IV Quantum Computing and Quantum Agon This go 1

1. The circuit model

a) Classical computation

Use of classical computers (abstractly):

Solve problems = compute functions

 $f:\{0,1\}^{n} \longrightarrow \{0,1\}^{n}$

 $\underline{x} = (x_1, \dots, x_n) \longmapsto f(x_1, \dots, x_n)$

The function of depunds on the problem we want to solve, & cucades the justance of the problem.

E.g. ; Problem = menthicaha : (9,5) +> q.6 $\underline{x} = (\underline{x}^{1}, \underline{x}^{2}) \longmapsto f(\underline{x}) = \underline{x}^{1}, \underline{x}^{2}$ encoded a bring

Problem = Factoritata:

x : n k g s; f(x) : let of porme factors(mitably encoded)

Rore precidely: Ead problem is encoded by a faculy of functions f=f(": {9/5" -> {0,13", with u = poly(u), uEN - oue for cach uput site. (i.e.: un groves at most polynomially with a (technically, Ja>o s.th. in -> 0). (Technical pont: It wast be possible to construct the purchas f () systematically and fracky see (ato!)

Which reprediceds do ve used to compute a queval pencha f?

(i)
$$f: [0,1] \xrightarrow{a} \longrightarrow 20,13^{a}$$
 Chapter IV, pg 3
 $f(\underline{s}) = (f_1(\underline{s}), f_2(\underline{s}), ..., f_m(\underline{s}))$
uhere $f_k(\underline{s}): \{0,1]^{\underline{a}} \longrightarrow 20,13$
 \Rightarrow Can reduced anolytis to boolon functions
 $f: 10,13^{\underline{a}} \longrightarrow 20,13$.
(ii) Define $L = \{\underline{y} \mid f(\underline{y}) = 1\} = 2 \underbrace{y}_1, \underbrace{y}_2, ..., \underbrace{y}_{\underline{s}}^{\underline{s}}\}.$
Define $\underbrace{f_y}(\underline{s}) = \begin{cases} 0 \ \underline{s} \ \underline{s} \neq \underline{y} \\ 1 \ \underline{s} \ \underline{s} = \underline{y} \leftarrow \frac{6hnke}{equality!}$
Then, $f(\underline{s}) = \underbrace{S}_{\underline{y}}(\underline{s}) \lor \underbrace{S}_{\underline{y}}(\underline{s}) \lor ... \lor \underbrace{S}_{\underline{y}}e(\underline{s})$
 $" \lor " : logical "a" : 0 \lor 0 = 0$
 $(0 = "felte", 1 \lor 0 \lor 1 = 1$
 $" \lor " : \underline{s} \ \underline{stochhe}: a \lor b \lor c := (a \lor b) \lor c = a \lor (b \lor c)$
and commutative: $a \lor b = b \lor a$.

(iii) Define biknik 5:

$$\delta_{y}(x) = \begin{cases} 0 : y \neq x \\ 1: y = x \end{cases}$$
Then,

$$\delta_{y}(x) = \delta_{y}(x_{1}) \wedge \delta_{y}(x_{2}) \wedge \dots \wedge \delta_{y}(x_{n})$$

$$\stackrel{n}{\longrightarrow} \log x = 0$$

$$(0 = "felte" = 0 \\ 1 = 0 \\ 1 = 0 \\ 1 = 1 \end{cases}$$

" Λ " is <u>associative</u> & <u>commutative</u>; " Λ " & "v" en distributive: (avb) $\Lambda c = (anc)v(bnc),$ (In estence, some rules as $\Lambda \rightarrow \cdot, v \rightarrow +$)

 $\delta_{y}(x) = \begin{cases} x & if y=1 \\ \neg x & if y=0 \end{cases}$ (1)

logical " ust " i

7 Shapter IV, pg 5

71 20

Combine (i) - (ir): treg f(x) can be constructed from 4 ngredients: "and", "or", "not" gates, plus a "copy" gate $x \mapsto (x, x)$. Then is called a marsal gate set. (Note: In fact, already either 7 (Xry) " hand", or 7 (xvy) "nor" are cuiversel, together with " copy".)

Rus gives not to the Circuit readel of computable:

The purchas f = f (2) which we can compute

are constructed by concatenating gates from a

pun ple universal jake set (e.g. and the ter W copy) sequentially in the (i.e., there are no loops allowed). Rus gives nie to a circuit for fi The dificulty (" computational hardness") of a problem on the cercent readed is necessared by He remarker K(a) of elementary joks meded to compute f(a) (= # of true steps). We often destriptish two qualitatively defect regimes: K(L) ~ poly(L) : efterty solvetle (des P) easy problem $K(u) \gg poly(u) - e.g. K(u) \sim exp(u^{x}):$

hard problem

(Technical use: We must rupose that the circuits

used for fled are uniform, r.e. they chester Ide pg 7 jeuerated efficiently - e.g. by a simple u-independent computer program. Rore formally, flat should be jeuvated of a Turing machine.)

Example: f = Multiplication: Efficient: 1011 e' 10110 × 10011 10110 10110 {e' 10110 110100010 exe' additions: O(ll')~O(u') sake.

f: Factorization. E.g.; fiere of Erathastenes: 20,15" -> try about 12" ~ 2"/2 cases - hard/exp. scalizy. No efficient algorithen know!

Is a typical problem cary or hand "hapter IV, pg &
f: {0,13 ~ -> {0,13
of deferent $f: 2^{\binom{2^{-1}}{4}}$ $f(x) = \begin{cases} 2^{\circ}, for cal} \\ f(x) = \begin{cases} 2^{\circ}, for cal} \\ f(x) = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
But: there are only conduct circuits of length poly (2)! # of clean. Jaks
As u get lage, most f cand & computed efficiently (i.e. with poly(n) operators).

Does the computational power depend on the jak set?

