11 Quartum Computing and Quartum Hagon Mings 1

1. The circuit model

a) Classical computation

Use of classical computers (abstractly):

Solve problems = compute functions

 $f: \{0,1\}^{m} \longrightarrow \{0,1\}^{m}$

 $x = (x_1, ..., x_n) \rightarrow f(x_1, ..., x_n)$

The function of depends on the problem we want to solve, & cucodes the replance of the problem.

 $E.g.:$ Problem = membilication: $(a, b) \mapsto a.6$ $\underline{x} = (\underline{x}^4, \underline{x}^2) \longleftrightarrow \underline{f}(\underline{x}) = \underline{x}^1, \underline{x}^2$ encoded in Stray

Problem = Factoritation

 $x: \mathbb{R}$ ie $f(x): \mathbb{R}$ i lot of poinc factors (puitably cercoded)

Rore precisely: Each problem is encoded by ^a family of functions $f = f^{(c)}$: {91}["] > {0,1}", with $a = \rho \delta g(u)$, $u \in \mathbb{N}$ one for call reput site. i.e. : un grows at most polynomially with a $(techuically, Ja > 0 s.K. \frac{u}{u^{a}} \rightarrow 0).$ (Technical port: It must be possible to "construct (a) systematically and efficiently? the functions of see Later

Which rynchters do we reced to compute a quival puicha f?

(a)
$$
f: [0,1]^{\infty} \rightarrow \{0,1\}^{m}
$$

\n $f(x) = (f_1(x), f_2(x), ..., f_m(x))$
\nwhere $f_k(x) : \{0,1\}^{n} \rightarrow \{0,1\}$
\n \Rightarrow Can \leftarrow show $f_k(x) : \{0,1\}^{n} \rightarrow \{0,1\}$
\n \Rightarrow Can \leftarrow show $f_k(x) : \{0,1\}^{n} \rightarrow \{0,1\}$.
\n(a) Ref be $L = \{y | f(x) \mid 1 \} = \{y | g(x) \mid y \}^{n}$.
\n(a) Ref be $L = \{y | f(x) \mid 1 \} = \{y | g(x) \mid y \}^{n}$.
\n Ref be Imf be Imf

$$
(\ddot{u}) \quad \text{Replace } \text{ for } \text{ the } \text{ 20 } \text{ of } \text{
$$

association "1" & "v" en distributive: $(avb)ac = (sac) v(sac).$ $v \rightarrow +$) (la estence, same reles as 1-

 $\partial_y(x) = \begin{cases} x & \text{if } y = 1 \\ -x & \text{if } y = 0 \end{cases}$ (v)

1 logical not i 70 euge

Ghapter IV, pg 5

 $71 - 0$

Combine (i) - (iv): Aug f(x) can de constructed from 4 repredrents: $^{\prime\prime}$ and $^{\prime}$ not $^{\prime}$ and $^{\prime}$ gates, plus a "copy" gate $x \mapsto (x, x)$ Thus is called a nuiversal gate set. (Note: In fact, already either $7 (x \wedge y)$ "nead", or \neg (xvg) or are universel, together w ⁴ copy⁴.)

The functions $f = f$ (a) which we can compute are constructed by concateur buy gates from a

plu ple mirersal jak set (e.g. and start entreprend) sequentially in time $(i.e.,$ there are no loops allowed). Thus gives rise to a circuit for $f^{(a)}$. The dificulty ("computational hardnes") of a problem in the circuit model is measured by the rennest K(a) of elementary fats meded to compute $f^{(L)}$ $\left(\begin{array}{cc} 1 & \# & \# & \# \end{array}\right)$ time steps). We often destinguish two qualitatively diferent regimes: $K(\epsilon)$ v poly (ϵ) : efferently solvatic (cless easy problem $K(a) \gg \rho$ oly (a) $-e$. J $k(\mathbf{r}) \sim exp\left(\mathbf{r}\right)$

herd problem

(Technical note: We must supose that the circuits

 u ed for $f^{(u)}$ are <u>uniform</u>, *i.e. they creater* ideps? jeucrated efficiently -e.g. by a simple in-independent computer program. More formally, f⁽²⁾ should be jeurated by a Turing machine.)

Example: ϵ' waip 10110 x 10011 Efficient $\left\{\begin{array}{c} 1010 \\ 10110 \\ 10110 \end{array}\right\} e'$ 110100010 \rightarrow $k \times e'$ additions: $O(ee') \sim O(\omega^2)$ gates.

 f : Factorization. Eg : Lieve of Erathostenes: $20,15^{4} \rightarrow$ try about $12^{4} \sim 2^{1/2}$ cases \Rightarrow hard /exp. scaling. No efficient algorithment lenous!

No! By defruits, any nuiversal jet set can

simulate any other fate set with constant over-
head!

Remark: Ruere is a wide range of alternative model of computation, some more and some less realistic: CPU parallel computers \cdot "Tuny machines" - tape + read/crite head cellular automata ... and lots of work weakely... But; All known "reasonable" undels of computation can simulate each other with polyle) overhead ame computational power (or the suck above).

Cleurch-Tuny-Riebs: All reasonable models of computation have the same computational power.

6) Reversible circeuts

For quantum computing - county soon - we will

use the circuit model

Gates will be replaced by universe.

But: Uniters are reversible,

while classical jaks (and or) are irrerestle.

Could such a model even de classical computations- $-$ i.e., can we find a noivertal jak set unth only revertible jakes?

