
Lecture & Proseminar 250078/250042

“Quantum Information, Quantum Computation, and Quantum Algorithms” WS 2024/25

— Exercise Sheet #1 —

Problem 1: Pauli matrices

Recall the Pauli matrices from the lecture, which in the computational basis {|0⟩, |1⟩} are of the form

X = σx = σ1 =

(
0 1
1 0

)
, Y = σy = σ2 =

(
0 −i
i 0

)
Z = σz = σ3 =

(
1 0
0 −1

)
.

1. Show that the Pauli matrices are all Hermitian, unitary, square to the identity, and different Pauli
matrices anticommute, i.e., σiσj = −σjσi if i ̸= j.

2. Check the relation σασβ =
∑

γ iεαβγσγ + δαβI (α, β, γ = 1, 2, 3), where

• δαβ is the Kroenecker delta, i.e., δαβ = 1 if α = β and 0 otherwise,

• and εαβγ is the fully antisymmetric tensor, i.e., ε123 = ε231 = ε312 = 1, ε321 = ε213 = ε132 =
−1, and zero otherwise.

3. The trace tr[X] is defined as the sum of the diagonal elements ofX, i.e., tr[X] :=
∑

i Xii. Determine
tr[I], tr[σα], and tr[σασβ ].

4. Write each operator X, Y and Z using bra-ket notation with states from the computational basis.

5. Find the eigenvalues ei and eigenvectors |vi⟩ (i = 0, 1) for each Pauli matrix σ (expressed in the
computational basis), and check that σ = e0|v0⟩⟨v0|+ e1|v1⟩⟨v1| holds.

Problem 2: Matrix spaces as Hilbert spaces

Let Vd be the space of all complex d× d matrices, and Wd ⊂ Vd the space of all hermitian complex d× d
matrices (i.e. for M ∈ Wd, M = M†).

1. Show that Vd forms a vector space over C, and Wd forms a vector space over R, but not over C:
that is, in Vd you can take complex linear combinations, while in Wd only real linear combinations.
In the following we will always consider Vd as a complex and Wd as a real vector space.

2. Show that the Pauli matrices together with the identity σ0, Σ := {σi}3i=0, form a basis for both V2

(over C) and W2 (over R).

3. Show that
(A,B) = tr[A†B]

defines a scalar product (the “Hilbert-Schmidt scalar product”) both for Vd and for Wd
1. Here,

tr[X] is the trace, i.e., the sum of the diagonal elements.

4. Show that the Pauli matrices Σ form an orthogonal basis with respect to the Hilbert-Schmidt scalar
product.

5. Use the fact that for any scalar product (v⃗, w⃗) and a corresponding ONB w⃗i, we can write

v⃗ =
∑
i

w⃗i(w⃗i, v⃗) ,

to express a general matrix in M ∈ V2 as

M =
∑

miσi .

What is the form of the mi? What special property do the mi satisfy for M ∈ W2?

1A scalar product (., .) on a real vector space is bilinear, symmetric, i.e., (A,B) = (B,A) and positive definite: (A,A) ≥ 0
and (A,A) = 0 if and only if A = 0. Note that the only difference between real and complex scalar product is that in the
complex case the scalar product is conjugate linear in the first variable, not linear.



6. Show that a hermitian orthonormal basis also exists for Vd and Wd. (Ideally, explicitly construct
such a basis.)

Problem 3: Eigenvectors

In the following H is a finite dimensional Hilbert space (Cd with the usual scalar product), and B(H) is
the set of d× d matrices.

1. Let A ∈ B(H), and A† its conjugate transpose. Show that ⟨w|Av⟩ = ⟨A†w|v⟩ for any |v⟩, |w⟩ ∈ H.

2. Let A ∈ B(H) be self-adjoint, i.e. A = A†. Using item 1, show that any eigenvalue of A is real.

3. Let A ∈ B(H) be self-adjoint, i.e. A = A†. Using item 1, show that if |v⟩ is an eigenvector with λ
and |w⟩ is an eigenvector with µ ̸= λ, then ⟨w|v⟩ = 0.

4. Let A ∈ B(H), and let the set {λi}ni=1 be a subset of its eigenvalues. For each i = 1, . . . , n let
|vi⟩ be an eigenvector. Show that the set {|vi⟩}ni=1 is linearly independent. Hint: consider the

polynomial2 (A−λ2I)(A−λ3I)...(A−λnI)
(λ1−λ2)...(λn−λ1)

acting on a linear combination of such vectors (here I is the

identity matrix).

5. Let A ∈ B(H). Assume that it has d linearly independent eigenvectors, |v1⟩, . . . |vd⟩, with eigenval-
ues λ1, . . . , λd. Let X =

∑
i |vi⟩⟨i|. Show that

• X is invertible, and

• if |v1⟩, . . . |vd⟩ are orthogonal, then X is unitary, and

• A = XDX−1, where D =
∑

i λi|i⟩⟨i|.

2a polynomial is an expression of the form p(x) = c0 + c1x + · · · + ckx
k. The polynomial of the matrix A is another

matrix of the form p(A) = c0I + c1A+ c2A2 + . . . ckA
k.


