Lecture & Proseminar 250121/250122

"Quantum Information, Quantum Computation, and Quantum Algorithms" WS 2025/26

— Exercise Sheet #6—

Problem 16: Quantum channels.

In this problem, we will study some commonly appearing quantum channels. In addition to the problems listed, verify for each channel that it is a CPTP map (completely positive trace preserving map) and give its Kraus representation.

1. Dephasing channel. This channel acts as

$$\mathcal{E}(\rho) = (1 - p) \, \rho + p \, Z \rho Z \ .$$

Show that the action of the dephasing channel on the Bloch vector is

$$(r_x, r_y, r_z) \mapsto ((1-2p)r_x, (1-2p)r_y, r_z)$$
,

i.e., it preserves the component of the Bloch vector in the Z direction, while shrinking the X and Y component.

2. Amplitude damping channel. The amplitude damping channel is giving by the Kraus operators

$$M_0 = \sqrt{\gamma} |0\rangle \langle 1|, \quad M_1 = |0\rangle \langle 0| + \sqrt{1-\gamma} |1\rangle \langle 1|,$$

where $0 \le \gamma \le 1$. Here, M_0 describes a decay from $|1\rangle$ to $|0\rangle$, and γ corresponds to the decay rate.

(a) Consider a single-qubit density operator with the following matrix representation with respect to the computation basis

$$\rho = \left(\begin{array}{cc} 1 - p & \eta \\ \eta^* & p \end{array} \right),$$

where $0 \le p \le 1$ and η is some complex number. Find the matrix representation of this density operator after the action of the amplitude damping channel.

- (b) Show that the amplitude damping channel obeys a composition rule. Consider an amplitude damping channel \mathcal{E}_1 with parameter γ_1 and consider another amplitude damping channel \mathcal{E}_2 with parameter γ_2 . Show that the composition of the channels, $\mathcal{E} = \mathcal{E}_1 \circ \mathcal{E}_2$, $\mathcal{E}(\rho) = \mathcal{E}_1(\mathcal{E}_2(\rho))$, is an amplitude damping channel with parameter $1 (1 \gamma_1)(1 \gamma_2)$. Interpret this result in light of the interpretation of the γ 's as a decay probability.
- 3. Twirling operation. Twirling is the process of applying a random Pauli operator (including the identity) with equal probability. Explain why this corresponds to the channel

$$\mathcal{E}(\rho) = \frac{1}{4}\rho + \frac{1}{4}X\rho X + \frac{1}{4}Y\rho Y + \frac{1}{4}Z\rho Z \ .$$

Show that the output of this channel is the maximally mixed state for any input, $\mathcal{E}(\rho) = \frac{1}{2}I$.

Hint: Represent the density operator as $\rho = \frac{1}{2}(I + r_xX + r_yY + r_zZ)$ and apply the commutation rules of the Pauli operators.

Problem 17: CHSH inequality – Tsirelson's bound.

Tsirelson's inequality bounds the largest possible violation of the CHSH inequality $|\langle C \rangle| \leq 2$, with

$$\langle C \rangle = \langle a_0 b_0 \rangle + \langle a_1 b_0 \rangle + \langle a_0 b_1 \rangle - \langle a_1 b_1 \rangle . \tag{1}$$

in quantum mechanics – namely $|\langle C \rangle| = 2\sqrt{2}$). To this end, let a_0, a_1, b_0, b_1 be Hermitian operators (on some finite-dimensional complex Hilbert space) with eigenvalues ± 1 , so that

$$a_0^2 = a_1^2 = b_0^2 = b_1^2 = I$$
.

Here, a_0 and a_1 describe the two measurements of Alice, and b_0 and b_1 those of Bob; in particular, this means that Alice's and Bob's measurements commute, i.e. $[a_x, b_y] = 0$ for all x, y = 0, 1. Define

$$C = a_0b_0 + a_1b_0 + a_0b_1 - a_1b_1 .$$

- 1. Determine C^2 .
- 2. The operator norm of a bounded operator M is defined by

$$||M|| = \sup_{|\psi\rangle} \frac{||M|\psi\rangle||}{||\psi\rangle||}.$$

Verify that the operator norm has the properties

$$||MN|| \le ||M|| ||N||, ||M+N|| \le ||M|| + ||N||.$$
 (2)

- 3. Show that ||M|| equals the maximum eigenvalue of $\sqrt{M^{\dagger}M}$ (and thus, the largest singular value of M). What is then the operator norm of a hermitian operator in terms of its eigenvalues?
- 4. Find an upper bound on the norm $||C^2||$ (using the inequalities (2)).
- 5. Show that for Hermitian operators $||C^2|| = ||C||^2$. Use this to obtain an upper bound on ||C||.
- 6. Explain how this inequality gives a bound on the maximum possible violation of the CHSH inequality in quantum mechanics. This is known as Tsirelson's bound, or Tsirelson's inequality.