YES! - Classical computable can te meade reversité:

 $\begin{array}{ccc}\n&\text{time} \\
\hline\n&8 & 4 \\
&\text{time}\n\end{array}\n\quad x \begin{array}{ccc}\n&\text{time} \\
&\text{time}\n\end{array}\n\quad x \begin{array}{ccc}\n\hline\n&\text{time} \\
&\text{time}\n\end{array}$ z $\frac{1}{\gamma}$ also assoc , X OR * = edd λ and 2 $O \oplus O = O$ $\sqrt{4a_{\rm s}r}$. $\left(\frac{d_{i} s}{r} \cdot \frac{u}{r} \right)$ $\left(\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$ $\left(\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$

Chapter IV, pg 11Toffoligate is reversible f is it our viverse, since $f^2 e^x y = z$ - Poffoli jete can simulate and/or/ust/copy, by using ancillas in state " 0^4 or "1": $x \rightarrow x$ $\frac{f}{f}$ $x \rightarrow x$ $\begin{array}{ccc} 1 & 1 & y & -1 \\ 0 & -\frac{1}{2} & x & 1 \end{array}$ 1 a $(x,y) = \frac{1}{2}(x,y)$ $\begin{array}{ccc} \hline \end{array}$ if $\begin{array}{ccc} \hline \end{array}$ "copy" "Naud" ^D gives reversible universal gate set but requires anallas This can be used to compute any $f(z)$ reversibly, using ancillas with essentially the same of gates $f^{k}(x,y) \longmapsto (x, f(x) \oplus y)$ K bitwie XOR.

Idea: leplace any jak by a reversible gate using ancillas. Then xox the result anto the y register, Finally, run the circuit bachwards to "uncompute" the ancillas. Ancilla count can be optimited for of Preskill's notes Deverythery can be computed reversity. bin is $-$ bit fact is require</u> Homework Chapter IV, pg 12

C) Quantum Grand

Rost common model for quantum computation:

Rue cercuit model:

. Quantum system consisting of quotits: tensor product structure.

. Universal gate set $S = \{U_1, ..., U_k\}$ of few-gubit jakes (typ. 1- and 2-gubit gates) y_j . (See later for definition of "nuiversal".)

. Construct circuits by sequentially applying

elements of S to a subset of quarker IV, PS 13
\n
$$
|4_{n+} \rangle = V_T V_{T-1} \cdot ... \cdot V_1 | 4_{n} \rangle
$$

\n $W_j \cdot aby \cdot a \cdot b \cdot b \cdot f \cdot g \cdot b \cdot b$

\n- \n
$$
|\psi_{\mathfrak{A}}| = |x_1 \rangle |x_2 \rangle - |x_2 \rangle |0 \rangle |0 \rangle \dots |0 \rangle
$$
\n
$$
= |x \rangle |0 \rangle
$$
\n
$$
= |x \rangle |0 \rangle
$$
\nexceles, miskuse of profile.

\n
$$
-alkmaping, we can also have
$$
\n
$$
|\psi_{\mathfrak{A}} \rangle = |0 \rangle = |0 \rangle^{\mathfrak{E} \ell}
$$
\nand encode, the instance, a, he are

• At the end of the complement, we
\nthe fuel she 14at > n the complemental
\nbasis {|0\rangle |1\rangle }
\n• Inteaux 143 4/1000. p(y) =
$$
(\frac{1}{3}|\frac{1}{101})^2
$$

Notes; Mus & a probabilitie scheme - Particular 14 \overline{J} U) some prob. $p(z)$. In principle, we should compare to cless. probabilitie schemes -see later. . We need not needs ne all qubits not measuring = tracing = measuring and ignorily outcome o POVIIs don't befor are can simulate them Naimah Similarly CP maps don'thelp we can plutelete them (Sovesponythace auche). . Reasurements at earlier times don't help: Can a lways pool pone them (they communite). If gate at later time would depend on meas. outcome: Mis dependence can be realised subide the $coreal$ $\omega/$ $^{\omega}$ controlled jates $^{\omega}$ (c_f) let $c + (c_1 + c_2)$

1- and - 2 gubt jeks alone are neuversal $(c_f. \textit{clashed}: 3-bf$ fates needed!)

· For approximate murrorly, almost chapter l'Isiphe two-gubt jet would do! $\begin{array}{c} \uparrow \\ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \end{array}$. More must sets dets! d) Universal gate set Our exact nuiversal jak set: (i) 1-qubt obtains about XZZ axis: $R_{x}(\phi) = e^{-iX\phi/2}$
 $y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $x^{2} = T$

 $R_{t}(\phi) = e^{-i\theta/2}$, $Z=(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix})e^{2} - I$.

For $\Pi^2 = I$: $e^{-i\Pi \frac{d}{2}} = cos \frac{d}{2} I - i sin \frac{d}{2} \Pi$ = $R_x(\phi) = \begin{pmatrix} \cos \frac{\phi}{2} & -i \sin \frac{\phi}{2} \\ -i \sin \frac{\phi}{2} & \cos \frac{\phi}{2} \end{pmatrix}$ $R_{e}(\phi) = \begin{pmatrix} e^{-i\phi/2} & o \\ o & e^{-i\phi/2} \end{pmatrix}$

Can be understood as rotchows on Block Special V, pg 17 about $X/2$ axis by acefle ϕ (i.e., rotations m $SO(3) \cong SU(2)/2$,. Together, L_x and R_t generate all rotations in $\Omega(3)$ Ieler angles!), and thus in 84(2) up to a plot. Lemma: For any $u \in \mathcal{U}$ 12, $u = e^{i\phi}$ Rx (a) Rz (b) Rx (g) for some ϕ , $\leq h$. Prost: Houcwork. (ii) one two qubit jak (almost all world do!). Typically, we let "controlled-NOT" = "CNOT": x \overline{a} $y = 0$ $cos\tau f\omega$ ps y $\eta f \times 1:$ classical fak!

Can prove Rus gote set can creek august 1V, pg/18 u walty (but of course not efferently - u \int_{α} real parameters).

