Lecture & Proseminar 250121/250122

“Quantum Information, Quantum Computation, and Quantum Algorithms” WS 2025/26

— Exercise Sheet #2 —

Problem 4: Pauli matrices.

Recall the Pauli matrices from the lecture, which in the computational basis {|0),|1)} are of the form

0 1 0 —i 1 0
Xszfl(l O)’ Y0y02<i OZ) Zazag(o _1>.

Show that the Pauli matrices are all hermitian, unitary, square to the identity, and different Pauli
matrices anticommute.

Check the relation o058 = Z’y 1€apy0y +0apl (o, 8,7 =1,2,3), with e,3, the fully antisymmetric
tensor (i.e. €123 = €931 = €312 = 1, €301 = €213 = €132 = —1, and zero otherwise).

The trace tr[X] is defined as the sum of the diagonal elements of X, i.e., tr[X] := >, X;;. Determine
tr[l], tr[oa], and tr[oqop].

Write each operator X, Y and Z using bra-ket notation with states from the computational basis.

Find the eigenvalues e; and eigenvectors |v;) of the Pauli matrices (expressed in the computational
basis), and write them in their diagonal form ej|vg){vo| + e1]v1){v1].

Determine the measurement operators {F;} corresponding to a measurement of the Y observ-
able. For a state |1} = «|0) 4+ 5|1), determine the probabilities for the different outcomes for a
measurement of the Y observable, and find the corresponding post-measurement states.

Write all tensor products of Pauli matrices 0, ®03 (including the identity og = I) as 4 x 4 matrices.

Problem 5: Matrix spaces as Hilbert spaces.

Let V4 be the space of all complex d x d matrices, and Wy C V; the space of all hermitian complex d x d
matrices (i.e. for M € Wy, M = MT).

1.

Show that V,; forms a vector space over C, and Wy forms a vector space over R, but not over C.
We will in the following always consider V; as a complex and W, as a real vector space.

Show that the Pauli matrices together with the identity I =: g, ¥ := {0;}3_,, form a basis for
both V5 (over C) and W, (over R).

Show that
(A, B) = tr[ATB]

defines a scalar product (the “Hilbert-Schmidt scalar product”) both for V; and for W;. Here,
tr[X] is the trace, i.e., the sum of the diagonal elements.

. Show that the Pauli matrices ¥ form an orthonormal basis (ONB) with respect to the suitably

rescaled Hilbert-Schmidt scalar product.

Use the fact that for any scalar product (¢, ) and a corresponding ONB ;, we can write

-

U= lﬁi(wi,’l)) s

to express a general matrix in M € V, as

M = Zmioi .

What is the form of the m;? What special property do the m; satisfy for M € W)?



6. Show that a hermitian orthonormal basis also exists for V; and W,. (Ideally, explicitly construct
such a basis.)

Problem 6: Unitary invariance and Bell states.

1. Show that the singlet state
1
™) = — ([01)ap — [10) aB)

V2

is invariant under joint rotations by the same 2 x 2 unitary U, i.e.,
) =UeU)¥)

for any special unitary matrix U € SU(2), i.e. UTU = I, det(U) = 1. How does this formula change
when det(U) # 17

2. Show that this implies that if we measure the spin in any direction ¥, |0] = 1 — this measurement
is described by the measurement operator Sy = Zle v;0;, i.e. the projectors onto its eigenvectors
— we obtain perfectly random and opposite outcomes.
(Hint: An elegant way of doing so is to first show that any Sz has the same eigenvalues as the Z

matrix and therefore can be rotated to it, i.e., there exists a Uy s.th. UgSgUg = Z. Note that there
are very elegant ways to show that the eigenvalues are +1 as well!)

3. Determine the states

Xeonlwm), ([IeX)v),
Yeonw-), (JeY)v),
(Zeonv™), (Tez)v).

In the light of point 1, why are they pairwise equal (up to global phases)?
Note: Together with |U~), these are known as the four Bell states.

4. Show that the maximally entangled state

d

) =) li.i)

=1

of two qu-d-its (i.e., systems with a Hilbert space C¢) is invariant under U ® U, where U is any
d X d unitary, that is, B
Q) =(UeU)Q) .



