
Lecture & Proseminar 250121/250122

“Quantum Information, Quantum Computation, and Quantum Algorithms” WS 2025/26

— Exercise Sheet #7—

Problem 18: Teleportation-inspired protocols.

In this problem, we will get to know two variants of the teleportation protocol.

Part 1: Gate teleportation.

Gate teleportation is a variation of quantum teleportation that is being used in fault-tolerant quantum
computation (a topic which will be covered later in the course of the lecture).

Suppose that we would like to perform a single-qubit gate (i.e., unitary) U on a qubit in state |ψ⟩, but
the gate is difficult to perform – e.g., it might fail and thereby destroy the state on which we act on. On
the other hand, the gate UσjU

†, where σj is any one of the three Pauli matrices, is easy to perform.

1. Verify that such a situation is given when the difficult operation is U =
(
1 0
0 eiπ/4

)
, while Paulis and

S = ( 1 0
0 i ) are easy to realize.

2. Consider the following protocol to implement U on a state |ψ⟩A′ :

• Prepare |χ⟩AB = (IA ⊗ UB)|Φ+⟩AB , with |Φ+⟩ = 1√
2
(|00⟩ + |11⟩). (UB is still hard to

implement, but we can try as many times as we want without breaking anything.)

• Perform a measurement of A′A in the Bell basis (A′ is the register used to store |ψ⟩A′).

• Depending on the measurement outcome, apply UσjU
† on the B system.

Show that this protocol works as it should – that is, it yields the state U |ψ⟩ in the B register with
unit probability.

Part 2: Remote state preparation.

Remote state preparation is another variation on the teleportation protocol. In the variant we consider
here, Alice has a classical description of a state |ψ⟩ = 1√

2
(|0⟩ + eiϕ|1⟩) (on the equator of the Bloch

sphere), i.e., she knows ϕ. The task is to prepare the state |ψ⟩ on Bob’s side, without Bob learning
anything about ϕ.

To this end, let Alice and Bob share a maximally entangled state |Φ+⟩ = 1√
2
(|00⟩+ |11⟩).

1. Find a state |χ⟩ such that when Alice’s part of |Φ+⟩ is projected onto |χ⟩, Bob is left with |ψ⟩.

2. Now let Alice perform a measurement in the basis {|χ⟩, |χ⊥⟩}, where |χ⊥⟩ is the state perpendicular
to |χ⟩ (since the space is 2-dimensional, |χ⊥⟩ is unique up to a phase). Determine the post-
measurement state of Bob for both of Alice’s outcomes.

3. Show that if Alice communicates one bit to Bob, and Bob performs an operation which depends
on this bit (which information is in the bit? what operation does Bob have to perform?), then Bob
recovers |ψ⟩ with unit probability.

4. A more “direct” way – given we know the protocol for teleportation – for Alice and Bob to realize
the remote state preparation protocol would have been that Alice prepares |ψ⟩ and then teleports
it to Bob. Is there a way to relate these two protocols? How can the remote state preparation
protocol be interpreted in terms of teleportation? In particular, in the teleportation protocol, Alice
would have had to send two bits to Bob – what happened to the second bit?



Problem 19: Teleportation for qudits.

In this problem, we will study teleportation for qudits, i.e., quantum systems with a d-dimensional
Hilbert space H = Cd.

Let |Ω⟩ = 1√
d

∑d−1
k=0 |k, k⟩ be the maximally entangled two-qudit state (the generalization of |ϕ+⟩ from

the lecture), and define the two matrices

X =

d−1∑
k=0

|k + 1⟩⟨k| , Z =

d−1∑
k=0

ωk|k⟩⟨k| ,

with ω = e2πi/d, and with the convention that addition is modulo d (i.e., |d⟩⟨d− 1| = |0⟩⟨d− 1|).

1. Write X and Z in matrix notation. Show that for d = 2, X and Z reduce to the corresponding
Pauli matrices.

2. Show that X and Z are unitary.

3. Show that XZ = ηZX, η ∈ C. What is η?

4. Show that the d2 states

|ψαβ⟩ = (XαZβ ⊗ I)|Ω⟩ , α, β = 0, . . . , d− 1 , (1)

are all maximally entangled states of two qudits (i.e., they have Schmidt rank d and all Schmidt
coefficients are equal).

5. Show that the |ψαβ⟩ form an orthonormal basis of Cd ⊗ Cd.

6. Show that the X and Z in the definition (1) can be moved to the other side of tensor product, i.e.,

|ψαβ⟩ = (I ⊗ Zβ′
Xα′

)|Ω⟩ ,

and determine how α′ and β′ depend on α and β.

7. Show that the teleportation protocol discussed in the lecture can be generalized to teleport an
unknown qudit state |χ⟩A′ ∈ Cd from Alice to Bob, given that Alice and Bob share a maximally

entangled state |Ω⟩AB , where Alice measures A and A′ in the basis
{
|ψαβ⟩

}d−1

α,β=0
. Which informa-

tion does Alice have to send to Bob, and what correction operation does he have to apply?

In fact, teleportation does not require to measure in the Bell basis or its generalization (1) above, but a

measurement in any orthonormal basis {|ϕb⟩}d
2

b=1 of maximally entangled states – i.e., where all |ϕb⟩ are
maximally entangled – will work, as we will see in the following. (Note: If you want, you can prove this
part of the problem first – then, you can essentially skip the steps above from Step 6 onwards.)

We will focus our discussion on a single maximally entangled state |ϕ⟩ – this could be one of the states
from the basis {|ψb⟩}b, but this does not need to be the case: We will simply study what happens if
Alice performs a projective measurement which contains the projection onto |ϕ⟩ as one measurement
outcome, and we will study what happens when Alice gets this outcome, i.e., when she has projected
her systems AA′ onto |ϕ⟩.

1. Show that (since it is a maximally entangled state), |ϕ⟩ can be written as

|ϕ⟩ = (U ⊗ I)|Ω⟩ = (I ⊗ UT )|Ω⟩

with U unitary (cf. Problem 6).

2. Assume Alice has projected her systems AA′ onto |ϕ⟩. Show that in that case, Bob can apply a
correction operation (which?) to recover the unknown state |χ⟩, i.e., the state has been successfully
teleported to Bob.