Overvices of a member of suportant jakes lidentities (Proof/check: Hacecook!) Hadamard gate: $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ $H = H^{\dagger}$; $H^2 = T$.

$$
H R_{x}(\phi) H = R_{z}(\phi)
$$

H
$$
L_{z}(\phi) H = R_{x}(\phi)
$$

Graphical "crout" ustatu:

 $-\boxed{H} - \boxed{X} - \boxed{H} -$ = $-\boxed{Z} -$

 $\begin{array}{c} \hline \end{array}$ rotation: time goes sight to left

Circuit unsable: true goes left to chapter IV, pg 19

Circuit for Toffoli:

with $V = \frac{1-i}{2} (I + x)$

 u to controlled - u :

Given circuit for $U - n$ particular, a classical $remth$ $crcurt - ve$ can also build controlled-U:

Just replace every gate by its controlled version in particular Toffoli by $\begin{array}{c|c} \hline \multicolumn{1}{c|}{\textbf{0}} \\ \hline \multicolumn{1}{c$ Toffoli ^w ³ controls can be built from normal soffoli $w \rightarrow w \rightarrow x.$ y.z (ence class muivered!) Chapter IV, pg 21

Finally, some futher approx. We versel jate sets:

 \cdot CNOT + 2 random 1-gubt jaks

 $CNOT + H + T = R_{2}({^{4}/4})$ (T/g gate

2. Oracle-bested algorithms

a) The Dubik algorithmen

Consider $f: \{0,1\} \longrightarrow \{0,1\}$ Let f be very hard to compute $-e$ g. long circuit Want to have: Is $f(0) = f(1)$? $\ddot{}$ will ^a specific chess more affect result How often do we have to me the circuit for f $e^{\pm \frac{1}{2} \log \left(\frac{1}{2} \right)^2}$ and $e^{\pm \frac{1}{2} \log \left(\frac{1}{2} \right)^2}$ and $e^{\pm \frac{1}{2} \log \left(\frac{1}{2} \right)^2}$ or "oracle": Hos many oracle queries are meeded

Classically we clearly need 2 queries: Compute flo) and fll).

Can quantum physics belp?

Consider reversible implementation of f:

 $f(x,y) \longmapsto (x, y \oplus f(x))$

Of course, we can use \mathcal{U}_f to compute $f(0)$ or f(1) on a guantum computer, fut their we could also do classically. So, can we do ktter than this?

Try to use superpositions as reputs?

First attempt:

 $\frac{|07H17}{\sqrt{2}}$ e $|0>0$ to $\frac{1}{\sqrt{2}}(\sqrt{210}) + (1010)$ to $\frac{44}{\sqrt{2}}(\sqrt{2110}) + |10|f(0)|$

- Have evaluated for solh outputs!

But how can we extract the revant rup make from this state (i.e. do a <u>measurement</u>)? Reas. 12 comp. Sers: collapse hypespos. to one can . Nor junctely: If $f(o) \neq f(1)$, the output is in $S_{\neq} = \left\{ \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) - \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) \right\}$ and for $f(0) = f(1)$ in $S = \{(1+2/62, 1+2/12)\}.$ \implies not orthogonal, i.e. not (determ.) dishu μ uishalle! But : We an do measurements which with some profatility allow to conclude that $f(o) = f(c)$ or $f(o) \neq f(l)$. $\frac{1}{\sqrt{2}}$ \tilde{U} all states in $S_{\!=\!}$ are orth, to $R_{\neq} = \{ |+\rangle |0\rangle, |++\rangle |4\rangle\}$, and all states in S_{\neq} t_0 $R = \left\{ \frac{1}{10}(10) - (11) \right\}, \frac{1}{10}(10) - (13) \right\},$ I A POVI uliel includes that outcomes plus an extra "fail" outcome allows to Chapter IV, pg 24

 u nambijuously identify whether flore f^{2} with some protability Optimal success probability: $\frac{1}{2}$ (>Homework) While Red is impossible elastically it does not five an improvement on average

Second attainst:

 $|x\rangle\left(\frac{107-11}{\sqrt{2}}\right)$ $\xrightarrow{\mathcal{U}_{f}}$ $|x\rangle\left(\frac{|\frac{f(x)}{f(x)}\rangle - |\frac{1}{\sqrt{2}}f(x)|}{\sqrt{2}}\right)$ $\left| \begin{array}{c} \hline \end{array} \right|$ 0 : (x> $f(x) = L$: $\vert x \vert$ $= |x\rangle \left[(-1)^{f(x)} \frac{|\omega\rangle - |\omega|}{\sqrt{2}} \right]$

= $(-1)^{f(x)}$ $(x \searrow \left(\frac{103 - 11}{\sqrt{2}}\right)^{c}$ chapter IV, pg 26

Not useful by the f(x) only cercoded in global phose for cad clessical reput /x?.

Contre aboupts

 $\frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} (0) \frac{1}{\sqrt{2}} + \frac{|0\rangle + |1\rangle}{\sqrt{2}}$ $=\frac{1}{\sqrt{2}}((-1)^{f(c)}|0\rangle\frac{10-(c)}{\sqrt{2}}+(-1)^{f(c)}|0\rangle\frac{107-10}{\sqrt{2}})$ $=$ $(-1)^{f(0)}(0) + (-1)^{f(1)}(1)$ $(0) -11$

Objervations: De No cutay lement creeked (!)

- D Jud gutit - the one where Upaptertjust 27 the function value - is mechanged (!!) \rightarrow 1 or qubt pcs a phase $(1)^{f(x)}$ (" pliese kick-back technique")

State of 107 quest: $f(0) = f(1)$ 4 10 $\frac{163 f(1)}{\sqrt{2}}$ $\begin{pmatrix} c_{\mu} & b \end{pmatrix}$ irrelevant
fløbel plak) $f(0) \neq f(1)$ $\iff \frac{(0) - 1/2}{\sqrt{2}}$

Othopral States! => measurement of 1st gubt $\int \frac{1}{2}$ (or apply $\frac{1}{2}$) and $\int \frac{1}{2}$ $n \left\{10\right\}\left(11\right)$ allous to decide of $f(0) = f(1)$.

