Lecture & Proseminar 250121/250122

"Quantum Information, Quantum Computation, and Quantum Algorithms" WS 2025/26

— Exercise Sheet #2 —

Problem 4: Pauli matrices.

Recall the Pauli matrices from the lecture, which in the computational basis $\{|0\rangle, |1\rangle\}$ are of the form

$$X = \sigma_x = \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Y = \sigma_y = \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $Z = \sigma_z = \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

- 1. Show that the Pauli matrices are all hermitian, unitary, square to the identity, and different Pauli matrices anticommute.
- 2. Check the relation $\sigma_{\alpha}\sigma_{\beta}=\sum_{\gamma}i\varepsilon_{\alpha\beta\gamma}\sigma_{\gamma}+\delta_{\alpha\beta}I$ $(\alpha,\beta,\gamma=1,2,3)$, with $\varepsilon_{\alpha\beta\gamma}$ the fully antisymmetric tensor (i.e. $\varepsilon_{123}=\varepsilon_{231}=\varepsilon_{312}=1$, $\varepsilon_{321}=\varepsilon_{213}=\varepsilon_{132}=-1$, and zero otherwise).
- 3. The trace $\operatorname{tr}[X]$ is defined as the sum of the diagonal elements of X, i.e., $\operatorname{tr}[X] := \sum_i X_{ii}$. Determine $\operatorname{tr}[I]$, $\operatorname{tr}[\sigma_{\alpha}]$, and $\operatorname{tr}[\sigma_{\alpha}\sigma_{\beta}]$.
- 4. Write each operator X, Y and Z using bra-ket notation with states from the computational basis.
- 5. Find the eigenvalues e_i and eigenvectors $|v_i\rangle$ of the Pauli matrices (expressed in the computational basis), and write them in their diagonal form $e_1|v_0\rangle\langle v_0| + e_1|v_1\rangle\langle v_1|$.
- 6. Determine the measurement operators $\{E_i\}$ corresponding to a measurement of the Y observable. For a state $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, determine the probabilities for the different outcomes for a measurement of the Y observable, and find the corresponding post-measurement states.
- 7. Write all tensor products of Pauli matrices $\sigma_{\alpha} \otimes \sigma_{\beta}$ (including the identity $\sigma_0 = I$) as 4×4 matrices.

Problem 5: Matrix spaces as Hilbert spaces.

Let \mathcal{V}_d be the space of all complex $d \times d$ matrices, and $\mathcal{W}_d \subset \mathcal{V}_d$ the space of all hermitian complex $d \times d$ matrices (i.e. for $M \in \mathcal{W}_d$, $M = M^{\dagger}$).

- 1. Show that \mathcal{V}_d forms a vector space over \mathbb{C} , and \mathcal{W}_d forms a vector space over \mathbb{R} , but not over \mathbb{C} . We will in the following always consider \mathcal{V}_d as a complex and \mathcal{W}_d as a real vector space.
- 2. Show that the Pauli matrices together with the identity $I =: \sigma_0, \Sigma := {\{\sigma_i\}_{i=0}^3}$, form a basis for both \mathcal{V}_2 (over \mathbb{C}) and \mathcal{W}_2 (over \mathbb{R}).
- 3. Show that

$$(A,B) = \operatorname{tr}[A^{\dagger}B]$$

defines a scalar product (the "Hilbert-Schmidt scalar product") both for \mathcal{V}_d and for \mathcal{W}_d . Here, $\operatorname{tr}[X]$ is the trace, i.e., the sum of the diagonal elements.

- 4. Show that the Pauli matrices Σ form an orthonormal basis (ONB) with respect to the suitably rescaled Hilbert-Schmidt scalar product.
- 5. Use the fact that for any scalar product (\vec{v}, \vec{w}) and a corresponding ONB \vec{w}_i , we can write

$$\vec{v} = \sum_{i} \vec{w}_i(\vec{w}_i, \vec{v}) ,$$

to express a general matrix in $M \in \mathcal{V}_2$ as

$$M = \sum m_i \sigma_i \ .$$

What is the form of the m_i ? What special property do the m_i satisfy for $M \in \mathcal{W}_2$?

6. Show that a hermitian orthonormal basis also exists for V_d and W_d . (Ideally, explicitly construct such a basis.)

Problem 6: Unitary invariance and Bell states.

1. Show that the singlet state

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}} \left(|01\rangle_{AB} - |10\rangle_{AB}\right)$$

is invariant under joint rotations by the same 2×2 unitary U, i.e.,

$$|\Psi^-\rangle = (U \otimes U)|\Psi^-\rangle$$

for any special unitary matrix $U \in SU(2)$, i.e. $U^{\dagger}U = I$, det(U) = 1. How does this formula change when $det(U) \neq 1$?

2. Show that this implies that if we measure the spin in any direction \vec{v} , $|\vec{v}| = 1$ – this measurement is described by the measurement operator $S_{\vec{v}} = \sum_{i=1}^{3} v_i \sigma_i$, i.e. the projectors onto its eigenvectors – we obtain perfectly random and opposite outcomes.

(*Hint:* An elegant way of doing so is to first show that any $S_{\vec{v}}$ has the same eigenvalues as the Z matrix and therefore can be rotated to it, i.e., there exists a $U_{\vec{v}}$ s.th. $U_{\vec{v}}S_{\vec{v}}U_{\vec{v}}^{\dagger}=Z$. Note that there are very elegant ways to show that the eigenvalues are ± 1 as well!)

3. Determine the states

$$\begin{array}{ll} (X\otimes I)|\Psi^-\rangle\;, & (I\otimes X)|\Psi^-\rangle\;, \\ (Y\otimes I)|\Psi^-\rangle\;, & (I\otimes Y)|\Psi^-\rangle\;, \\ (Z\otimes I)|\Psi^-\rangle\;, & (I\otimes Z)|\Psi^-\rangle\;. \end{array}$$

In the light of point 1, why are they pairwise equal (up to global phases)? Note: Together with $|\Psi^-\rangle$, these are known as the four Bell states.

4. Show that the maximally entangled state

$$|\Omega\rangle = \sum_{i=1}^{d} |i, i\rangle$$

of two qu-d-its (i.e., systems with a Hilbert space \mathbb{C}^d) is invariant under $U \otimes \bar{U}$, where U is any $d \times d$ unitary, that is,

$$|\Omega\rangle = (U \otimes \bar{U})|\Omega\rangle$$
.