
Research Group: Entanglement of Complex Quantum Systems
Max–Planck–Institute of Quantum Optics

Recovery Maps for Approximate Markov
Chains—a Matrix Product State Perspective
Bachelor’s Thesis

Julian Sieber

Examiner: Prof. Dr. Norbert Schuch

Advisor: Yimin Ge

Submission Date: September 18, 2017





Contents

Acknowledgments v

Zusammenfassung vii

Introduction ix

1 A Primer onQuantumTheory 1
1.1 Quantum States and Quantum Channels . . . . . . . . . . . . . 1

1.1.1 Entanglement of Quantum States . . . . . . . . . . . . . 6
1.1.2 Classification of Matrix Maps . . . . . . . . . . . . . . . 9

1.2 Distance Measures for Quantum States . . . . . . . . . . . . . . 13
1.2.1 Schatten p-Norms . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 The Fidelity of Quantum States . . . . . . . . . . . . . . 19

2 From Classical toQuantum Information Theory 23
2.1 Quantities of Classical Information Theory . . . . . . . . . . . 23
2.2 Quantities of Quantum Information Theory . . . . . . . . . . . 26
2.3 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Matrix Product States in a Nutshell 35
3.1 Area Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Matrix Product States . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 A Graphical Language for Matrix Product States . . . 39
3.2.2 Examples of Matrix Product States . . . . . . . . . . . . 40

4 Recovery Maps 45
4.1 Recoverability Theorem . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 The Breakthrough Result of Fawzi and Renner . . . . . . . . . 48

5 Iterating the Recovery Map through the Spin Chain 51
5.1 Constructing a Mps . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Mutual Information and Bond Dimension . . . . . . . . . . . . 59

Conclusion 63

A Miscellanea 65
A.1 Measurements in Quantum Mechanics . . . . . . . . . . . . . . 65

A.1.1 Positive Operator Valued Measures . . . . . . . . . . . 65
A.1.2 Binary Hypothesis Testing . . . . . . . . . . . . . . . . . 68

iii



A.2 Proof of Uhlmann’s Theorem . . . . . . . . . . . . . . . . . . . . 70
A.3 Sketch of the Proof of Wilde’s Recoverability Theorem . . . . 71

A.3.1 Some Result from Harmonic Analysis . . . . . . . . . . 72
A.3.2 Sketch of the Proof . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 80

iv



Acknowledgments

The author is deeply indebted to the supervisor of this thesis, Prof. Dr.
Norbert Schuch, for proposing this interesting and manifold topic. During
the months of work on this thesis, he was a constant source of inspiration as
well as motivation and his soft guidance shaped the result significantly. I re-
ally appreciate the effort and time he spent in order to successfully supervise
this thesis.
Furthermore, I owe gratitude to Yimin Ge for the helpful discussions around
this thesis. He did not hesitate taking time to answer several questions which
arose during the work on the topic.
I would like to thank my fellow student Johannes R. Kager for proofreading
this thesis and for pointing out several typos.
Last but not least, the author kindly acknowledges the partial financial sup-
port from the German National Merit Foundation.

v



vi



Zusammenfassung

Die vorliegendeArbeit bietet einen Einstieg in dieQuanten– sowieQuan-
teninformationstheorie. Im ersten Kapitel führen wir die für unsere Arbeit
notwendigen Konzepte der Quantentheorie ein. Besonderes Interesse liegt
hierbei, neben dem Studium vollständig positiver Abbildungen, auf der Un-
tersuchung der Schatten p–Normen, deren Hölder–Ungleichung integraler
Bestandteil des Beweises eines zentralen Lemmas im hinteren Teil der Arbeit
ist. Im darauffolgenden Kapitel beschäftigen wir uns mit den grundlegenden
Konzepten der klassischen Informationstheorie und stellen den Zusammen-
hang derer zu ihrenQuantenanaloga her. Danach werden wir in Kapitel drei
eine kurze Einführung in die Thematik der Matrixproduktzustände geben,
welche wir im abschließenden Kapitel verwenden, um das Hauptresultat
dieser Arbeit zu zeigen. Dieses ist eine Fehlerabschätzung des Prozesses,
welchenwir nachfolgend kurz erläuternmöchten. Wir betrachten eine Spin-
kette mit N Plätzen, jeder mit dem assoziierten Hilbert–Raum Cd . Unter
der Voraussetzung, dass der Zustand des Gesamtsystems rein ist, zeigen wir
die Existenz eines Matrixproduktzustands, welcher diesen sehr gut approx-
imiert. Wir starten mit dem ausgespurten Zustand der ersten beiden Plätze
und rekonstruieren den Gesamtzustand durch sukzessive Anwendung einer
«recovery map». Dabei bauen wir maßgeblich auf den Resultaten von Fawzi
und Renner [FR15] auf. Ferner wird in selbigem Kapitel ein alternativer
Ansatz von Wilde [Wil15] vorgestellt, welcher bessere Aussagen über die
Struktur der «recovery map» macht. Abschließend untersuchen wir die Ab-
hängigkeit der «bond dimension» von der Systemgröße und geben das not-
wendige Skalierungsverhalten derQuanten–Transinformation in Abhängig-
keit der Systemgröße, um polynomielles bzw. quasi–polynomielles Wachs-
tum zu erreichen, an.
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Introduction

Back in 1858, the 16–year–old Max Planck arrived at the University of
Munich in order to start his studies in physics and the local professor Philipp
von Jolly discouraged him in the strongest terms possible. In his book [Pla33],
Planck quoted von Jolly with the words

«In this field, almost everything is already discovered, and all
that remains is to fill a few holes.»