Deubil algorithment 10) $\frac{H}{\mu}$ $\frac{H}{\mu}$ $\frac{H}{\mu}$ $\frac{H}{\mu}$ $\frac{H}{\mu}$ $\frac{H}{\mu}$ $\frac{H}{\mu}$ $\frac{H}{\mu}$ $\frac{H}{\mu}$ $\frac{H}{\mu}$

out put $i' = 0$: \implies $f(0) = f(1)$ $2i = 1 : -0 \neq 6$ $\neq 4(i)$ One application of Ug has seen infrarent! => Speed-up compared to closs. algorithment (1 vs. 2 oracle guerres). Chapter IV, pg 28

luterestry to note: 2nd gest never needs to se measured and it contains no information.

Two main morphis: . Un support $\sum |x| > b$ evaluate for all Inpub simultaneously. . This parallelike alone is not enough - meed

a smalt way to read out the relevant organization.

Hovever, a constant speed up is not that supressive n patricular, it is leightly architecture -dependent! Ikus

b) The Deckel Jozza algorithmen

Consider $f:[0,1]^m\longrightarrow \{0,1\}$ with promote li.e., a condition we know is met by f) that

either $f(x) = c$ $\forall x$ $(f \text{constant}^{\prime\prime})$ or ¹⁴ ¹¹⁶¹ ⁰ ^f^G ¹⁵¹ ^f Salanced

needed Hoy many queries $\frac{107-117}{\sqrt{2}}$ Un same idea! Input $\sum |x\rangle$ and

$$
H^{\mathfrak{su}}: |x_{1},...,x_{n}\rangle \longmapsto \frac{1}{12^{c}} \sum_{\underline{y}} (-1)^{x_{1}y_{1}} ... (-1)^{x_{n}y_{n}} |y_{1},...,y_{n}\rangle
$$

$$
\frac{\alpha}{2} \qquad |x\rangle \longmapsto \frac{1}{2^{4}} \sum (\neg f)^{\frac{x}{2}\cdot\frac{y}{4}} |y\rangle
$$

where
$$
X \cdot y := X_1y_1 \oplus X_2y_2 \oplus \dots \oplus X_ny_n
$$

\n
$$
\begin{pmatrix}\n\frac{d}{dx} & \frac{d}{dx} & \frac{d}{dx} & \frac{d}{dx} & \frac{d}{dx} & \frac{d}{dx} \\
\frac{d}{dx} & \frac{d}{dx} & \frac{d}{dx} & \frac{d}{dx} & \frac{d}{dx} & \frac{d}{dx} & \frac{d}{dx} \\
\frac{d}{dx} & \frac{d}{dx} \\
\frac{d}{dx} & \frac{d}{dx} \\
\frac{d}{dx} & \frac{d}{dx} \\
\frac{d}{dx} & \frac{d}{dx} \\
\frac{d}{dx} & \frac{d}{dx} \\
\frac{d}{dx} & \frac{d}{dx} \\
\frac{d}{dx} & \frac{d}{dx} \\
\frac{d}{dx} & \frac{d}{dx} \\
\frac{d}{dx} & \frac{d}{dx} \\
\frac{d}{dx} & \frac{d}{dx
$$

 $=$: a_{y}

Py: a layl² is the probability to measure of the pg 31).

$$
f
$$
constant: $f(x)=c$
 $a_{\frac{1}{2}} = (-1)^{c} \sum_{\frac{x}{\frac{1}{2}}} (-1)^{\frac{x}{2}\cdot\frac{y}{2}} = (-1)^{c} a_{\frac{1}{2}, \frac{1}{2}}$

Thus: Output $y=0$ \longrightarrow f contant Output $g \neq 0$ - of belanced = We can maanbignously distinguish the 2 cases with one query to the oracle for f!

What is the speed -up is versioned Chapte $\mathcal P$ IV, pg 32

Quantum: 1 use of f. Classical: Worst case, we have to determine 2^{u-1} + 1 values of f to be me! = Deponential vs. constant! But: If we are ok to get right answer with very μ probability p $1 - \rho_{\mathcal{L}(\mathsf{row})}$, then for le queries to f, Perror $\approx 2 \cdot \left(\frac{1}{2}\right)^{4}$ ^aprob to get lex same outcome for balanced f , if $k \ll 2$. $i.e.: k \sim log(\frac{1}{2}$ Raudouited classical: Ruch smaller speed-up vs. randomised classical algorithm (even for exp. small error, $k \sim u$ oracle calls are suffered.)

C) Simon's algorithmen

... will give us a true exponential speedup (also el, he reudanted class. algorithms) m knus of oracle querics.

Oracle: $\beta : \{0,1\}^{u} \longrightarrow \{0,1\}^{u}$

 w process : $\exists a \neq 0 \text{ s.K. } f(x) = f(y)$ exactly f $g = x \neq a$. ("lindden periodicity")

Tash: Find a by queryng f.

Classical: Need to query $f(x_i)$ with pair $xi_i x_j$ \mathcal{W} $f(x_i) = f(x_j)$ is found. R oughly; k queries $x_1, \ldots, x_k \longrightarrow \infty$ k pain

for call pair: prob $(f(x_i) = f(x_j)) \approx 2^{-d}$

Phicess. \sim k 2 2⁻⁴ on med k n 2 cm queres!

l

Ez

Quanten algorithm (filmon's algorithm): i) Start with $\frac{1}{12^{n}}$ $\sum_{\leq x}$ $1_{\leq y}$ = $H^{\otimes 4}$ 10? ii) Apply $4f : |x>|y>1$ \mapsto $|x>|y \oplus f(x)>$ $u_{\mathfrak{f}}: \left(\frac{1}{\sqrt{2}}\right)\longrightarrow \frac{1}{2}\left(\frac{1}{2}\right)\longrightarrow \frac{1}{2}\left(\frac{1}{2}\right)\longrightarrow \frac{1}{2}\left(\frac{1}{2}\right)\times \frac{1}{2}\left(\frac{1}{2}\right)\times \frac{1}{2}$ $ii)$ Measure B. \Rightarrow Collapse onto random $f(x)$ and thus random Xo Register ^A collapses onto $\frac{1}{N}$ $\sum_{x: f(x) = f(x_0)} |x| = \frac{1}{\sqrt{2}} (|x_0| + |x_0| + |x_0|)$ $f(x)$ = $f(x_0)$ Chapter IV, pg 34

 $-$ flors can we extract a? $-$ (Reas. in comp. basis \rightarrow collapse on rand. \ll inseless.)