NO! By defruition, any universal gete set can

simulate any other jake set with constraint over-head!

Lemak: Riere is avride range of alknow models of computable, some more and some less realistic: • CPU · parellel computers " Tuny machines" - tape + read/crite head · cellular automata · · · and lots of exche ueodely ... But; All known "reasonable" undels of computation can smentak each other with poly(2) overhead - Jame computational power (on the suck adore).

Cleurch-Turry- Reps: All rasonable models of computation have the same computational pours.

6) Reversible circuits

For quantum computing - country soon - we will

use the circuit model.

Gates will be replaced by unitenes.

But: Uniters are reversible,

utuile clastical jaks (and or) are irreversite.

Could such a model even de classical computebors-- i.e., can we pud a universal jake set with only reversible jakes?

JES! - Classical computable can be meade reversible:

hime × × × y y y 2 - 2 + x'yXOR" = addition mod 2: also assoc., course. 0-0-1-1 & distr. u/ n. 100-1 (like "r") 100 (- 0

Chapter IV, pg 11 - Toppligate is reversible (it is it on morre, since (20 xig) & xig = 2) - Toffoli jote can ssunlate and/or/ust/copy, by using accorders in state "0" or "1"; $\frac{E.g.:}{1} \times \frac{1}{1} \times \frac{1}{1}$ × _____ × y — y "copy" "Naud" - gives reversible universal gate set (but requires auchas) Thus can be used to comparte any f(x) reversibly, utry auchas, with essenticity the same # of gates: $f^{(x,y)} \longmapsto (x, f(x) \oplus y)$ Coture XOR.

(Idea: leplace aug jak by a riversible gate using anallas. Then xox the result and the y register, Finally, run the circuit backwards to "uncompute" the ancitas. Ancilla count can be ophinited for - of Preshill's uske.) = Everythery can be computed reversibly. But: 3-bit jak is required! (-> Honework)

c) Quantum Cercuts

Rot common model for quantum computation:

The cercut model:

· Quantum hysten consisting of qubits: tensor product structure.

· Universal gate set S = {U1, ..., Un } of few-qubit jakes (hpp. 1- and 2-gubit gakes) 4j. (See late for depuison of "unerversal")

· Construct arcus by sequentially applying

Noks; Rus 18 a probabilishe scheme - it out jours 14 y 1/ some prob. p(y). In principle, we shald Compare to dess. probabilisie scheunes - see lates. · We need not measur all qubits not uncorning = haarg = masurry and ipuonry ontrome 0 POVITS don't help - we can prealate theen (-> Naimal), Similarly, CP maps da't help we can pluchake them (forespong + brace aucha). · Reapirements at earlier times don't help: Can always postpone them (they commute). If gate at later time would depend on needs. outcome: This dependence can be realized subject the circuit il "controlled gates" (cf. later + hornework)

What jok set should we choose? Chapter IV, pg 15
· Rece is a <u>Continuum</u> of gates - situation
und more set.
· Deferent notrous of universality carst:
- exact universality: Any u-gubst gate can be
ralised exactly.
- > Requires a continuous foundy of numberal
gaks (country argument!)
- approximate meiversahity: Any n-quotit jate
can be approxizenated well by fake set
(Fruite jake set sufficient;
Solovay - Kitaev - Theore: E-approximation
(m II. II Non) of 1- qubit jake requires
O (poly (Log (/ E)) gates from a
surtable frute set.)

· 1- and - 2 qubit jakes alone are receiversal! (cf. classical: 3-bit jates useded !!)

· For approximate universality, almost any inter it pro-gubt jære und do! (w/ prob, L. · More muit. sch : late! d) Universal gate set Our exact universal jake set: (i) 1-qubit rotations about X & 2 axis:

 $k_{2}(\phi) = e^{-i2\phi/2}$; $2 - (10), 2^{2} = T.$

For $\Pi^2 = I : e^{-i\Pi \frac{\pi}{2}} = cos \frac{\pi}{2} I - i s \frac{\pi}{2} \Pi$ $= \mathcal{R}_{x}(\phi) = \begin{pmatrix} \cos \phi/z & -i \sin \phi/z \\ -i \sin \phi/z & \cosh/z \end{pmatrix}$ $\mathcal{R}_{\mathcal{E}}(\phi) = \begin{pmatrix} e^{-i\phi/2} & o \\ 0 & e^{i\phi/2} \end{pmatrix}$

Can be understood as rotations on Block Charter IV, pg 17 about X/2 and by acepte of (1.e., rotations $n \quad So(3) \cong Su(2)/\mathcal{Z}_2).$ Tyelles, has and he pricede all rotations in SO(3) (Ales angles!), and thus in Su(2) up to a place. Lecuma: For any U E &u(2), $\mathcal{U} = e^{i\phi} R_x(\alpha) R_2(\beta) R_x(\beta) \text{ for some } \phi_i = \beta_i r.$ Proof: Hancwork. (ii) one hos gubst jake (almost all would do!). Typically, we use "controlled-NOT" = "CNOT": $C_{VOF} = \begin{cases} x - x \\ y - x \neq y \end{cases} = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{cases}$ CNOT flips y iff x=L: classical fak!

(an prove: This gate set can create any u-quiter IV, pg/18 U watty (but of course not cherenty - 4 has ~ (2") = 4" rel parameters).

Overvices of a neurous of reportant jakes & identifics (Proof / check: Harecroh!) Hadamard jæte: $H = \frac{1}{12} \begin{pmatrix} 1 \\ 1 - 1 \end{pmatrix}$ $H = H^{+}; \quad H^{2} = T.$

 $HR_{x}(\phi)H = R_{z}(\phi)$ $H \mathcal{L}_{\mathcal{Z}}(\phi) H = \mathcal{R}_{\mathcal{X}}(\phi)$

Graphical "arcult" ustaba:

-H-X-H- = -Z-

herpotrant: Rama ustapa: hue goes spht to left

Circuit ustabb: true goes left to Chapter IV, pg 19

Circuit for Tofoli:

where $V = \frac{1-i}{z} (I + iX)$

U to controlled - U:

Given corcent for U - in particular, a classical reversile arcent - we can also huld controlled - U:

Just reface every gak by its controlled verse, n particulas Tofol' by × _ _ X Topoli 4/ 3 controls: can be built y _ y z _ z from wormal Topoli' fra wormal Taffoli' $\omega = \omega = \chi \cdot y \cdot z$ (mae class. nuiversal!)