Fortunately, Planck was not swayed by this statement and laid the corner-
stone of a completely new branch of physics, the quantum physics, by his
seminal work towards an explanation of the black–body radiation 16 years
later. Since then, quantum physics has become the most successful physical
theory and has given impetus to numerous advances in almost all branches
of mathematics. Quantum mechanics is ubiquitous and virtually all mod-
ern physical theories are based upon it. In 1935, Einstein, Podolsky and
Rosen [EPR35] discovered the phenomenon of entanglement which is one
of the most counterintuitive notion in quantum mechanics. Even these fa-
mous minds lacked an explanation of the fact that the successful concept of
describing a system of point masses without interaction by computing the
trajectory of each constituent individually fails completely in the quantum
realm. The major difference is the necessity of considering a quantum sys-
tem as a whole since even particles far away from the one of interest may
effect the latter. Nevertheless, a few months later, Erwin Schrödinger coined
the term «entanglement» and gave a first explanation of this phenomenon
[Sch35; Sch36]. It is worthwhile to note that the notion of entanglement
arises directly from the mathematical description of composite quantum sys-
tems, founded by the outstanding work of Dirac [Dir25] and von Neumann
[Von32], as we will see in chapter 1.
In the more recent years, roughly in the 1990s, quantum information theory,
a field in the intersection of physics and computer science, was established
and has been pushed forward in a stunning pase since then. The theoreti-
cal framework of quantum computers is rather sophisticated; nevertheless
we lack concrete large–scale technical implementations of this technology.
Even in the light of the difficulties, there is a wide consensus in the scientific
community that a commercial use of quantum computers is only a question
of time. Some of the world’s leading computer and software companies, eg.
Microsoft, IBM, HP and NEC, host active quantum computation groups in
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their research facilities.
Apart from the pecuniary aspects of quantum information, this theory has
had amajor impact in the field of quantummany–body physics. In particular,
studying one– or higher–dimensional spin chains or systems, aswewill do in
this thesis, requires several notions from quantum information. The reader
may note that we use the term «spin chain» in a wide sense as we consider
a d–dimensional Hilbert space associated to each site of the chain. Unless
stated otherwise, we do not vary this dimension throughout the system since
this would usually lead to more complicated expressions rather than to new
physics. At a first glance, studying spin chains might seem far away from
the physical relevant particle systems. But in particular cases by invoking
the Jordan–Wigner transformation [JW28], it can be shown that the spin
chain setting is equivalent to a fermionic system on a lattice with short–
range interactions.
This thesis is mainly motivated by the seminal work of Fawzi and Renner
[FR15] which brought the notion of the Petz recovery map [Pet86; Pet88]
back to the focus of research. Suppose we have spin chain S of finite length.
S can be thought of a set containing all the sites of the chain. We partition
the system into three pairwise disjoint subsystems A, B and C such that

S = A∪̇B∪̇C .

The work of Fawzi and Renner gives an upper bound on the error we make
by recovering the total system’s state ρS from the marginal ρAB by an appli-
cation of a suitable map.

Our Main Results

Based on the theorem developed by Fawzi and Renner, we investigate an
iterative recovery procedure on a spin chain of length N starting with the
marginal state describing the first two sites and show that we can construct
a matrix product state |Ψ̃〉 provided the total system’s state σ1,...,N is pure,
that is, σ1,...,N = |Ψ〉〈Ψ|. Additionally, we prove the bound

∥|Ψ̃〉〈Ψ̃|− |Ψ〉〈Ψ|∥1 ⩽C
p

N −2

for some explicitly determined C > 0 and study the dependence between
this upper bound on the error and the bond dimension of the matrix product
state. To this end, we impose different assumptions on the saturation be-
havior of the von–Neumann entropy in order to achieve polynomial, quasi–
polynomial and an exponential scaling of the bond dimension with the sys-
tem size.

A Reader’s Guide

We aim at giving a self–contained treatment of the subject which requires
no previous knowledge about quantum mechanics. Only a solid background
in linear algebra, undergraduate analysis and basic complex analysis is as-
sumed. In particular, we do not review the notion of the tensor product
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of Hilbert spaces since the reader may find a thorough exposition of this
topic in the classical book of Reed and Simon [RS81] as well as in the re-
cently published comprehensive course on analysis by Simon [Sim15]. Any
considered Hilbert space will be of finite dimension* and hence no tech-
niques from functional analysis are needed. During the course of this the-
sis, we will encounter the need of studying the linear maps between Hilbert
spaces which are in finite dimensions better known as matrices. Neverthe-
less, we adopt the notation B(H A,HB ) (instead of Hom(H A,HB )) with
B(H A,H A) =B(H A) (instead of End(H A)) widely used in the relevant lit-
erature. In chapter 1, we consider matrices whose entries are matrices itself.
To this end, it is convenient to take a more algebraic point of view and to
denote the C∗-algebra of complex n×n matrices byMn = (B(Cn),+, ·) with
the ordinary matrix sum and product.

