of stabilizers which only contains a single stabilizer
Ŝ which anti-commutes with ZI · · · I (i.e., which has a X or Y on the first qubit); in the
following, we will work in that basis.

• Use the existence of this Ŝ to show that ⟨ψ|ZI . . . I|ψ⟩ = 0, i.e., the measurement outcome is
completely random.

• Given a the measurement outcome 0 or 1, we are in an eigenstate of Snew = ±ZI · · · I,
respectively, i.e., Snew is a stabilizer for the post-measurement state. Furthermore, all other
stabilizers except Ŝ are still stabilizers, since they commute with Snew. Explain how this
allows us to obtain n independent stabilizers for the post-measurement state.

7. Put these steps together to explain how quantum computation with Clifford gates can be classically
simulated.

It is worth noting that all we need to do in the classical simulation is arithmetics modulo 2, which is
even much weaker than general polynomial-time classical computation; in fact, it is in a complexity class
called ⊕L (“parity L”). Thus, quantum computation with Clifford gates is even weaker than classical
computation.