 $i\nu$) Apply H^{eu} again:

 $H^{\bullet a}$ $\left(\frac{1}{2}(125e(x_0+x_0))\right)$

$$
= \frac{1}{\sqrt{2^{4}}\pi} \sum_{\begin{subarray}{l} \mathbf{y} \neq \mathbf{y} \\ \mathbf{y} \end{subarray}} \left[(1)^{\frac{1}{2} \cdot \frac{1}{2}} + (1)^{(\frac{1}{2} \cdot \frac{1}{2})^{2}} \right] \left(\frac{1}{2} \right)^{5/2}
$$
\n
$$
= 2 \cdot (1)^{\frac{1}{2} \cdot \frac{1}{2}}
$$
\n
$$
a \cdot \frac{1}{2} = 1 \implies a = 0
$$

$$
=\frac{1}{\sqrt{2^{u-1}}} \sum_{y: a:y=0} (-1)^{x_0 \cdot y} / y >
$$

v) Reasure n caup. Laps: = obtein rendom y s.K. 9.y =0. $(u-1)$ la. redep. vectors y_i (over \vec{t}_2) s.K. $a \cdot y_i = o$ allas to determine a (solve lu. eg. - e,g. Gaussian cléanachon). Space of ln. dep. vectors of k vectors grows as 2^k \Rightarrow $O(1)$ chance to find rendomly a los. modep. vector De O(u) random y are enough

 $O(a)$ oracle quents are enough (or average, Chapter IV, pg 36

Classical: 2 queries (exponential Quartin: c'in queries) speed-up c in termsof oracle queries

 N_{b} is the dark have to measure $B - \infty$ never use the outcome! (But: Derivation easier Kus c_{reg} !) \bullet H \bullet 4 (discrete) Fourve transform over $\mathcal{Z}_2^{\times n}$

De period fredry via Forme transform

3. The quantum Fourir transform, period chaptes p^{pg} 37 and Shor's factority algorithment Can we go begand Fourier trafo on Z $(h \frac{u}{v}, f v \sim 2^u)^2$ - What is the right transformation? - Can it de surplemented efficiently? - West is it good for ? **Further reading:** A. Ekert and R. Jozsa, Quantum computation and Shor's factoring algorithm. Rev. Mod. Phys 68, 733 (1996) https:///doi.org/10.1103/RevModPhys.68.733 a) The Quantum Fouro Transform Discrete Forenze trafe (FT) or $\mathcal{C}^{\prime\prime}$: $x = (x_{0},...,x_{N+1}) \in C^{N}$ $y = (y_0, y_0, y_0) \in C^{\omega}$ $FT: F: x \mapsto g$ s.K. $y_k = \frac{1}{\omega} \sum_{j=0}^{N-1} x_j e^{2\pi i \int_{N}^{L} y_j}$ $|j\rangle \longrightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\omega j} \sqrt{\frac{1}{N}}$ Defruction

Osserve:

 $\sum_{j} x_{j} |_{j}$ \Rightarrow $\sum_{j'k} x_{j'} e^{2\pi i j'k/2} |_{k}$ = $\sum_{j'k} |_{k}$ i.e.; QFT acts as discrete FT on ampleholes! Computational cost of classical FT: \cdot O(N²) operations. . $N/2^{4} \rightarrow$ exponential on $\#$ of $6\hbar$ on N . . Fast $FT (FFT)$: orly $O(\omega_{G}N)$ bout shill exponential! . O(N) is lower bound: recieinel time to even just ontput ye! Will see: OFT can be suplemented on a guantic

state Λ $O(\kappa^2)$ shops

- repondent speedup!

(But only useful of supert is given as g. State!)

Step I: Record OFT a Grany

-
$$
W_{ik}
$$
 $j \, ek, m$ $shag:$

$$
\int = j_{ij} \hat{ }_{j} \int_{\mu} = j_{i} \cdot 2^{a} + j_{2} \cdot 2^{a-2} + ... + j_{n} \cdot 2^{0}
$$

- "Deciual" pont votebr:
0- jejer-
$$
j_{\alpha} = \frac{1}{2}j_{\alpha} + \frac{1}{4}j_{e_{H}} + \frac{1}{2}j_{e_{H}}j_{\alpha}
$$

$$
\int_{\mathcal{C}} \int_{\
$$

= $\bigotimes_{\ell=1}^{4} \frac{1}{\sqrt{2}} \left[\begin{array}{c} |_{0} \rangle + e^{2\pi i j2^{-\ell}} |_{1} \rangle \end{array} \right]^{Chapter IV, 1}$ $\sqrt{3}$ $j' \cdot 2^{-\ell} = j_{ij}j_{2} \cdots j_{u-\ell}^{'}$ $j_{u-\ell+1} \cdots j_{u}^{'}$ $e^{2\pi i (j \cdot 2^{-e})} = e^{2\pi i (m \cdot k g \cdot u + 0 \cdot j_{u} - \epsilon H - \cdot j_{u})}$ $=$ $2\pi \cdot 0$ $\int u^{-c}H^{-1}\sqrt{u}$ $\frac{100+e^{20.00}y^2}{\sqrt{2}} \otimes \frac{100+e^{20.000}y^2}{\sqrt{2}}$ $107 + e^{2\pi i 0.1 \sin \pi i}$ <u> 15</u> Step 1: luplement this as a circuit. Consider first only oftward kn: $\frac{107+e^{2\pi i 0.11/2-jn}/17}{\sqrt{2}} = \frac{107+e^{2\pi i 11/2}e^{2\pi i 11/2}}{\sqrt{2}} = \frac{107}{\sqrt{2}}$ $(107 + c^{2}sin^{1/2}e^{2}sin^{1/2}/\sqrt{13})$ $100 + e^{2\pi i y/2}/12$

D Outputs the n-K gutst of the QFT

on 188 qubit.