Fruely, some future approx. accorded jake sets:

· CNOT + 2 raudon 1-qubit jaks

· CNOT + H + T = K2 (1/4) ("T/8 gate")

2. Oracle - besed algorithms

a) The Dutrch algorithm

Consider f: 20,13 -> 20,13 Let f be "very hard to compute" - e.g. long circuit Want to have: 1s f(0) = f(1) ? (c.g.: will a specific chess more afect result?) How offen do we have to mu the circuit for f (= "eveluate f")? - We thenk of f as a "Slack Sox" or "oracle": Hos many oracle quests are needed?

Classically we clearly need 2 quenes: Compute flo) and fll.

Can quartum physics help?

Consider reversible implementation of f:

 $f^{\kappa}: (x, y) \longmapsto (x, y \oplus f(x))$

Of course, we can use le to compute f(0) or f(1) on a quantum comptor, but this we could also do classically. So, can we do better than thes?

Try to use superpositions as repub?

First attempt:

 $\frac{|07H17}{12} \otimes |07 = \frac{1}{12} ((07|07) + (17|07)) \xrightarrow{1}{12} (107) + (17|07) + \frac{1}{12} (107) + (17$

- Have evaluated for both sutputs!

But leas can we extract the devant momente from this state (i.e. do a manuet)? · Reas. 12 comp. basis: collapse superpos. to one case! · More junckly: If f(0) + f(1), the adput is in S= = { to (10>10> +(1>11>), to (10×10+11>10>) } and for f(0) = f(1) in S_= { /+>/0>, /+>/1>}. - ust otheral, i.e. ust (deken,) distrujuishable. But : We ando measurements which, with some probability, allow to conclude What f(o) = f(r) or $f(o) \neq f(1)$, Eigi, all states in S_ are orth, to R = { |+> 10>, |+> 14> }, and all states in S + $+ R_{=} = \left\{ \frac{1}{6} (10) - (1) - (1) \right\}, \frac{1}{6} (10) - (1) - (1) \right\},$ = A POVR which includes there outcomes plus an extra "fail " outcome allows to

unan sijurisky iden by whether floter floter floter with some probability Ophimal success produbility: 2 (Alouewol) While Kert is impossible clasticely, it does not give an improvement on average.

Second attempt:

 $|x\rangle\left(\frac{10)-11}{12}\right) \xrightarrow{u_{f}} |x\rangle\left(\frac{f(x)}{12}\right) \xrightarrow{u_{f}} |x\rangle\left(\frac{f(x)}{12}\right) - \frac{10}{12}f(x)\right)^{2}$ $= \begin{cases} f(x) = 0 : |x| > \frac{|0| > -|1| >}{\sqrt{2}} \\ f(x) = L : |x| > \frac{|1| > -(1)}{\sqrt{2}} \end{cases}$ $= |x\rangle \left[(-1) \frac{f(x)}{12} - \frac{(0) - |1\rangle}{12} \right]$

 $= (-1)^{f(x)} (x) \left(\frac{10}{12} \right)^{Chapter IV, pg 26}$

Not useful by itelf: f(=) only concoded in global place for each clashical reput 1x2.

Contre abaupts:

 $\frac{|0\rangle+|1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle-|1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(|0\rangle \frac{|0\rangle-|1\rangle}{\sqrt{2}} + |1\rangle \frac{|0\rangle-|1\rangle}{\sqrt{2}} \right)$ $= \frac{1}{\sqrt{2}} \left((-1)^{\frac{4}{9}} |0\rangle \frac{|0\rangle-|1\rangle}{\sqrt{2}} + (-1)^{\frac{4}{9}} |1\rangle \frac{|0\rangle+|1\rangle}{\sqrt{2}} \right)$ $= \frac{(-1)^{\frac{4}{9}} |0\rangle + (-1)^{\frac{4}{9}} |1\rangle}{\sqrt{2}} \otimes \frac{(0)^{\frac{4}{9}}-|1\rangle}{\sqrt{2}}$

Observations: - No entry le ment created (!)

- 2nd gubt - Ku ne where Upapter the 27 Hu funcher value - is neckanged (!!) - 107 qubit jets a please (-1) f(x) (" phose kick-back kalaigue")

State of 107 quest: $f(0) = f(1) - \frac{107 + 17}{\sqrt{2}}$ (cep to irrelevant global dak) $f(o) \neq f(1) \iff \frac{(o) - 1}{\sqrt{2}}$

Othegonal states! - measurement of 1st qubit in Saps {1+>,1->} (or apply -H- Swearne m $\{107, 117\}$) allows to decide of $f(0) \stackrel{\checkmark}{=} f(1)!$

Deutsch algorithen: 107 H H R output 107 H 12=0,1

out put i'=0: $\longrightarrow f(0) = f(0)^{10}$ i=1: \longrightarrow $f(0) \neq f(1)$ Oue application of ly leas deen refrerent! - Speed-up compared to class. algorithm (1 vs. 2 made guentes).

Interesting to note: Ind gutit never needs to Se mand - and it carters no mformather.

Two mar norphs: · Un upit Z (x> to cvaluate f on all repub smultaceously. · This parellelike alone is not everyh - mead

a smalt way to read at the devant aformation.

