Lecture & Proseminar 250078/250042
“Quantum Information, Quantum Computation, and Quantum Algorithms” WS 2024/25

— Exercise Sheet #1 —

Problem 1: Pauli matrices

Recall the Pauli matrices from the lecture, which in the computational basis {|0),|1)} are of the form

0 1 0 —1 1 0

1. Show that the Pauli matrices are all Hermitian, unitary, square to the identity, and different Pauli
matrices anticommute, i.e., 0;0; = —0jo; if i # 7.

2. Check the relation o405 = ny t€apyoy + 0apl (o, 8,7 =1,2,3), where

® 0,3 is the Kroenecker delta, i.e., do3 = 1 if @ = 3 and 0 otherwise,

e and €,p4 is the fully antisymmetric tensor, i.e., €123 = €231 = €312 = 1, €321 = €213 = €132 =
—1, and zero otherwise.

3. The trace tr[X] is defined as the sum of the diagonal elements of X, i.e., tr[X] := >, X;;. Determine
tr[l], tr[on], and tr[oqop].

4. Write each operator X, Y and Z using bra-ket notation with states from the computational basis.
5. Find the eigenvalues e; and eigenvectors |v;) (¢ = 0,1) for each Pauli matrix ¢ (expressed in the

computational basis), and check that o = eg|vg){vg| + e1]v1){v1| holds.

Problem 2: Matrix spaces as Hilbert spaces

Let V; be the space of all complex d x d matrices, and Wy C Vg the space of all hermitian complex d x d
matrices (i.e. for M € Wy, M = MT).

1. Show that V; forms a vector space over C, and Wy forms a vector space over R, but not over C:
that is, in V3 you can take complex linear combinations, while in W, only real linear combinations.
In the following we will always consider Vy as a complex and Wy as a real vector space.

2. Show that the Pauli matrices together with the identity oo, ¥ := {0;}3_,, form a basis for both Vs,
(over C) and W, (over R).

3. Show that
(A, B) = tr[ATB]

defines a scalar product (the “Hilbert-Schmidt scalar product”) both for V; and for Wﬂ Here,
tr[X] is the trace, i.e., the sum of the diagonal elements.

4. Show that the Pauli matrices 3 form an orthogonal basis with respect to the Hilbert-Schmidt scalar
product.

5. Use the fact that for any scalar product (7, @) and a corresponding ONB ;, we can write

U= Wi (W, V)

to express a general matrix in M € Vs, as

M:Zmiai .

What is the form of the m;? What special property do the m; satisfy for M € W57

LA scalar product (.,.) on a real vector space is bilinear, symmetric, i.e., (A, B) = (B, A) and positive definite: (4, A) >0
and (A, A) =0 if and only if A = 0. Note that the only difference between real and complex scalar product is that in the
complex case the scalar product is conjugate linear in the first variable, not linear.



6.

Show that a hermitian orthonormal basis also exists for V; and W,. (Ideally, explicitly construct
such a basis.)

Problem 3: Eigenvectors

In the following H is a finite dimensional Hilbert space (C? with the usual scalar product), and B(H) is
the set of d x d matrices.

1.

2.

Let A € B(H), and Al its conjugate transpose. Show that (w|Av) = (ATw|v) for any |v), |w) € H.
Let A € B(H) be self-adjoint, i.e. A = Af. Using item 1, show that any eigenvalue of A is real.

Let A € B(H) be self-adjoint, i.e. A = Af. Using item 1, show that if [v) is an eigenvector with A
and |w) is an eigenvector with u # A, then (w|v) = 0.

Let A € B(H), and let the set {\;}_; be a subset of its eigenvalues. For each i = 1,...,n let

|v;) be an eigenvector. Show that the set {|v;)}"; is linearly independent. Hint: consider the

polynomia (A7?§€¥f5A3{ /\) “‘_(f;))‘”l) acting on a linear combination of such vectors (here I is the

identity matrix).

Let A € B(H). Assume that it has d linearly independent eigenvectors, |v1), ... |vq), with eigenval-
ues Ai,...,A\qg. Let X =" |v;)(¢]. Show that

e X is invertible, and

e if |v1),...|ug) are orthogonal, then X is unitary, and

e A=XDX', where D =3, \;|i)(i|.

2a polynomial is an expression of the form p(z) = ¢ 4+ c1& + - - 4+ c,2®. The polynomial of the matrix A is another
matrix of the form p(A) = col +c1 A+ c2AZ + ... ¢, AF.



