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“Quantum Information, Quantum Computation, and Quantum Algorithms” WS 2025/26

— Exercise Sheet #2 —

Problem 4: Pauli matrices.

Recall the Pauli matrices from the lecture, which in the computational basis {|0⟩, |1⟩} are of the form

X = σx = σ1 =

(
0 1
1 0

)
, Y = σy = σ2 =

(
0 −i
i 0

)
Z = σz = σ3 =

(
1 0
0 −1

)
.

1. Show that the Pauli matrices are all hermitian, unitary, square to the identity, and different Pauli
matrices anticommute.

2. Check the relation σασβ =
∑

γ iεαβγσγ +δαβI (α, β, γ = 1, 2, 3), with εαβγ the fully antisymmetric
tensor (i.e. ε123 = ε231 = ε312 = 1, ε321 = ε213 = ε132 = −1, and zero otherwise).

3. The trace tr[X] is defined as the sum of the diagonal elements ofX, i.e., tr[X] :=
∑

iXii. Determine
tr[I], tr[σα], and tr[σασβ ].

4. Write each operator X, Y and Z using bra-ket notation with states from the computational basis.

5. Find the eigenvalues ei and eigenvectors |vi⟩ of the Pauli matrices (expressed in the computational
basis), and write them in their diagonal form e1|v0⟩⟨v0|+ e1|v1⟩⟨v1|.

6. Determine the measurement operators {Ei} corresponding to a measurement of the Y observ-
able. For a state |ψ⟩ = α|0⟩ + β|1⟩, determine the probabilities for the different outcomes for a
measurement of the Y observable, and find the corresponding post-measurement states.

7. Write all tensor products of Pauli matrices σα⊗σβ (including the identity σ0 = I) as 4×4 matrices.

Problem 5: Matrix spaces as Hilbert spaces.

Let Vd be the space of all complex d× d matrices, and Wd ⊂ Vd the space of all hermitian complex d× d
matrices (i.e. for M ∈ Wd, M =M†).

1. Show that Vd forms a vector space over C, and Wd forms a vector space over R, but not over C.
We will in the following always consider Vd as a complex and Wd as a real vector space.

2. Show that the Pauli matrices together with the identity I =: σ0, Σ := {σi}3i=0, form a basis for
both V2 (over C) and W2 (over R).

3. Show that
(A,B) = tr[A†B]

defines a scalar product (the “Hilbert-Schmidt scalar product”) both for Vd and for Wd. Here,
tr[X] is the trace, i.e., the sum of the diagonal elements.

4. Show that the Pauli matrices Σ form an orthonormal basis (ONB) with respect to the suitably
rescaled Hilbert-Schmidt scalar product.

5. Use the fact that for any scalar product (v⃗, w⃗) and a corresponding ONB w⃗i, we can write

v⃗ =
∑
i

w⃗i(w⃗i, v⃗) ,

to express a general matrix in M ∈ V2 as

M =
∑

miσi .

What is the form of the mi? What special property do the mi satisfy for M ∈ W2?



6. Show that a hermitian orthonormal basis also exists for Vd and Wd. (Ideally, explicitly construct
such a basis.)

Problem 6: Unitary invariance and Bell states.

1. Show that the singlet state

|Ψ−⟩ = 1√
2
(|01⟩AB − |10⟩AB)

is invariant under joint rotations by the same 2× 2 unitary U , i.e.,

|Ψ−⟩ = (U ⊗ U)|Ψ−⟩

for any special unitary matrix U ∈ SU(2), i.e. U†U = I, det(U) = 1. How does this formula change
when det(U) ̸= 1?

2. Show that this implies that if we measure the spin in any direction v⃗, |v⃗| = 1 – this measurement

is described by the measurement operator Sv⃗ =
∑3

i=1 viσi, i.e. the projectors onto its eigenvectors
– we obtain perfectly random and opposite outcomes.

(Hint: An elegant way of doing so is to first show that any Sv⃗ has the same eigenvalues as the Z

matrix and therefore can be rotated to it, i.e., there exists a Uv⃗ s.th. Uv⃗Sv⃗U
†
v⃗ = Z. Note that there

are very elegant ways to show that the eigenvalues are ±1 as well!)

3. Determine the states

(X ⊗ I)|Ψ−⟩ , (I ⊗X)|Ψ−⟩ ,
(Y ⊗ I)|Ψ−⟩ , (I ⊗ Y )|Ψ−⟩ ,
(Z ⊗ I)|Ψ−⟩ , (I ⊗ Z)|Ψ−⟩ .

In the light of point 1, why are they pairwise equal (up to global phases)?

Note: Together with |Ψ−⟩, these are known as the four Bell states.

4. Show that the maximally entangled state

|Ω⟩ =
d∑

i=1

|i, i⟩

of two qu-d -its (i.e., systems with a Hilbert space Cd) is invariant under U ⊗ Ū , where U is any
d× d unitary, that is,

|Ω⟩ = (U ⊗ Ū)|Ω⟩ .


