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— Exercise Sheet #10 —

Problem 1: Working with the 3-qubit bit flip code

In this problem, we will study how to work with the 3-qubit bit flip code, i.e., how to explicitly perform
the error correction, and also look at how to implement some gates without decoding the information.

1. Consider a qubit encoded with the 3-qubit code. Find a circuit which measures the error syndrome
(i.e. which of the three qubits, if any, differs from the others), consisting of elementary gates
and single-qubit measurements in the computational basis, and possibly using ancillas in the |0⟩
state. (You should only need CNOT gates.) For each measurement outcome, give the correction
operation.

2. Show that instead of measuring the ancillas, we can also perform quantum gates for the correction,
and then discard (trace out) the ancillas, without the need for a measurement. Can this also be
done only with CNOTs and simple single-qubit gates (Hadamard, Pauli)?

3. Show that the Pauli operators on the encoded (logical) qubit can be implemented by acting with
single-qubit gates on the physical qubits, without decoding the code. (Again, single-qubit Paulis
should suffice.)

4. Now consider two qubits, each encoded with a 3-qubit code. What happens when we apply CNOT
gates between all three pairs of physical qubit (i.e. between qubit 1 of the 1st qubit and qubit 1 of
the 2nd qubit, etc.)? (Logical gates which can be implemented in this way are called transversal
gates; note that the same property also holds for the Paulis above.)

Problem 2: Grover’s algorithm with multiple marked elements.

Consider the Grover search problem of finding x0 such that f(x0) = 1 for a given function f : {0, N−1} →
{0, 1}. In the lecture, we derived Grover’s algorithm which finds x0 given that it is unique. In this
problem, we will derive a generalization of Grover’s algorithm which allows to tackle the search problem
in the case where there are K > 1 solutions x to the equation f(x) = 1. The goal is to find one x with
f(x) = 1 with high probability.

The oracle is constructed the same way as before, i.e., it acts as

Of = I− 2
∑

x:f(x)=1

|x⟩⟨x| .

The algorithm proceeds the same way as before, namely, by starting in the state |ω⟩ (given in the lecture),
repeatedly applying Grover iterations G = −OωOf (with Oω as in the lecture), and finally measuring in
the computational basis.

1. Show that Of can be obtained from Uf : |x⟩|y⟩ 7→ |x⟩|y ⊕ f(x)⟩.

2. Show that the Grover iteration G leaves the space S = span(|ω⟩, |x0⟩) invariant, where |ω⟩ is as in
the lecture, and

|x0⟩ ∝
∑

x:f(x)=1

|x⟩ .

3. What is the action of G on a state in S?

4. For a given number of solutions K, how many times do we have to apply G to get a good overlap
with |x0⟩? What result will we get when measuring in the computational basis?

5. Compare this to the scaling of the classical algorithm (i.e. trying random x until a solution is
found).



Problem 3: Quantum counting.

Consider the same setting and notation as in Problem 2 on this sheet. Here, we will use a combination
of Grover iterations G and phase estimation (Problem 1 on Sheet #9) to estimate (“count”) the number
K of solutions up to some error δK. Our goal will be to understand how the accuracy δK scales with
the number Q of queries to f (or Uf ).

1. First, determine the scaling δK for classical counting: Since we assume that f is a black-box
function, the best we can classically do is to sample Q random values xi, i = 1, . . . , Q, compute
f(xi), and use this to estimate K. What is the error δK as a function of Q (and K, N)?

2. We will now construct a quantum algorithm for estimating K. First, determine the eigenvalues
eiθk , k = 1, 2, of G restricted to the subspace S. (This is most easily done by observing that G is
a rotation by an angle 2ϕ with sinϕ =

√
K/N – cf. Problem 2 – in this two-dimensional space.)

3. Now assume we are given one of the corresponding eigenvectors |θk⟩. We can now use the phase
estimation algorithm to determine the phase θk/2π corresponding this eigenvector up to some
number d of digits. What is the number of queries to Of required for that? What is the resulting
accuracy of θk? (You can assume that the phase estimation is exact, i.e. neglect the additional
error arising from the fact that θk/2π does not stop after d digits.)

4. From θk, we can estimate K. What is the error δK as a function of Q (and K, N)?

5. Show that this algorithm can be adapted to work also if we cannot prepare the state |θk⟩, but
rather start in some other easy-to-prepare state in the subspace S.