However, a constant speed-up is not that supressive n patrialas, it is highly architective - dependent! Thus:

Chapter IV, pg 29

6) The Deckel Jozsa algorither

Consider f: 10,15 m -> 20,1 with promise (i.e., a condition we know is meet by f) that

either $f(x) = c \quad \forall x$ ("f constant") $\frac{\sigma r}{\left\{\frac{x}{x}\right\}\left[\frac{x}{x}=0\right]} = \left[\frac{x}{x}\right]\left[\frac{r}{x}=1\right]\left(\frac{r}{x}\frac{schanced}{r}\right)$

How many quents needed? 107-11> Use same idea ! Input ZIX) and

Before analythy circuit: What is achon
$$\frac{chop tep}{f} \neq \frac{1}{F} = \frac{1}{2^{29/2}} \left(-1\right)^{\frac{1}{9}} \left(\frac{1}{9}\right)$$

H: $|x\rangle \mapsto \frac{1}{12} \sum_{\substack{y=9/2}} (-1)^{\frac{1}{9}} \left(\frac{1}{9}\right)$

$$H^{\mathfrak{Su}}: \left\{ x_{1,\dots,} x_{n} \right\} \xrightarrow{\hspace{1cm}} \frac{1}{2^{n}} \sum_{\underline{y}} \left(-l \right)^{x_{1}y_{1}} \dots \left(-l \right)^{x_{n}y_{n}} \left| y_{1,\dots,y_{n}} \right\rangle$$

$$\frac{\alpha}{2} \qquad |\underline{x}\rangle \mapsto \frac{1}{2} \sum (-1)^{\underline{x},\underline{y}} |\underline{y}\rangle$$

where
$$\underline{x}, \underline{y} := x_1 \underline{y}_1 \oplus x_2 \underline{y}_2 \oplus \dots \oplus x_n \underline{y}_n$$

$$\begin{pmatrix} " \text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(" \text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2 \end{pmatrix}.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2) \\.$$

$$(\text{ scales product } & \text{mod } 2)$$

=: 94

Py: = |ay|² is the probability to measure y= [y, y, j.).

$$\frac{f \text{ conbhant}: f(\underline{x}) = c}{a_{y}} = (-1)^{c} \sum_{\underline{x}} (-1)^{\underline{x} \cdot \underline{y}} = (-1)^{c} \delta_{\underline{y}, \underline{o}}$$

$$= (-1)^{c} \delta_{\underline{y}, \underline{o}}$$

Thes! Output y=0 - f constant Output y = 0 = 0 J Sclauced = We can unambiguously dishuguish the 2 cases with one query to the scale for f!

What is the speed -up is. classical includes. IV, pg 32

Quantum: 1 use of f. Classical: Worst care, we have to determine 2ⁿ⁻¹+1 values of f to be sure! = 0 exponential vs. constant! Port: If we are de to get right answer with very leigh protability p=1-perror, Keen for le quenze to f, perror $\approx 2 \cdot \left(\frac{1}{2}\right)^n$ ~ prob. to get lex same outcome for balanced f, 17 k << 2". i.e.: k ~ Log (/ferror). handouited classical: Ruch malles speed-up vs. randomited classical algorithm (even for exp. mall error, k v u oracle calls ar spect.)

c) from's algorithm

... will give us a true exponential speedup (also el, to rendou red class. algorithus) m knus of oracle quests!

f: {0,13 ~ -> {0,13 ~ Oracle;

with processibe: $\exists a \neq 0$ s.K. $f(x) = f(y) = x ochy f y = x \neq a$, (" luidden periodicity")

Table: Find a by queryny f.

Classical: Need to query f(xi) with pair Xi1×j with f(xi) = f(xj) is found.

Roughly: k queres X1,..., X4 -> ~ k pais, for each pair: prob (f(si)=f(sj)) ~ 2-" => Pricees ~ k² 2⁻⁴

- med kn 2 quenes!

H^{&u} (≤> ~ ∑(-1)^{×·y}/y>

Quantum algorithm (filmen's algorithm): Chapter IV, pg 34 i) Start with $\frac{1}{2^n} \sum_{x} |x|^2 = H^{\otimes 4} |0|^2$ ii) Apply $M_{f}: |x|_{f} \longrightarrow |x|_{f} \oplus f(x)$ $\mathcal{U}_{f}:\left(\frac{1}{\sqrt{2^{n}}} \sum_{\underline{x}} |\underline{x}\rangle_{\underline{x}}\right) |\underline{0}\rangle_{0} \longmapsto \frac{1}{\sqrt{2^{n}}} \sum_{\underline{x}} |\underline{x}\rangle_{\underline{x}} |\underline{f}(\underline{x})\rangle_{3}$ iii) Reame B. = Collapse outo randon f(x_) (and Kens random Xo). - Register A collepses outo $\frac{1}{N} \sum_{\substack{X: \\ x: f(x) = f(x_0)}} \frac{1}{|x_0|} = \frac{1}{|x_0|} \left(\frac{1}{|x_0|} + \frac{1}{|x_0|} + \frac{1}{|x_0|} \right)$ - How can we extract a? -

(Reas. in comp basis -> collapse on rand, to : useless.)

ir) Apply Her again:

