Lecture & Proseminar 250121/250122

"Quantum Information, Quantum Computation, and Quantum Algorithms" WS 2025/26

— Exercise Sheet #9—

Problem 23: Decay of entanglement.

Consider a Bell state $\rho = |\Phi^+\rangle\langle\Phi^+|$, where $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. Superposition states like ρ are typically not stable, but decay over time. A typical evolution is that the off-diagonal elements decay relatively quickly to zero with a timescale T_2 ("dephasing"), while the diagonal elements become equal with a longer timescale T_1 ("decoherence"). Since such decay processes converge exponentially, the state thus evolves as

$$\begin{split} \rho(t) &= p_+ |00\rangle\langle 00| + p_- |01\rangle\langle 01| + p_- |10\rangle\langle 10| + p_+ |11\rangle\langle 11| + \tfrac{1}{2}e^{-t/T_2} |00\rangle\langle 11| + \tfrac{1}{2}e^{-t/T_2} |11\rangle\langle 00| \ , \end{split}$$
 with $p_\pm = \tfrac{1}{4}(1 \pm e^{-t/T_1}).$

- 1. Give the matrix form of $\rho(t)$.
- 2. Determine the values of T_1 and T_2 for which $\rho(t) \geq 0$ for all times t. (You should find that T_2 cannot be much larger than T_1 , otherwise $\rho(t)$ becomes unphysical that is, there is indeed a natural reason why we would typically expect dephasing to occur on the faster timescale.)
- 3. What is the limit $\lim_{t\to\infty} \rho(t)$? Is it entangled?
- 4. Take the partial transpose $\rho(t)^{T_B}$ and give its matrix form.
- 5. Calculate the eigenvalues of $\rho(t)^{T_B}$.
- 6. Sketch how the eigenvalues change over time for $T_1 = T_2 = 1$. What it the asymptotic limit?
- 7. Find the time t_{sep} after which $\rho(t_{\text{sep}})$ becomes separable.

Problem 24: Bell inequalities and witnesses.

The CHSH operator – that is, the operator measured in the CHSH inequality – can be written as

$$C = \vec{n}_1 \vec{\sigma} \otimes \vec{n}_0 \vec{\sigma} + \vec{n}_1 \vec{\sigma} \otimes \vec{n}_2 \vec{\sigma} + \vec{n}_3 \vec{\sigma} \otimes \vec{n}_2 \vec{\sigma} - \vec{n}_3 \vec{\sigma} \otimes \vec{n}_0 \vec{\sigma}$$

with $\vec{n}_k = (\cos(k\pi/4), 0, \sin(k\pi/4))$. Then, the CHSH inequality states that $|\text{tr}[C\rho]| \leq 2$ for all ρ which are described by a local hidden variable (LHV) model.

- 1. Show that the measurement of C on any separable state $\rho = \sum p_i \rho_i^A \otimes \rho_i^B$ can be described by an LHV model.
- 2. Use C to construct an entanglement witness W. (The witness should return $\operatorname{tr}[W\rho] < 0$ exactly if ρ violates the CHSHS inequality.) Provide an explicit form of the witness.
- 3. In which range of λ does this witness detect Werner states $\rho(\lambda) = \lambda |\Psi^-\rangle \langle \Psi^-| + \frac{1-\lambda}{4}I$, with $|\Psi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle |10\rangle)$? How does it compare to the entanglement witness $W = \mathbb{F}$ discussed in the lecture?

Problem 25: Witnesses and the reduction criterion.

Consider a bipartite system with dim $\mathcal{H}_A = \dim \mathcal{H}_B$. Let $W := \mathbb{I} - d|\Omega\rangle\langle\Omega|$, with $|\Omega\rangle = \frac{1}{\sqrt{d}}\sum_{i=1}^{d}|i,i\rangle$.

- 1. Show that $tr[W\rho] \geq 0$ for separable states ρ , i.e., W is an entanglement witness.
- 2. Consider the family

$$\rho_{\rm iso}(\lambda) = \lambda \, \frac{\mathbb{I}}{d^2} + (1 - \lambda) |\Omega\rangle \langle \Omega|$$

of isotropic states. In which range of λ is $\rho_{iso}(\lambda) \geq 0$? In which range of λ does W detect that $\rho_{iso}(\lambda)$ is entangled?

- 3. Consider the case d=2. Does W detect the antisymmetric state $|\Psi^-\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$ as entangled? Generally, which property must a pure state satisfy to be detected by W?
- 4. Consider the positive map $\Lambda(\rho) := d \operatorname{tr}_B \left[W^T(\mathbb{I}_A \otimes \rho_B^T) \right]$ (this is the map corresponding to the "Choi state" W^T via the reverse direction of the Choi-Jamiolkowski isomorphism). Determine the explicit form of Λ , and prove that it is a positive map. (Note that it cannot be completely positive, as its "Choi state" is W, which is not a state.)
- 5. For a two-qubit system, in which range of λ does Λ detect that $\rho_{\rm iso}(\lambda)$ is entangled? Does Λ detect the antisymmetric state?

(*Note:* The corresponding criterion for entanglement – i.e., when $(\Lambda \otimes \mathbb{I})(\rho) \not\geq 0$ – is called the *reduction* criterion. The name hopefully makes sense if you consider the explicit form of $\Lambda \otimes \mathbb{I}$.)