Cartiluce on Mais verti.

Cale court, $\frac{u(u+1)}{2} = O(u^2)$ getes!

Notes: · Output qubits in reverse order (can a - order of needed: $\frac{u}{2}$ swaps). $\frac{-|e|}{|e|}$ = T_{max} = can flip C -ld fak.

Then, upper line acts as control in camp. babi.

=> If we measure directly after QFT in camp. bass, we can measure before the C-Rd Jaks & control Kuen Classically:

Only one-qubt jakes meeded (!!) (4 Where is the guantum - ness?")

b) Period pudity

Application of QFT: Find period of a function? of Simon's algonth

Consider a periodic function $f: M \rightarrow \{0, ..., n-1\}$ such that $\exists r > 0$ with

 $f(x) = f(x+r)$, and $f(x) \neq f(y)$ otherwise.

On a computer, we can only compute for a truncated report, $f: \{\rho, \ldots, N\} \longrightarrow \{0, \ldots, N\}$ $= 10.13$ $=$ $\{0,1\}$

In particular, the periodicity of f is broken chapter IV the 44 Loundary, if we think of $f(x+r) \equiv f((xr) \mod N)$ Can we frud r better than classically?

 $(i.e., m/k$ much less than nc queres to f)

Choose a such that 2^h $>>$

- Tull make this specific leter. Goal: rupsfection at had. myligible. Note: Since we do not know r, we need to know some upper bound on ^r e.g LC can use Kat $\tau \leq \Gamma$
- Implement Ug on quantum computer as before:

 $u_f : \{x\}_A | y\}_A \longrightarrow \{x\}_A | y \oplus f(x)\}_B$

Algorithe: Hadamard on A then 4g $\frac{1}{24}$ $\sum x_{1}^{2}$ /07 $\frac{u_{1}}{2}$ $\frac{1}{24}$ $\sum x_{1}^{2}$ /f(x) \bigcirc Reasure B register. For segult $|f(x_0) \rangle$ A collapses to $\frac{1}{\sqrt{\frac{k_0}{k_0}}} \sum_{k=0}^{\frac{k_0-1}{2}} |x_0 + k_0| >$

Chapter⁴ IV, pg 45 - here, $0 \leq x_0 < r_1$ and $\frac{2^q}{r} - 1 < k_0 \leq \frac{c \text{hap} \cdot \text{bar}^{r^q} \text{IV}}{r}.$

$$
\begin{array}{lll}\n\text{Appley BFT:} \\
\longrightarrow & \frac{4}{2^{4/2}\sqrt{4g}} \sum_{k=0}^{4g-1} \frac{2^{4}-1}{2-2g} & \frac{2\pi i}{2} (x_0 + kr)^2/24 \\
\downarrow & & \downarrow \ell \end{array}
$$

$$
=\frac{2^{a-1}}{e^{a}}e^{2a \times e/2}=\frac{2a}{2}\frac{1}{2^{a/2}E_{e}}e^{2a/2}e^{2a/2}
$$

 $=$ a_e

(4) Reasure on computational basis: $|a_e|^2$: probability to obtain enterne l $lnhahkey$: $q_e \propto \sum_i e^{2\pi i k \left(\frac{re}{2}a\right)}$ peaked around points I where $\frac{rC}{r^{a}}$ is Close to an releges! (- Will quantity thus on a moment!)

Intuitive pretace:

(General features of Fourier transforms wokery quartic!)

De con dekruise maltiple of $\frac{24}{5}$ chapter IV, pg 47

rues suivez e (How to jet r ? Late!)

Detailed auchyors of lack?

How unch total weight is a all lack with

 $l = \frac{2^{4}}{7} \cdot S + \delta_{S}$; $\delta_{S} \in (\frac{1}{2}, \frac{1}{2}]$; $S = 0, ..., r-1$ (v.e. only those I which are closest to $\frac{2^{n}}{r}\cdot s$)

 $=$ $\frac{1}{2}$ Then, $\hat{q}_e = \frac{1}{2\pi\epsilon_0} \sum_{k=0}^{\frac{k_0-1}{2}} e^{2\pi i k \sqrt{3 + \frac{\pi}{2} \cdot \sigma_s}}$
= $\frac{1}{2^{\frac{u}{2}} \sqrt{k_0}} e^{\frac{2u_1^2}{2} \frac{c}{2} \cdot \frac{c$

... since $\frac{2^{u}}{v}-1 < k_0 \leq \frac{2^{u}}{v}$, and $r \ll 2^{u}$. $\frac{k_0 r}{2^2}$ = 1 - ϵ , $0 \le \epsilon < \frac{r}{2^4} \ll 1$.

 $=\frac{1}{2^{4}4\sqrt{6}}$ $\frac{2\pi^{2}6s(1-e)}{e^{2}\pi^{2}6s-1}$ Chapter IV, pg 48 $|sin x| \ge \frac{|x|}{\sqrt{n}}$ a stev. interval $|e_{\epsilon}|^2 = \frac{1}{2 \kappa k} \left(\frac{|\sin(\tau \delta_s (1-\epsilon))|}{|\sin(\frac{\pi r}{2 \kappa} \delta_s)|} \right)$ $|\mathcal{S}u \times | \leq |x|$ $\frac{\pi^{2}\delta_{s}^{2}(1-\epsilon)^{2}}{\pi^{2}/4}$ $\geqslant \frac{1}{2^{\mu}k_{0}}$ $\frac{(1-\epsilon)^{2}}{k_{0}r}$ $=\frac{4}{\pi^2} \frac{1}{\gamma}$ $21-\epsilon$ $= \frac{4}{\pi^2}$ $\frac{1}{\pi^2}$ $(1-\epsilon)$ $\approx \frac{4}{\pi^2}$ $\frac{1}{\pi^2}$ (can be early made more quantitative, utry $\epsilon < \frac{1}{24}$!)