• Chapter 1 provides the fundamental notions of quantum theory and
some of the mathematical basics. The reader may find it convenient
that we present the proofs of the theorems and lemmas. Moreover,
we study the classification of maps N : B(H A) → B(HB ) and prove
two major theorems for most important class, the completely positive
maps. Eventually, we introduce and discuss the Schatten p–norms and
present another distance measure of quantum states, the fidelity.

• Even if this is a physics thesis, we have to understand a few notions
of computer science. In particular, chapter 2 provides a brief review
of classical information theory as well as deeper one of the quantities
of quantum information which are needed in the subsequent chapters.
Furthermore, we investigate the interplay of probability theory and
computer science; especially we give an introduction toMarkov chains
in both fields.

• Matrix product states provide a powerful ansatz in order to simulate
one–dimensional quantum systems. Chapter 3 shows how this notion
arises naturally from the study of spin chains. Moreover, we introduce
a convenient graphical notation for tensor networks and provide the
reader with a few states with an easy matrix product representation.

• In chapter 4, we use all the acquired knowledge to study the recover-
ability of states on a spin chain. We present two different approaches
which both lead to the same explicit form of the recovery map as well
as an identical upper bound on the fidelity between the recovered and
the original state in terms of the quantum conditional mutual infor-
mation of the tripartite system.

• Our own results concerning the reconstruction procedure mentioned
above are encapsulated in chapter 5. We show that we can construct a
matrix product approximation of the state σ1,...,N = |Ψ〉〈Ψ| and discuss

*The result of Fawzi and Renner even applies to infinite–dimensional but separable Hilbert
spaces.
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upper bounds on the inevitable error we have made. Moreover, we
establish conditions on the quantum mutual information in order to
have a polynomial, or at most quasi–polynomial, ascent of the bond
dimension as the system size increases.

• Eventually, we provide a conclusion of this thesis and present an open
question which might be tackled by further work.

We postpone the proof of the important theorem of Uhlmann (cf. theorem
1.26) to appendix A since it is not a central but a very helpful result in nu-
merous proofs of this thesis. In this section the reader may also find an
exposition on the theory of measurement in quantum mechanics, especially
on the notion of positive operator valued measures, which complements the
content of chapter 1 but is of no need for the rest of our work. Last but not
least, we review the proof of Wilde’s recoverability theorem [Wil15] in or-
der to achieve a deeper understanding of the structure of a possible recovery
map.
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Chapter 1

A Primer onQuantumTheory

Themain purpose of this chapter is the presentation ofmost of the defini-
tions used later on in this thesis rather than developing any original thoughts.
For the reader’s convenience we present the theorems which underlay our
work and prove them afterwards. Further information can be found in the
textbooks of Nielsen and Chuang [NC10] and Wilde [Wil17].

1.1 Quantum States and Quantum Channels

From an abstract point of view, any experiment in the quantum realm can
be divided into two sections. The first one is the so-called preparation. It
is an intrinsic property of the considered quantum system. In contrast to
macroscopic physics, we cannot make any deterministic predictions. The
only chance we have is to make an educated guess about the probability dis-
tribution of the possible outcomes we may obtain when conducting a mea-
surement. Note that two states which at a first glance look quite different
may produce the same probability distribution. Thus, from a mathematical
point of view, we define a state of the system as equivalence class of prepara-
tions which produce the same probability distribution in all measurements.
Our experiment does not only consist of the preparation: every experimen-
tal setup is developed to do measurements. In contrast to classical physics,
the process of measurement might change the system drastically. We have
to keep this fact in mind while developing our theory. A physicist refers
to this phenomenon as «collapse of the wave function». In analogy to the
definition of the state of a system, we refer to an observable as the equiv-
alence class of measurements which give the same probability distribution
in all preparations. Figure 1.1 depicts the explained situation. Due to the
probabilistic structure of quantum mechanics, the experiment’s outcome is
only a (conditional) probability distribution. Thus, the experimenter has to
be rather durable and conduct several measurements of a given preparation
to obtain reasonable results.
In the following paragraphs, the preparation of the experiment is investi-
gated en détail. An introduction to the measurement part and the concept of
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2 Chapter 1. A Primer on Quantum Theory

positive operator valued measures can be found in appendix A.1.

Experiment

Preparation
ρ

Measurement
M

P(A|M ,ρ)

Figure 1.1: Schematic structure of a quantum experiment. Its outcome is the
conditional probability of an event A given a measurement M
and a preparation ρ. The preparation of the system determines
the possible measurement outcomes completely.

The most fundamental notion of quantum theory is a quantum state or den-
sity operator (matrix).

Definition 1.1. Let H be a Hilbert space. An operator ρ ∈B(H ) fulfilling
ρ⩾ 0 as well as tr[ρ] = 1 is called a quantum state. We denote by

D(H ) = {
ρ ∈B(H )

∣∣ ρ is a quantum state
}

the set of all quantum states acting on the Hilbert space H .