 $H^{\#}\left(\frac{1}{12}\left(1\times 3 \neq \left(\times 3 \neq 2\right)\right)\right)$

$$= \frac{1}{\sqrt{2^{u+u}}} \sum_{\substack{y \in (-1) \\ y \in (-1) \\ y = 0}} (x_0 + x_0) \sum_{\substack{y \in (-1) \\ y = 0}} (x_0 + x_0) \sum_{\substack{y \in (-1) \\ y \in (-1) \\ y = 0}} (x_0 + x_0) \sum_{\substack{y \in (-1) \\ y \in (-1) \\ y = 0}} (x_0 + x_0) \sum_{\substack{y \in (-1) \\ y \in (-1) \\ y = 0}} (x_0 + x_0) \sum_{\substack{y \in (-1) \\ y \in (-1) \\ y = 0}} (x_0 + x_0) \sum_{\substack{y \in (-1) \\ y \in (-1) \\ y = 0}} (x_0 + x_0) \sum_{\substack{y \in (-1) \\ y \in (-1) \\ y = 0}} (x_0 + x_0) \sum_{\substack{y \in (-1) \\ y \in (-1) \\ y = 0}} (x_0 + x_0) \sum_{\substack{y \in (-1) \\ y \in (-1) \\ y = 0}} (x_0 + x_0) \sum_{\substack{y \in (-1) \\ y \in (-1) \\ y = 0}} (x_0 + x_0) \sum_{\substack{y \in (-1) \\ y \in (-1) \\ y = 0}} (x_0 + x_0) \sum_{\substack{y \in (-1) \\$$

v) Reasure in comp. Lass: - 06/air random y s. H. 9. y=0. (u-1) lan. rudep. vectors y: (over Z2) s.K., q. yi=0 allas to determine q (solve la. eq. - e.g. Gaussian cléunsehon). Space of low. dep. vectors of k vectors grows as 2k = O(1) chance to find randomly a love indep. vector - O(u) random y are knowf

= O(a) oracle quests are evoup (chapter IV pg 36

Classical: 2^{cm} guests (exponential) Quantum: c'in questes) speed-up O (a kous of oracle guestes)

Notes: . We don't have to measure B - we verer use the outcome! (But: Derivetion easter Kus way !) • Hou 2 (discrete) Fourse transform over E2

- period friding via Fourier branger

3. The quantum Tourr bransform, period Chapter pg 37 and Steor's factoring algorithm Can we go beyond Founder hafo on the (to 24, for N~2")? - Wheet is the offit transformation? - Can it be suplemented efficiently? Further reading: - What is it good for I A. Ekert and R. Jozsa, Quantum computation and Shor's factoring algorithm. Rev. Mod. Phys 68, 733 (1996) https:///doi.org/10.1103/RevModPhys.68.733 a) The Quantum Found Transform Discrete Forence have (FT) on CN: $\mathbf{x} = \left(\mathbf{x}_{oj}, \dots, \mathbf{x}_{N-1} \right) \in \mathbb{C}^{N}$ y = (yo, ..., yNT) € CN $FT: F: x \mapsto y \quad s.K. \quad y_k = \frac{1}{N} \sum_{j=0}^{\infty} x_j e$ $|j\rangle \longmapsto \frac{1}{N} \sum_{k=0}^{N-1} e^{2\epsilon i \int_{k}^{k} |k\rangle}$ Defruitor

Observe;

 $\frac{\sum x_j|_j}{j} \xrightarrow{\text{OFT}} \sum_{j'k} z_{j'} e^{2\pi j' k' N} |k\rangle = \sum g_k |k\rangle$ i.e.; QFT acts as discrete FT n amplitudes! Computational cost of classical FT: · O(N²) operations. · N~2" = exponential in # of 63 m N. · Fall FT (FFT): only O(NLONN), lout shill exponential ! · O(N) is lowor bound; recicular tome to even just output ye! Will see: QFT can be suplemented on a greanter

state in O(n2) steps

- comatral speedup?

(But only useful of reput is give as q. state!)

Step I: Rework QFT a brary

• Write j' etc. m brang:

$$j^{2} = j_{1}j_{2}j_{3}\cdots j_{n} = j_{1}^{2} \cdot 2^{n+1} + j_{2}^{2} \cdot 2^{n-2} + \dots + j_{n}^{2} \cdot 2^{n}$$

• "Decimal" pont restator:

$$0 \cdot jej_{e+1} - ju = \frac{1}{2}je + \frac{1}{4}je_{+1} + \frac{1}{2}u - e_{+1}ju$$

Then:

$$\begin{aligned} |j\rangle \longmapsto \frac{1}{2^{n/2}} & \sum_{k=0}^{2^{n-1}} e^{2\pi i \int \frac{k}{2^{n}}} e^{-\frac{2\pi i \int \frac{k}{2^{n}}}{k}} \\ &= \frac{1}{2^{n/2}} \sum_{k_{1}=0}^{l} \cdots \sum_{k_{n}=0}^{n} e^{2\pi i \int \frac{\pi}{2^{n/2}}} \left(\sum_{e=1}^{n} k_{e} 2^{-e} \right) |k_{i_{1}} \cdots k_{n}\rangle \\ &= \frac{1}{2^{n/2}} \sum_{k_{1}=0}^{l} \cdots \sum_{k_{n}=0}^{l} \left[\sum_{k_{n}=0}^{n} \left(e^{2\pi i \int k_{e} 2^{-e}} |k_{e}\rangle \right) \right] \\ &= \sum_{e=1}^{n} \left[\frac{1}{12} \sum_{k_{e}=0}^{n} e^{2\pi i \int k_{e} 2^{-e}} |k_{e}\rangle \right] \end{aligned}$$

 $= \bigotimes_{e=1}^{\infty} \frac{1}{\sqrt{2}} \left[107 + e^{2\pi i 2 e} 17 \right]^{Chapter IV, 1}$ $\int j' 2^{-e} = \underbrace{j_1 j_2 \cdots j_{u-e}}_{mhger} \cdot \underbrace{j_{u-e+1} \cdots j_{u}}_{mhger}$ $e^{2\pi i \left(j \cdot 2^{-e}\right)} = e^{2\pi i \cdot \left(n \log s + 0 \cdot j_u - c + \cdots \cdot j_u\right)}$ = e 2n' · 0. ju-e+ ... /2 $\frac{10) + e^{2\pi i 0 \cdot j_{u}} (1)}{(2)} = \frac{10) + e^{2\pi i 0 \cdot j_{u}} (1)}{(2)}$ 107+e22, 0, j, j2... jn/17 12 Step II: Implement this as a circuit. Cousides first only oftwoost term: $\frac{107 + e^{2\pi i 0.j_{1/2} ... j_{n}} |_{17}}{\sqrt{2}} = \frac{107 + e^{-2\pi i ... j_{2/2}} 2\pi i ... |_{17}}{\sqrt{2}}$ 107+ c^{201/2} e^{201 j2/4}/1) 107+ 2001/2 /17

- D Outputs the n-the quest of the QFT

on 1st gubit.