Since
$$
S = 0, ..., r-1
$$
: Total probability that
\n $|e - \frac{2}{r} s| \le \frac{1}{2}$ for one such $s : p \ge \frac{4}{r^2} \approx 0.41$
\n10.14 The probability light probability $\frac{ln(1)}{ln(1)} = \frac{ln(1)}{ln(1)} = \frac{ln(1)}{ln(1)}$ for all the values $ln(1)$ is $ln(1)$.

until we tucceed! $-$ we obtain an e

 $s.$ K. $\theta = \frac{2}{r} s + \delta_{s}$ and Kees,

$$
\frac{2}{2} \approx \frac{S}{\gamma}
$$

where ^s is chosen uniformly at random

If we choose τ \ll 2^{μ} suitably, there is only one such $\left|\ell-\frac{2}{r}\right| \leq \frac{1}{r}$ and it can be found efficiently. (See further reading.) Specifically, it suffices to choose $N = 2^{k} = (2^{k})^2 = 17^2$,

 $i.e.$ $u = 2u$, and since $12x: 2^u>>2^{u/2}>>.$

If s and r are ω - prime, i.e. $\tilde{g}cd(757z)$ we can infer r from $\frac{s}{r}$. This happens with probability at least $p(gcd(s,r)=1) \ge \frac{1}{\log r} \ge \frac{2}{\log 2} \cdot \frac{1}{a}$. (at least all ponces $2 \leq s \leq r$ are good, and density of poinces goes as 'legs.) \Rightarrow with $O(\nu)$ ikrations, we find a s coprime with γ . Chapter Δy , pg 50

Once we have used this to obtain a guess for **r** we can test whether $f(k)$ = $f(k+t)$, and repeat until success!

 \Rightarrow Efficient algorithm for period funding.

 $\sim O(a)$ applications of f required!

c) Application: Factoring Algorithe

Factory: Given NEW (not prime), frud

 $f \in N$, $f \ne 1$, and that $f \mid N$.

Note: Primality of N can $\mathcal {H}$ divides N be checked efficiently

This can be solved efficiently if we have an efficient method for period funding!

Sketch of algorithment

 $\begin{pmatrix} 1 & \text{feck } q & \text{rand} & a & \text{if} & 2 \leq q < N. \end{pmatrix}$

If gcd $(a, N) > 1$ = done, f=gcd(qN)! C ef. computable!

Thus: Assume god $(a, w) = 1$.

Husk by r the ruellest x>0 such strat a^x used $N = 1$. - that is , the period of $f_{N,a}(x):=a^x \text{ mod }N$ v is called the order of a mod N . $(N\circ k: Some$ 276 s.K. a^2 mod N = 1 must exit since x_1y $\epsilon \{1, . . , \mathbf{N}\}$: $a^{\wedge} \equiv a^{\vee}$ record N (counting position of $\Rightarrow a^x (1-a^{y-x}) \equiv 0 \mod N$ => $N \left[(a^x \left(1 - a^{y-x} \right) \right]$ fecoli Efficient $gcd(a,b)=1$ (1-a y^{-x}) means polynomials) $N \mid (1 - \alpha)^{-x})$ who agis of $=$ $a^{\frac{1}{4}-x}$ = 1 mod N B) Furthermore, fya (x) can be computed effectify: Using $x = x_{u-1} 2^{u-1} + x_{u-2} 2^{u-2} + ...$ Chapter IV, pg 52

 a^x und $N = (a^{(2^{ln 7})})^{x_{ln 7}} \cdot (a^{(2^{ln 2})})^{x_{ln 2}} \cdot ...$ und N

of computable via repeated squary $\mu \odot d$ N: $\equiv (a^2 \mod N)^2 \mod N$ $a \mapsto a^2$ mod $N \mapsto a^4$ mod $N \mapsto ...$

by doing "und N" in each stop the numbers don't require an exp. munitor of digits.

O(a) multiplications of understamments.

=> r can be found eficiently with a quantum computer!

3 Assieure for nous reveni

 a^{\prime} mod $N = 1$

 $\iff \mathcal{N} \mid (a^{\Gamma} - 1)$ \longrightarrow N $\Big(a^{1/2} + 1 \Big) \Big(a^{1/2} - 1 \Big)$

However, we also know that $N / \binom{\text{Chapter 1V}}{a^{3/2} - 1}^{pq - 54}$ Pluce otherwise $a^{\prime\prime}$ mod $N = L_f^{\circ}$ does not divide \Rightarrow either $N \mid \alpha^{1/2} + 1$ or N has non-trivial commo factors with 56% a $\frac{1}{2} \pm 1$. $\Rightarrow 1 \neq f := \gcd(N, \frac{1}{2} + 1) |N$ P found a non-towned factor f of N! Algorithm will succeed as Coy as (i) reven (ii) $N \int (a^{1/2} + 1)$ This can te shown to happen with prob. $\geq k$ for a random choice of a (see further ready) - unless either N is even (can be checked efferently), $\sum w = \beta$ k p prime

can also be cheched efficiently by takings 55 roots there are only ⁰ Cog ^N roots which one has to check!) $-$ and in both cases, this gives a non-trivial factor

Deficient Quantum Algorithe for Factory.

"Shor's algorithment

4. Cerver's algorithe

For many head computational problems, it is possible to deed a solution efficiently , but we don't know

how to find it.

So-called "NP problems" (un-deterministr polynomial

Many rekasting problems are of this type: graph coloring - factory $-$ 3-SAT - tiling problems - Hamiltonian path -travalling sales man (modby phrased)

Reformulation of NP proteins

We have an effectuly computable function

 $f(x) \in \{0,1\}$; $x \in \{0,1,..., N-1\}$ ℓ efficient =

 Chapter 11 , pg 51/

(Can de suterpreted as "detabete rearch": Went to frud a "marked element" x , r an un-
structured detables.)