An immediate consequence of the definition above is that the set D(H ) is
convex, that is, for any ρ1,ρ2 ∈ D(H ) also ρ = λρ1 + (1−λ)ρ2 is a valid
density operator if λ ∈ [0,1]. Due to the continuity of the trace, we need
not restrict to finite convex combinations. For example, ∑

n∈N 2−nρn is a
valid quantum state for (ρn)n∈N ⊂ D(H ). Since every density matrix ρ is
positive semidefinite, it is especially Hermitian. Hence, it admits a spectral
decomposition of the form

ρ =
dim(H )∑

i=1
λi |i 〉〈i |

with the non–negative eigenvalues λi summing up to one and an orthonor-
mal basis (onb) {|i 〉}dim(H )

i=1 of the Hilbert space H consisting of ρ’s eigenvec-
tors. For a unit vector |ψ〉 ∈H , we refer to |ψ〉〈ψ| ∈D(H ) as a pure state.
Thus, the spectral decomposition suggests the interpretation of ρ as a convex
combination of pure states. From a physical point of view, the eigenvalue
decomposition represents a statistical mixture of pure states |i 〉〈i |which oc-
cur with a–priori probabilities λi . We call such a density operator a mixed
state hereafter. Note that the decomposition of a mixed state into pure ones
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is not unique. In fact, defining µi = 〈pρφi |pρφi 〉 for an onb {|φi 〉}i ⊂ H

and the unit vectors |ψi 〉 =µ−1/2
i

p
ρ |φi 〉 for µi ̸= 0 yields

ρ = ∑
i :µi ̸=0

µi |ψi 〉〈ψi | .

To see this, let |η〉 ∈H be arbitrary and observe that⟨
η

∣∣∣∣∣
( ∑

i :µi ̸=0
µi |ψi 〉〈ψi |

)
η

⟩
=

dim(H )∑
i=1

∣∣⟨pρη
∣∣φi

⟩∣∣2 = ∥∥pρη
∥∥2 = ⟨

η
∣∣ρη⟩

.

Eventually, the fact that the µi sum up to one is shown by a straight–forward
computation:

dim(H )∑
i=1

µi =
dim(H )∑

i=1
〈φi |ρφi 〉 = tr[ρ] = 1.

Now we are able to prove an upper bound of the trace of ρ2. Computing ρ2

explicitly yields

ρ2 =∑
j ,k

λ jλk |φ j 〉〈φ j |φk〉〈φk | =
∑

j
λ2

j |φ j 〉〈φ j | ̸= ρ

in general. The trace is then given as

tr[ρ2] =∑
i , j

λ2
j | 〈φi |φ j 〉 |2 =

∑
j
λ2

j ⩽
(∑

j
λ j

)2

= 1.

In order to decide whether a given state is pure or mixed, the following the-
orem provides a strong criterion.

Theorem 1.2. Let ρ ∈ D(H ). Then the following statements are equiva-
lent:

(i) ρ is a pure state.

(ii) tr
[
ρ2

]= 1

Proof. First assume that ρ is a pure state, that is, ρ = |φ〉〈φ|. Note that ρ2 =
∥φ∥2ρ = ρ and thus tr[ρ] = tr[ρ2].
For the other implication, we observe that the trace of ρ2 reads

tr[ρ2] =∑
j
λ2

j

where λ j are the eigenvalues of ρ. The assumption tr[ρ2] = 1 = tr[ρ] implies
that there is only one non–zero eigenvalue λk which is equal to one. Hence,
ρ = |φk〉〈φk |.
The following definition introduces a very important operator which maps a
state on the bipartite systemH A⊗HB to a density operator onH A .
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Definition 1.3. Theoperator trB : D(H A⊗HB ) →D(H A), ρ 7→ ρA , defined
via

tr[ρ(X ⊗1)] = tr[ρA X ] ∀X ∈B(H A) (1.1)

is called the partial trace. The matrix ρA is called the reduced density
operator of ρ w.r.t. H A .
We refer to a state ρAB ∈ D(H A ⊗HB ) as product state if there are ρA ∈
D(H A) and ρB ∈D(HB ) such that ρAB = ρA ⊗ρB .

Since we called the operator trB «the» partial trace in the preceding defini-
tion, we have to ensure that the construction is unique. To see this fact, sup-
pose we have two density operators ρA, ρ̃A which both satisfy equation (1.1)
for the same ρ ∈D(H A ⊗HB ). Then, in particular tr[ρA X ] = tr[ρ̃A X ] holds.
Hence, we find tr[(ρA − ρ̃A)X ] = 〈ρA − ρ̃A|X 〉HS = 0 for every X ∈ B(H A)
where 〈A|B〉HS = tr[A†B ] denotes the Hilbert–Schmidt inner product (a
more detailed discussion can be found in § 1.2.1). Eventually, we conclude
(ρA − ρ̃A) ∈B(H A)⊥ = {0}.
At the first glance, the definition of the partial trace might seem a bit cryptic
to the unfamiliar reader. Therefore, we present the following two examples
in order to make equation (1.1) more vivid.

Example 1.4.

(i) For a product state ρ = |ψ〉〈φ| ⊗ |ξ〉〈η| ∈ D(H A ⊗HB ) the partial
trace is given by trB [ρ] = 〈η|ξ〉 |ψ〉〈φ|.

(ii) Consider the vector |ψ〉 = 1p
2

(|1〉⊗ |1〉+ |2〉⊗ |2〉) ∈C2⊗C2 (this state
is known as Bell or EPR state). Here and in the following, we oc-
casionally denote the i–th element of an onb by |i 〉. The density
matrix is given as

ρ = |ψ〉〈ψ| = 1

2
(|1〉⊗ |1〉+ |2〉⊗ |2〉) (〈1|⊗〈1|+〈2|⊗〈2|)

= 1

2
(|1〉〈1|⊗ |1〉〈1|+ |1〉〈2|⊗ |1〉〈2|

+ |2〉〈1|⊗ |2〉〈1|+ |2〉〈2|⊗ |2〉〈2|).

