Lecture & Proseminar 250078/250042 "Quantum Information, Quantum Computation, and Quantum Algorithms" WS 2024/25

— Exercise Sheet $\#10$ —

Problem 1: Working with the 3-qubit bit flip code

In this problem, we will study how to work with the 3-qubit bit flip code, i.e., how to explicitly perform the error correction, and also look at how to implement some gates without decoding the information.

- 1. Consider a qubit encoded with the 3-qubit code. Find a circuit which measures the error syndrome (i.e. which of the three qubits, if any, differs from the others), consisting of elementary gates and single-qubit measurements in the computational basis, and possibly using ancillas in the |0⟩ state. (You should only need CNOT gates.) For each measurement outcome, give the correction operation.
- 2. Show that instead of measuring the ancillas, we can also perform quantum gates for the correction, and then discard (trace out) the ancillas, without the need for a measurement. Can this also be done only with CNOTs and simple single-qubit gates (Hadamard, Pauli)?
- 3. Show that the Pauli operators on the encoded (logical) qubit can be implemented by acting with single-qubit gates on the physical qubits, without decoding the code. (Again, single-qubit Paulis should suffice.)
- 4. Now consider two qubits, each encoded with a 3-qubit code. What happens when we apply CNOT gates between all three pairs of physical qubit (i.e. between qubit 1 of the 1st qubit and qubit 1 of the 2nd qubit, etc.)? (Logical gates which can be implemented in this way are called transversal gates; note that the same property also holds for the Paulis above.)

Problem 2: Grover's algorithm with multiple marked elements.

Consider the Grover search problem of finding x_0 such that $f(x_0) = 1$ for a given function $f : \{0, N-1\} \to$ $\{0,1\}$. In the lecture, we derived Grover's algorithm which finds x_0 given that it is unique. In this problem, we will derive a generalization of Grover's algorithm which allows to tackle the search problem in the case where there are $K > 1$ solutions x to the equation $f(x) = 1$. The goal is to find one x with $f(x) = 1$ with high probability.

The oracle is constructed the same way as before, i.e., it acts as

$$
O_f = \mathbb{I} - 2 \sum_{x:f(x)=1} |x\rangle\langle x|.
$$

The algorithm proceeds the same way as before, namely, by starting in the state $|\omega\rangle$ (given in the lecture), repeatedly applying Grover iterations $G = -O_{\omega}O_f$ (with O_{ω} as in the lecture), and finally measuring in the computational basis.

- 1. Show that O_f can be obtained from $U_f : |x\rangle |y\rangle \mapsto |x\rangle |y \oplus f(x)\rangle$.
- 2. Show that the Grover iteration G leaves the space $S = \text{span}(|\omega\rangle, |x_0\rangle)$ invariant, where $|\omega\rangle$ is as in the lecture, and

$$
|x_0\rangle \propto \sum_{x:f(x)=1} |x\rangle.
$$

- 3. What is the action of G on a state in \mathcal{S} ?
- 4. For a given number of solutions K , how many times do we have to apply G to get a good overlap with $|x_0\rangle$? What result will we get when measuring in the computational basis?
- 5. Compare this to the scaling of the classical algorithm (i.e. trying random x until a solution is found).

Problem 3: Quantum counting.

Consider the same setting and notation as in Problem 2 on this sheet. Here, we will use a combination of Grover iterations G and phase estimation (Problem 1 on Sheet $#9$) to estimate ("count") the number K of solutions up to some error δK . Our goal will be to understand how the accuracy δK scales with the number Q of queries to f (or U_f).

- 1. First, determine the scaling δK for classical counting: Since we assume that f is a black-box function, the best we can classically do is to sample Q random values x_i , $i = 1, \ldots, Q$, compute $f(x_i)$, and use this to estimate K. What is the error δK as a function of Q (and K, N)?
- 2. We will now construct a quantum algorithm for estimating K . First, determine the eigenvalues $e^{i\theta_k}$, $k = 1, 2$, of G restricted to the subspace S. (This is most easily done by observing that G is a rotation by an angle 2ϕ with $\sin \phi = \sqrt{K/N}$ – cf. Problem 2 – in this two-dimensional space.)
- 3. Now assume we are given one of the corresponding eigenvectors $|\theta_k\rangle$. We can now use the phase estimation algorithm to determine the phase $\theta_k/2\pi$ corresponding this eigenvector up to some number d of digits. What is the number of queries to O_f required for that? What is the resulting accuracy of θ_k ? (You can assume that the phase estimation is exact, i.e. neglect the additional error arising from the fact that $\theta_k/2\pi$ does not stop after d digits.)
- 4. From θ_k , we can estimate K. What is the error δK as a function of Q (and K, N)?
- 5. Show that this algorithm can be adapted to work also if we cannot prepare the state $|\theta_k\rangle$, but rather start in some other easy-to-prepare state in the subspace S .