We assume for now that $x_0: f(x_0) = 1$ is mangue. (Courabotehon: Cato/Lancwork)

Clessically: Will weed $o(\nu)$ queres to f for an unstmichined stard (i.e., without write proposite of f).

 ω le ree that $O(\sqrt{N})$ queries are enough, Quan hunly:

(Nok: Rus is only a quadratic speedup, historit isoptis

to a very lage clefs of very relevant problems.)

Consider $f: {0, . ., w-15 \rightarrow {20,13}$ $U_{N=2}$ " \sim gubb

lugradient 1:

Dracle $0_f : |x> \mapsto (1) \frac{f(x)}{|x>} = (-1)^{\delta_{x,x}} |x>$ i.e. Of flips amplitude of "matical" element. Can also work as $\sqrt{O_f = I - 2 \times X_0}$

Can build of from Uly was phak kide-bach keluigue: $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$

<u>Grover's algorithment</u> 1 Start from 140 > = 10 > = H \degree 10 > 2 Repeat: Apply Grover Heration $C = -H^{\alpha}D_{o}H^{\alpha}D_{f} = (-a_{u})D_{f}$

 $|\psi_{k}\rangle \stackrel{G}{\longmapsto} |\psi_{kH}\rangle = G|\psi_{k}\rangle = (-\partial_{\omega}) \partial_{f}^{\text{Chapter IV, [P9 60]}}.$ (Mos many trues? - Soon!) How to analyze trajectory " $|{\psi_0}\rangle \rightarrow |{\psi_2}\rangle \rightarrow |{\psi_2}\rangle \rightarrow ..?$ Recall! Of = $I - 2$ / \times / \times / -0 - $2/4$ \times -2 and moreover, $(\psi_0) = (0).$ \Rightarrow Only two special vectors in $\mid \psi_0 > 0_f, -0_u$: $|x_0\rangle$ and $|w\rangle$. The identity I will not change those vectors. \Rightarrow The dynamics $|{\psi}_{o}\rangle \rightarrow |{\psi}_{i}\rangle \rightarrow |{\psi}_{i}\rangle \rightarrow ...$

tables place n span { $|x_0\rangle$ /0> }, i.e., a two-directors space!

Two natural ONBs for Reis space:

 \vert K_o \vert $(x_0^{\bullet}) := \frac{1}{\sqrt{N\tau}} \sum_{x \neq x_0} |x|$ $\left\langle \right.$ $\overline{}$ $\int \omega > -15 > 56/4$

And another basis l^{ω} ω^+ ∂t $\langle \omega | \omega^2 \rangle$ = Of course \bigcup vector in span $\{(s),(u)\}$ can be expanded in eithe daps:

 $|\psi\rangle = a|\kappa\rangle + b|\kappa^2\rangle = x |\omega\rangle + y |\omega^2$

What is the effect of Of and (-0) on $/4$.

 D_f $|\psi\rangle$ = D_f $\left($ a $|\kappa\rangle$ + b/c²) \int a/ζ > + 5 | ζ^{\perp} $O_f = I - 2kX_1$

Chapter IV, pg 62

 \Rightarrow Og reflects $|\psi\rangle$ about $|\kappa_0^2\rangle$

 (-0) $|y>-(-0)$ $(x|y>+\frac{1}{2}|y^{2})$ $\frac{1}{2} - (-x/\omega) + y/\omega^{12}) = x/\omega > -y/\omega^{12}.$ 0_{ω} = $I - 2/\omega$ \times

 \Rightarrow (-0) reflects ty> about tw>?

Tues; cada Grove Necation counts of two steps: (i) reflect about $|x_{0}^{\perp}\rangle$ (ii) reflect about $|w>$ What happens was if we start with $\frac{1}{16}$ > = / 12 and apply one that han? $|w\rangle$ = $\delta w \varphi |x\rangle + c \circ \varphi |x^{\perp}\rangle$. $|x, > = 0$ $|u >$

 $|\psi_1\rangle = (-\omega_\omega)(\chi_1\rangle = (-\omega_\omega) \circ_\beta \omega$

 $|\psi_1> - \ln(\frac{3}{\varphi})|$ $\leq - \ln(\frac{3}{\varphi})| \leq 1$?

Next Groves Acreha: $142 = (-00) 07142$ $=$ $\sqrt{\chi_{2}}$

 $|\psi_k\rangle$ = $m(\sqrt{3p})$ $|\kappa\rangle$ + $\cos(\sqrt{3p})$ $|\kappa^2\rangle$

Can contrue ... :

 $|\psi_{\mu}\rangle = \delta n \left((2kH)\varphi\right) |k_{\phi}\rangle + c_{\phi} \left((2kH)\varphi\right) |k_{\phi}^{\perp}\rangle$

Want that $(2kH)$ if $\approx \frac{1}{2}$ Then measurement $\ddot{}$ caup. bass will return $|x_0\rangle$ with leith prob. $Sinc$ $|\omega\rangle = \frac{1}{\sqrt{d}}/k_{0} > + \frac{1}{\sqrt{d}}/k_{0}^{2}$ = $sn\varphi$ (ζ) + cosy (ζ ¹) $rac{q}{q}$ $\frac{1}{\alpha}$ $\frac{d}{dx}$ \Rightarrow for lags N , $4 \approx$ $p = 0$ Need k $\approx \frac{\pi}{4} \cdot \sqrt{v}$ Grover iterations. \Rightarrow $O(\sqrt{n})$ calls to f (for σ_f) or freez! Quadratic speed-up with respect to classical algorithms for jueval scare protects! Chapter IV, pg 65

Nok:

o IJ there are $k>1$ solutions: Same method with $O(\left(\frac{N}{\kappa}\right))$ steps words (-> homework)

· Can also be adapted to case where

munder of solenting is mukerare.