Computing the partial trace gives

ρA = trB (ρ) = 1

2
(|1〉〈1|+ |2〉〈2|) .

Observe that tr[ρ2
A] = 1/2 and hence theorem 1.2 shows the important

fact that tracing out a pure state yields a mixed one in general.

The following proposition ensures that by applying the partial trace to a state
acting on a bipartite system we always obtain a density operator on the re-
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maining Hilbert space.

Proposition 1.5. Let ρ ∈D(H A ⊗HB ), then

(i) tr[ρA] = tr[ρ],

(ii) ρ⩾ 0 ⇒ ρA ⩾ 0.

Proof. Ad (i): tr[ρA] = tr[ρA1] = tr[ρ(1⊗1)] = tr[ρ].
Ad (ii): Expanding the scalar product in the onb {|ψ j 〉} j yields⟨

φ
∣∣ρAφ

⟩=∑
j

⟨
ψ j

∣∣ρAφ
⟩⟨

φ
∣∣ψ j

⟩= tr[ρA |φ〉〈φ|] = tr[ρ[(|φ〉〈φ|)⊗1]]⩾ 0

since (|φ〉〈φ|)⊗1⩾ 0.

As we have seen in example 1.4, the partial trace of a pure state may be
mixed. The following theorem shows that every mixed state can be obtained
by tracing out a pure state.

Theorem 1.6 (Purification). Let ρ ∈ B(H ) be a density operator. Then
there is a normalized vector |ψ〉 ∈ H ⊗HE such that ρA is the reduced
density operator of |ψ〉〈ψ| w.r.t. H .

Proof. The density operator ρ admits a spectral decomposition of the form
ρ =∑

j λ j |φ j 〉〈φ j | with λ j ⩾ 0. The vector

|ψ〉 = ∑
k:λk>0

√
λk (|φ j 〉⊗ |φ j 〉)

has the desired property. Let us check it shortly:

|ψ〉〈ψ| =∑
i , j

√
λiλ j (|φi 〉〈φ j |⊗ |φi 〉〈φ j |)

and thus

trE [|ψ〉〈ψ|] =∑
i , j

√
λiλ j 〈φi |φ j 〉 |φi 〉〈φ j | =

∑
j
λk |φ j 〉〈φ j | = ρ.

Remark 1.7. The purification of quantum state |ψ〉〈ψ| is only unique up to a
unitary 1⊗U since trB [(1⊗U ) |ψ〉〈ψ| (1⊗U )†] = trB [|ψ〉〈ψ|].
The concept of purification simplifies our lives a lot. In particular, we might
always consider a general quantum state as a pure one acting on a higher
dimensional system which given by the original Hilbert space tensorized
with some appropriate ancillary system. The phrase «going to the church
of the larger Hilbert space» coined by John Smolin depicts this dilation in
felicitous manner.
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1.1.1 Entanglement of Quantum States
The phenomenon of entanglement arises immediately from the mathemat-
ical notion of the tensor product. This feature lays at the core of quantum
information theory. A quantifaction of entanglement is obtained by consid-
ering the Schmidt decomposition which we introduce in this section.

Definition 1.8. A vector |η〉 ∈ H A ⊗HB is called factorized if there are
|φ〉 ∈H A and |ψ〉 ∈HB such that |η〉 = |φ〉⊗ |ψ〉. Otherwise we say |η〉 is
entangled.

The best way of illustrating the notion of an entangled vector is to study an
example.

Example 1.9. Consider the orthonormal vectors |φ1〉 , |φ2〉 ∈ H and the
complex scalars α,β ∈ C \ {0} with |α|2 +|β|2 = 1. Then we claim that the
unit vector

|η〉 =α(|φ1〉⊗ |φ2〉)+β(|φ1〉⊗ |φ2〉) ∈H ⊗H

is entangled. To prove the assertion we complete {|φ1〉 , |φ2〉} to an onb of
H . Thus, any vector |φ〉⊗ |ψ〉 ∈H ⊗H can be written as

|φ〉⊗ |ψ〉 =
(∑

i
ci |φi 〉

)
⊗

(∑
j

d j |φ j 〉
)

(1.2)

with ci ,d j ∈ C. In order to represent our vector |η〉, we get the following
non–trivial constraints:

c1d1 =α, c2d2 =β, c1d2 = c2d1 = 0 and c j = d j = 0 ∀ j > 2.

Hence, αβ= c1d2c2d1 = 0 which implies α= 0 or β= 0. Consequently, we
obtain a contradiction and we conclude that |η〉 is entangled.

Equation (1.2) can be seen asmotivation of the Schmidt decompositionwhich
we want to present in the following theorem.

Theorem 1.10 (Schmidt decomposition). Let H A and HB be two Hilbert
spaces with dA = dim(H A) and dB = dim(HB ). For any vector |η〉 ∈
H A ⊗HB there exist non–negative numbers λi ⩾ 0, which are called the
Schmidt coefficients of |η〉, as well as onb’s {|e1〉 , . . . , |edA〉} ⊂ H A and
{| f1〉 , . . . , | fdB 〉} ⊂Hb such that

|η〉 =
min{dA ,dB }∑

i=1

√
λi |ei 〉⊗ | fi 〉 .
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The integer RS := |{λi |λi > 0}| is named the Schmidt rank of |η〉.