Contrue on Kis veri:

have count: $\frac{u(u+1)}{2} = O(u^2)$ gales!

Notes: · Output qubits a reverse orde (can re-order of needed: 1/2 swaps). - leaf = - Ral- com flip C-la jako Then, upper line acts as control on comp. babi. - If we measure directly after QFT in comp.

basis, we can uncasure before the C-Rd jaks & control Keen clastically:

Only one-qubt jaks needed (!!) (" Where is the greater - ness?")

6) Period pudity

Application of QFT: Find period of a function? (of Sun's algorthe)

Consider a pendolic function f: M -> {0,..., N-1}, such that Ir>0 with

f(x) = f(x+1), and f(x) + f(y) othersite.

Ou a computo, we can only compute for a trucated reput, $f: \{0, \dots, N \rightarrow \} \longrightarrow \{0, \dots, N \rightarrow \}$ = {0,13 m = {0,1]~

(la particular, the periodicity of f is broken across where 44 Loundary, if we kunk of f(xrr) = f((xrr) und N))

Can we find a better Kran classically ? (i.e., with much less than ~r queres to f)

Choose a such that 2">>

- In we have this specific lakes, how is superfection at had, superfighte, Note: Since we do not know r, we need to know some upper Sound on r - e.g., we can use that $r \in \Pi$.
- luplement le n quentem computer as hefore:

 $\mathcal{U}_{f}: \left\{ x \right\}_{A} \left\{ y \right\}_{A} \longrightarrow \left\{ k \right\}_{A} \left\{ y \right\}_{S} \left\{ x \right\}_{A} \left\{ y \right\}_{S}$

 $\frac{Mgonthu:}{1}$ $\frac{1}{2^{1/2}} \sum_{k=1}^{n} |x_{k}\rangle_{k} |y_{k}\rangle_{k} \xrightarrow{\mu} \frac{1}{2^{1/2}} \sum_{k=1}^{n} |f(x_{k})\rangle_{k} \xrightarrow{\mu} \frac{1}{2^{1/2}} \sum_{k=1}^{n} |f(x_{k})\rangle_{k}$ $(2) Reasure & register. For result |f(x_{0})\rangle_{0},$ A collepses to $\frac{1}{|F_{0}|} \sum_{k=0}^{n-1} |x_{0} + kr\rangle$

-here, $0 \le x_0 < r$, and $\frac{2^4}{r} - l < k_0 \le \frac{7}{r}$.

$$= \sum_{l=0}^{2^{n}-1} e^{2\epsilon i \kappa \epsilon l/2^{n}} \sum_{k=0}^{k_{0}-1} \frac{1}{2^{\frac{n}{2}} k_{0}} e^{2\epsilon i k \epsilon l/2^{n}} |e\rangle_{A}$$

$$= \sum_{l=0}^{2^{n}-1} e^{2\epsilon i \kappa \epsilon l/2^{n}} \sum_{k=0}^{2^{n}-1} \frac{1}{2^{\frac{n}{2}} k_{0}} e^{2\epsilon i k \epsilon l/2^{n}} |e\rangle_{A}$$

= ! 90

(4) Measure on computational bass: lac l'é probability to astach entronne l luhuhrely: ae & Ze e 25 k (1/24) pealed around portes & where $\frac{re}{2^n}$ is close to an integes? (- Will quantify this in a moment!)

Intutive preture:

(General Jeakins of Fourier bransforms wokeny quantue!)

- can dekruche multiple of 24 Chapter IV, pg 47

massing l (How to get r? Late!)

Detailed analysis of lact?: How much total weight is a at lack with

 $l = \frac{2^{\prime}}{\tau} \cdot s + \delta_{s}; \quad \delta_{s} \in \left(-\frac{1}{2}; \frac{1}{2}\right); \quad s = 0, \dots, r-1$ (i.e. only line (which are closest to 27.s)

 $\equiv \int \frac{l}{2} u$ $\begin{aligned}
\mathcal{H}_{\text{len}} \quad \hat{q}_{e} &= \frac{1}{2^{\frac{n}{2}} \sqrt{1_{e}}} \quad \frac{k_{o}^{-1}}{\sum_{k=0}^{2\pi i k}} \quad e^{2\pi i k} \left(\frac{s + \frac{r}{2^{n}} \sigma_{s}}{\sum_{k=0}^{n} \sigma_{s}} \right) \\
&= \frac{1}{2^{\frac{n}{2}} \sqrt{1_{e}}} \quad \frac{e^{2\pi i \frac{r}{2^{n}} \sigma_{s}} k_{o}}{e^{2\pi i \frac{r}{2^{n}} \sigma_{s}}} - 1 \\
\end{aligned}$

 $\frac{2^{\prime\prime}}{r} - 1 < k_0 \leq \frac{2^{\prime\prime}}{r}, \text{ and } r << 2^{\prime\prime}:$ $\frac{k_0 r}{2^{\prime\prime}} = 1 - \varepsilon, \quad 0 \leq \varepsilon < \frac{r}{2^{\prime\prime}} << 1.$