Proof. First assume dA = dB =: d . As equation (1.2) implies, we may write

|η〉 =
(∑

j
c j |φ j 〉

)
⊗

(∑
k

dk |φk〉
)
=

d∑
j=1

d∑
k=1

c j dk︸︷︷︸
=:c j k

|φ j 〉⊗ |ψk〉

with onb’s {|φ1〉 , . . . , |φd 〉} ⊂H A and {|ψ1〉 , . . . , |ψd 〉} ⊂HB . The matrix C :=
(c j k ) ∈ Cd×d has a singular value decomposition C = UΣV † with unitaries
U ,V and a diagonal matrix Σ= diag(

√
λ1, . . . ,

√
λd ). Thus, the components

of C are given as

c j k =
d∑

ℓ=1
u jℓ

√
λℓv†

ℓk

and we find

|η〉 =
d∑

ℓ=1

√
λℓ

(
d∑

j=1
u jℓ |φ j 〉

)
︸ ︷︷ ︸

=:|eℓ〉

⊗
(

d∑
k=1

v†
ℓk |ψk〉

)
︸ ︷︷ ︸

=:| fℓ〉

.

Since U ,V are unitary matrices, {|eℓ〉}ℓ and {| fℓ〉}ℓ form onbs.
In the case dA ̸= dB , we know min{dA,dB } ⩾ rank(C ) = rank(Σ). Thus Σ has
at most min{dA,dB } non-zero elements.

From the Schmidt decomposition, wewant to draw some simple conclusions.
The vector |η〉 is entangled if and only if the Schmidt rank is larger than
or equal to two. Moreover, the Schmidt decomposition provides a conve-
nient way to compute reduced density operators. Assume we got a state
ρ = |ψ〉〈ψ| with Schmidt decomposition |ψ〉 = ∑

j λ
1/2
j (|e j 〉⊗ | f j 〉). Then the

reduced density operators are given by

ρA =∑
j
λ j |e j 〉〈e j | ,

ρB =∑
j
λ j | f j 〉〈 f j | .

Thus, ρA and ρB have the same eigenvalues, only the multiplicity of the
eigenvalue zero may differ.
After we have investigated the concept of entanglement for vectors, we now
generalize it to density operators.

Definition 1.11. A state ρ ∈ D(H A ⊗HB ) is called separable if there are
{λ j ⩾ 0}N

j=1 with ∑N
j=1λ j = 1 and product states ρ( j )

A ⊗ρ
( j )
B ∈D(H A ⊗HB )

such that

ρ =
N∑

j=1
λ j (ρ( j )

A ⊗ρ
( j )
B ).

Note that due to the spectral decomposition we may restrict to the con-
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sideration of pure product states in the convex decomposition above.
If there is no such representation of ρ we call the state entangled.

For pure states the following theorem establishes a connection between the
entanglement of vectors and density operators.

Theorem 1.12. For a pure state ρ = |η〉〈η| ∈ D(H1 ⊗HB ) the following
statements are equivalent:

(i) |η〉 has Schmidt rank one (i.e. it has the Schmidt decomposition |η〉 =
|e〉⊗ | f 〉).

(ii) ρ is a product state.

(iii) ρ is separable.

Proof. The only implication which needs to be proven is (iii)⇒(i). Since ρ is
separable, we can write

|η〉〈η| =∑
j
λ j (|φ j 〉〈φ j |⊗ |ψ j 〉〈ψ j |)

where λ j > 0. After multiplying the equation from the left as well as from
the right by |η〉〈η|, we find

|η〉〈η| =∑
j
λ j |〈η|φ j ⊗ψ j 〉|2 |η〉〈η| .

Due to Cauchy Schwarz, we get |〈η|φ j ⊗ψ j 〉|2 ⩽ 1 and the trace normaliza-
tion implies ∑

j λ j = 1. Thus, |〈η|φ j ⊗ψ j 〉|2 = 1 for all j and consequently
|η〉 = z(|φ j 〉 ⊗ψk ) for some complex phase factor z. Eventually, the trace
normalization implies z = 1.

The following example shows that a mixed state of entangled vectors might
be separable.

Example 1.13. Consider for |α|2 +|β|2 = 1 the unit vectors

|η±〉 =α(|φ1〉⊗ |φ2〉)±β(|φ1〉⊗ |φ2〉) ∈H ⊗H

and recall from example 1.9 that they are entangled. But the mixed state

ρ = 1

2
|η+〉〈η+|+ 1

2
|η−〉〈η−|

= |α|2(|φ1〉〈φ1|)⊗ (|φ1〉〈φ1|)+|β|2(|φ2〉〈φ2|)⊗ (|φ2〉〈φ2|)
= |α|2 |φ1 ⊗φ1〉〈φ1 ⊗φ1|+ |β|2 |φ2 ⊗φ2〉〈φ2 ⊗φ2|

is clearly separable.
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1.1.2 Classification of Matrix Maps
The standard reference for the matrix maps which are of interest in quantum
information theory is the readable book of Bhatia [Bha09] which gives an
exhaustive treatment of the subject. The following definition introduces the
class of matrix maps which we study in detail later on.

Definition 1.14. We call a linear map N :Mn →Mm

• positive if N (A)⩾ 0 for any A ⩾ 0.

• completely positive if
(
1p ⊗N

)
is positive for any p ∈N

• trace–preserving if tr [N (A)] = tr [A] for any A ∈Mn .

• unital if it preserves the identity, that is, N (1) =1.

A completely positive and trace–preserving map is named a quantum
channel (or quantum operation).

Example 1.15. We study three simple examples which are ubiquitous in
quantum information theory. A common way to prove that a given map
satisfies the requirements of a quantum channel is to show that it can be
written as concatenation of these basic examples. The proof of the two
demanded properties is obtained in all cases by a basic computation and
is therefore left to the reader.

(i) Extensions. Let σ ∈ D(HB ) a fixed density operator. The map N :
D(H A) →D(H A ⊗HB ), ρ 7→ ρ⊗σ, is a quantum channel.

(ii) Partial trace. Proposition 1.5 together with the fact that the par-
tial trace tensorized with 1n remains a partial trace shows that N :
D(H A ⊗HB ), ρ 7→ trB [ρ] is a quantum channel.

(iii) Unitary evolution. Let U ∈Mn , where n = dim(H ), be a unitary
matrix. Then themapN : D(H ) →D(H ), ρ 7→UρU †, is a quantum
channel.

A legitimate question which might arise at this point of the discussion is
whether positivity and complete positivity are different properties. To an-
swer this question we want to present the canonical example of the flip op-
erator in the following.

Example 1.16. Fix a basis of Mn and let

Θ :Mn →Mn

A 7→ A†

denote the Hermitian conjugation. We define the partial transposition
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Θ⊗1 : B(Cn ⊗H ) →B(Cn ⊗H ), (Θ⊗1)(A ⊗B) = A† ⊗B . Moreover, let
us introduce the flip operator for a fixed onb {|i 〉} of Cn

F : Cn ⊗Cn →Cn ⊗Cn

F=
n∑

i , j=1
|i 〉〈 j |⊗ | j 〉〈i | .

Observe that for |ψ〉 , |φ〉 ∈ Cn , we have F(|ψ〉 ⊗ |φ〉) = |φ〉 ⊗ |ψ〉 which
is immediately verified by expanding the vectors in the onb {|i 〉}. This
property explains the name of the operator. The reason why we consider
the flip operator is the fact that we find for themaximally entangled state
|ωn〉 = 1/pn

∑n
i=1 |i 〉⊗ |i 〉 (we have RS = n)

(1⊗Θ)(|ωn〉〈ωn |) = 1

n

n∑
i , j=1

|i 〉 | j 〉⊗ | j 〉 |i 〉 = 1

n
F.

If we can show thatF is not positive, thenwe have found a trace–preserving
and even unital operator which is not completely positive. In fact, we
observe that F2 = 1⊗1 and hence σ(F) ⊂ {±1}. It is easy to check that
|ψ〉⊗|φ〉−|φ〉⊗|ψ〉 is an eigenvector corresponding to the eigenvalue −1.

Observe that a linear map N : Mn → Mm always induces another linear
map acting on Mp (Mn) =Mp ⊗Mn by

1p ⊗N :Mp (Mn) →Mp (Mm)

A = (Ai j )1⩽i , j⩽p 7→ (
N (Ai j )

)
1⩽i , j⩽p

where we think of A as block matrix with entries Ai j ∈Mn .
This interpretation turns out to be rather convenient in the course of the
proof of the following theorem due to Choi. By this theorem we acquire a
representation of completely positivemapswhich is frequently used through-
out the whole field of quantum information theory.

Theorem 1.17 (Choi’s Theorem [Cho75]). A linear map N :Mn →Mm

is completely positive if and only if there exist Vi ∈ Cn×m , 1 ⩽ i ⩽ nm,
such that

N (A) =
nm∑
i=1

V †
i AVi . (1.3)

The matrices Vi are called Kraus operators.

Proof. The argument presented in the following is essentially Choi’s original
one. Nevertheless, there are several other proofs known, e.g. the approach
presented byWilde in [Wil17] and the proof based on the Choi-Jamiolkowski
isomorphism in [Wol12].
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We start our proof with establishing that every completely positive map ad-
mits a decomposition of the form (1.3). Let ei denote the i–th vector of the
standard basis of the Cn . Clearly,

span
{

ei e†
j

∣∣∣ 1⩽ i , j ⩽ n
}
=Mn

and thus it suffices to prove the assertion for these rank one matrices. In
order to deal with block vectors and matrices, we use the fact that Cnm ∼=⊕n

i=1 Cm . Hence, a vector v ∈Cnm reads

v =

v1
...

vn


with v1, . . . , vn ∈Cm . Defining V † = (v1, . . . , vn) ∈Cm×n we find

V †ei e†
j V = [

(v1, . . . , vn)ei
][

(v1, . . . , vn)e j
]† = vi v†

j .