 $= \frac{1}{2^{4/2}} \frac{e}{1} \frac{1}{e^{2\pi i} \frac{1}{2^{4}} \frac{1}{1}} \frac{e}{1} \frac{1}{2^{4}} \frac{1}{2^{4}} \frac{1}{1} \frac{1}{2^{4}} \frac$ Chapter IV, pg 48 |sinx| > 1×1 a clev. intered $|q_{e}|^{2} = \frac{1}{2^{n}k_{o}} \left(\frac{|8m(T\delta_{s}(1-\varepsilon))|}{|8m(\frac{TT}{2^{n}}\delta_{s})|} \right)$ $|\mathcal{SL} \times | \leq | \times |$ $\frac{\frac{\pi^{2} S_{s}^{2} (1-\varepsilon)^{2}}{\pi^{2}/4}}{\frac{\pi^{2} r^{2}}{(2^{4})^{2}} S_{s}^{2}}$ $\geq \frac{1}{2^{\prime}k_{\circ}}$ (1-E)² kor $=\frac{4}{\pi^2}\frac{1}{\gamma}$ 21-2 $= \frac{4}{\pi^2} \frac{1}{\sqrt{1-\epsilon}} \approx \frac{4}{\pi^2} \frac{1}{\sqrt{\epsilon}}$ (can be early made more quarkkne, usny Ec T !)

Since
$$S = 0, ..., r-1$$
: Total probability that
 $\left|e - \frac{2^{n}}{r} s\right| \leq \frac{1}{2}$ for one such $s: P \geq \frac{4}{T^{2}} \approx 0.41$
Uith sufferently high probability — we will see
that we can check necess and thus repeat
(until we proceed! — we obtack an e

Hat we can cleak maces and thus repeat
until we necess? - we obtain an
$$\ell$$

s. th. $\ell = \frac{2^{-}}{r}s + \delta_{s}$, and thus,
 $\frac{\ell}{2^{u}} \approx \frac{S}{r}$,

s. K.,
$$l = \frac{2^n}{r}s + \delta_s$$
, and Kus,

$$\frac{l}{2^{\alpha}} \approx \frac{S}{r},$$

where s is chosen uniformly at random,

If we choose rece?" suitably, there is only our mole reports $\frac{s}{r}$ with $\left| l - \frac{2}{r} s \right| \leq \frac{1}{2}$, and I can be found efficiently. (See further reading.) Specifically, it suffices to choose $N = 2^{k} = (2^{m})^{2} = 17^{2}$, i.e. u = 2u, and since $\Pi \ge r$: $2^{u} >> 2^{u/2} > r$.

If s and r are (o - prime, i.e. ged(r, spece),we can infer r fram $\frac{s}{r}$. This happens with probability at least $p(ged(s, r) = 1) \ge \frac{1}{\log r} \ge \frac{2}{\log_2} \cdot \frac{1}{\omega}$. (at least all produces $2 \le s \le r$ are good, and density of produces goes as $\frac{1}{\log r}$.) $\Rightarrow with O(u)$, iterations, we find a scoprodue with r.

Ouce we have used this to attach a guess for r, we can that whether f(x) = f(x+r), and repeat auch succes!

= Efficient algorithe for period fudry.

~ O(a) applications of f required!

c) Application: Factorily Algorithe

Factory; Given NEW (not prime), frud

fEN, f=1, such that fIN.

(Note: Portuality of N can "f divides N" be checked eficiently.)

This can be solved efficiently if we have an efficient method for period fudiry!

Shetch of algorithe :

 $\mathcal{L} \leq q < \mathcal{N}.$ 1) felect a random a ,

= dave, f=gcd(q,N)! If gcd(a, N) > 1Cef. computette!

Thus: Assume god (a, N) = 1.

2) Kusk by Mu mullest x>0 that IV, pg 52 a mod N = 1. - that is, the period of fn,a (x) := a x mod N r is called the order of a mod N. (Note: Some 271 S.K. a² mod N=6 must ext filice ∃ x, y ∈ {1,..., N}: a = a und N (counting possibilities) $\Rightarrow a^{X} (1 - a^{Y-X}) \equiv 0 \mod N$ lecal "Epicient" recaus "polycomial $\rightarrow N | (a^{\times} (1 - a^{y^{-x}}))$ gcd(q,N)=L $pN(l-ay^{-x})$ m # of dy, h of N = D a y = 1 mod N **G**) Freshermore, fra (x) can be computed effectives: $ll h y = x_{m-1}^{2} + x_{m-2}^{2} + \dots$

 $a \mod N = \left(a^{\binom{2^{m}}{2^{m}}}\right)^{\binom{m}{m}} \left(a^{\binom{2^{m-2}}{2^{m-2}}}\right)^{\binom{m}{m-2}} \underbrace{u \circ dN}_{m \circ dN}$

ef. computable via repeated squery mod N: $\equiv (a^2 \mod N)^2 \mod N$ a > a mod N > a mod N > ...,

by dony "mod N" in each ship the numbers don't require an exp.

under of dight. O(a) multiplications of underst mundes.

- r can be found eficitudly with a quantum computer!

(3) Assume for now reven:

a mod N = 1

 $\rightarrow N | (a'-1) \rangle$ $4 = P N \left(a^{r/2} + 1 \right) \left(a^{r/2} - 1 \right)$

However, we also know that N/ (Chapter IV,)pg 54 price othercoise a 1/2 mod N = 14 doe not divide $= D either N | a^{1/2} + 1$ or N has un-myral common factors with $5 \text{ ML} a^{1/2} \pm 1$, $\implies 1 \neq f := gcd(N, a^{1/2}+1) | N$ => found a un-trivial factor f of N! - Algoorthin will succeed as long as (i) reven (ii) $N \neq (a^{1/2}+1)$ Ruis can be shown to happen with prob. = 1/2 for a random choice of a (see purker ready) - unless either N is even (can be checked efferterky), or N=pk, pprime

(can also be checked efficiently by harpetering 55 roob; Kur are my O(Cog(N)) roots which one has to deck!) - and on both cases, this goves a un - towal factor !

= eficient Quentum Algorithe for Factory.

"Shor's algorithen"

4. Grover's algorithe

For many herd computational produces, it is possible to deed a solution efficiently, but we don't know

how to find it.

So-called "NP problems" (un-dekruiuthe polynomial)

Nany makershy problems are of Kus type: - greph colorny - factoring - 3-SAT - they prokens - Ham House path - travelley sales wan (mildly ploated)

Reformulation of NP problems;

We have an effectulty computable purcher

f(x) e {0, 1}; x e {0, 1, ..., N-1} efficient =

Chapter IV, pg 57

(Can be interpreted as "detabere rearch": Want to frud a "marked clement" xo n au un-Amchured detabere.)

We assume for nor that Xo: f(xo) = 1 is unique. (Cauralization: Cato/ Lancwork)

Classically; Will used O(N) queres to f for an unstructured search (i.e., without using propubre JJ).

Whe see that O(IN) queries are enough, Quan hereby:

(Nok; Rus is only a quadratic speedup, htp: Into the Impless

to a very lage class of very relevant problems.)

Consider $f: \{0, ..., N-1\} \rightarrow \{0, 1\}$ CN=2": Lqubb

hegraliat 1:

Oracle $O_{f}: |x\rangle \longmapsto (-1)^{f(x)} |x\rangle = (-1)^{\delta_{x,x_{0}}} |x\rangle$ i.e. Og plips auplitude of "marked" element. Can also work as $O_f = I - 2(x_0 \times x_0)$

Can build of from ly via phax leich-back kelvigne: $\frac{|x\rangle}{6} - \frac{u_f}{6} + \frac{1000}{6} + \frac{100$

 $\omega \mathcal{K} | \omega \rangle = \frac{1}{N} \sum_{x=0}^{N-1} | x \rangle.$

Grover's algorither:

1) Start from 140>=1w>=H⁰⁴/0>

2) Repeat : Apply Grover Acraha $G = -H^{0}O_{f}H^{0}O_{f} = (-Q_{s})O_{f}$

 $|\psi_{\mathbf{k}}\rangle \longrightarrow |\psi_{\mathbf{k}+1}\rangle = G|\psi_{\mathbf{k}}\rangle = (-O_{\omega})O_{\mathbf{f}}|\psi_{\mathbf{k}}\rangle.$ (How many trues? - Soon!) How to analyte trajectory " 140) -142 -142 -? lecall: Of = I - 2/× X×0/ $-O_{\omega} = 2/\omega \chi \omega / - T$ and moreover, (40) = /w). => Only two special vectors in 140, 0f, -Ow: (xo) and (w). The identity I will lest cleange theore vectors, => The dynamics /4,> >/4,> ->/4,> ->/4,? ->... talues place a span { 1x5, 107}, i.e.,

a two dirucestonal space

Two wahral ONBS for Men's space:

 $|x_{0}\rangle$ $|x_{0}\rangle := \frac{1}{\sqrt{NT}} \sum_{\substack{X \neq X_{0}}} |x\rangle$ $\ll |\omega\rangle - |x_{0}\rangle < \frac{1}{\sqrt{N}}$

And another basis lw with $(\omega | \omega^{\perp}) = 0$ lw) of course, any vector in span {1/6}, lu) s can be expanded in ether basis

 $|\psi\rangle = a|\kappa\rangle + 6|\kappa^{\perp}\rangle = x|\omega\rangle + y|\omega^{\perp}\rangle$

What is the effect of Og and (-Ow) on 142?

 $D_{f}(\psi) = O_{f}(a|\psi) + b|\psi) = -a|\psi\rangle + b|\psi'\rangle$ 0,= I-2/~X~1

Chapter IV, pg 62

=) Of reflects /4> about /x6+> !

 $(-0_{\omega})|\psi\rangle = (-0_{\omega})(\chi|\omega\rangle + \chi|\omega^{\perp}\rangle)$ $= -(-x/\omega + y/\omega^{1}) = x/\omega - y/\omega^{1}.$ $O_{ij} = I - 2/\omega \chi \omega$

= (-Ow) reflects /4> about /w>!

Turs; each Grove Acraha courth of two steps: (i) reflect about (xo) (ii) reflect about (w> What happens now if we start with 140>=/4> and apply one iteration? lω) = 824 φ | x> + cosφ | x¹>. $|\chi_{1}\rangle = O_{f} |\omega\rangle$

 $|\psi_1\rangle = (-\omega_{\omega})|\chi_1\rangle = (-\omega_{\omega})|\omega\rangle$

14,7= m (34)/6> + cos (34)/61> **†**>

Next Groves Acreha: $|\psi_2\rangle = (-\partial_{cs}) \frac{\partial_f}{\partial_f} \frac{|\psi_1\rangle}{|\psi_2\rangle}$ $=:/\chi_2$

1422 = 8m (Sq) /x>+ co (Sq) /x1>

Can contruce ... :

 $- \gamma / \psi_{k} > = \delta m \left((2kH) \varphi \right) / \kappa_{0} > + co \left((2kH) \varphi \right) / \kappa_{0}^{1} >$

Want that $(2kH) \varphi \approx \frac{\pi}{2}$: Rea, we are went n comp. bass will return [xs) with high prob.! Since $|\omega\rangle = \frac{1}{N} |x_0\rangle + \left(\frac{N-1}{N} |x_0'\rangle\right)$ = 8mg/x3> + cos y /x5-> $= \frac{8\pi \varphi}{\cos \varphi} = \frac{\left(\frac{1}{N}\right)}{\left(\frac{N}{N}\right)} = \frac{1}{\sqrt{N-1}}$ \rightarrow for large N, $\varphi \approx \frac{1}{N}$. - Need k = The in Gover iterations. - O((N) calls to f (for J) sufficient! Quadratic speed-up with respect to classical algorithens for jueral search proteens!

Note:

o If there are K>1 solutions: Same method with O((K) steps works (- howework)

· Can also be adapted to care where

under of solutions is unknown