The block matrix

E =

e1e†
1 · · · e1e†

n
... . . . ...

ene†
1 · · · ene†

n


is a positive element of Mn(Mn) since rank(E) = 1 and tr[E ] ⩾ 0. Hence,(
N (ei e†

j )
)

1⩽i , j⩽n
∈Mn(Mk ) is positive, too. Eventually by the spectral the-

orem, we have(
N (ei e†

j )
)

1⩽i , j⩽n
=

nm∑
k=1

vk v†
k =

nm∑
k=1

(
V †

k ei e†
j Vk

)
1⩽i , j⩽n

where some of the vectors {vk }1⩽k⩽nm ⊂Cnm may vanish. Thus, we find for
the entries of the block matrix

N (ei e†
j ) =

nm∑
k=1

V †
k ei e†

j Vk

which proves the assertion.
The remaining implication is established by a simple computation. Let p ∈N

and x ∈Cpm \ {0}, then⟨
x

∣∣ (1p ⊗N )
(
(Ai j )1⩽i , j⩽p

)∣∣x
⟩

=
⟨

x
∣∣∣(N (Ai j )

)
1⩽i , j⩽p

∣∣∣x
⟩

=
nm∑
k=1

⟨
x

∣∣∣ (V †
k Ai j Vk )1⩽i , j⩽p

∣∣∣x
⟩

=
nm∑
k=1

⟨
x

∣∣∣ (1p ⊗Vk )† Ai j (1p ⊗Vk )
∣∣∣x

⟩
=

nm∑
k=1

⟨
yk

∣∣ Ai j
∣∣ yk

⟩
⩾ 0
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where we abbreviate yk = (1p ⊗Vk )x and use the positivity of Ai j . Since this
calculation holds true for any p ∈ N the complete positivity of N follows.

Notice that we have actually proven another statement en passant, namely, if
N :Mn →Mm is n–positive, that is, (1n ⊗N )(A)⩾ 0 for any A ∈Mn(Mn),
then it is completely positive. Moreover, the Kraus operators are not unique,
especially if some of the vk vanish. If we impose the constraint that the set
{vk }1⩽k⩽nm does not contain the zero vector, then the Kraus operators are
at least unique up to a unitary conjugation.
Furthermore, theorem 1.17 implies that the map N is completely positive
and unital if and only if ∑

i Vi V †
i =1. Since the trace is invariant under cyclic

permutations we additionally find that N is in addition trace–preserving if
and only if the corresponding Kraus operators satisfy ∑

i V †
i Vi =1.

The last theorem, we want to present in order to characterize completely
positive maps, is Stinespring’s dilation theorem. It can be seen as general-
ization of the purification of a quantum state (theorem 1.6), roughly spoken
«going to the church of the larger Hilbert space» for quantum channels.

Theorem 1.18 (Stinespring’s Dilation). Let N : D(H A) → D(HB ) be a
quantum channel. Then there exist an ancillary system HE , a vector |η〉 ∈
HE and a Stinespring’s dilation U : H A →HB ⊗HE such that

N (ρA) = trE

[
UρAU †

]
for all ρA ∈D(H A). Moreover, the operatorsU are unitary, that is,U †U =
1A .

Proof. From Choi’s theorem 1.17, we have

N (ρA) =∑
i

ViρAV †
i .

Defining U =∑
i Vi ⊗|i 〉 yields

UρAU † =
(∑

i
Vi ⊗|i 〉

)
ρA

(∑
i

V †
i ⊗〈i |

)
=∑

i , j
ViρAV †

j ⊗|i 〉〈 j | .

Using the linearity of the partial trace proves the claim. The unitarity of
the Stinespring’s dilation follows from the fact that ∑

i V †
i Vi = 1A (cf. the

discussion subsequent to theorem 1.17).

Actually, there is a more common form of Stinespring’s dilation which can
be easily deduced from the theorem above. Moreover, this version will be
needed to prove the monotonicity of the fidelity in § 1.2.2.
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Theorem 1.19 (Open System Representation). Let N : H A → HB be a
quantum channel. Then there exist an ancillary system HE , a unitary
operator Ũ ∈ B(H A ⊗HB ⊗HE ) and a unit vector |η〉 ∈ HB ⊗HE such
that

N (ρA) = trAE

[
Ũ

(
ρA ⊗|η〉〈η|)Ũ †

]
.

Proof. By choosing the ancillary Hilbert space HE large enough, namely
dim(HE ) = dimH A dim(HB ), we can write the Stinespring’s dilation U
from theorem 1.18 as a unitary action on a suitable tensor product, that is,
U = Ũ (1A ⊗|η〉) for some |η〉 ∈HB ⊗HE . This proves the theorem.

1.2 Distance Measures for Quantum States

1.2.1 Schatten p-Norms

We want to introduce a metric on the set of bounded operators B(H ) act-
ing on the Hilbert space B(H ). Since we only consider finite-dimensional
Hilbert spaces establishing a norm on B(H ) ∼=Cdim(H )2 is a quite arbitrary
act. Nevertheless, the following norm is a wise choice since it has a quite
natural operational interpretation as we will see below.

Definition 1.20. For A ∈B(H ) we define the trace norm via

∥A∥1 = tr[|A|] = tr
[√

A† A
]

.

The mapping

D : B(H )×B(H ) → [0,∞)

(A,B) 7→ 1

2
∥A−B∥1

defines a metric on B(H ) which is called the trace distance of A and B . In
particular, we have D(ρ,σ) ∈ [0,1] for all density operators ρ,σ ∈D(H ).

We should convince ourselves that ∥ · ∥1 defines indeed a norm. Clearly, for
any α ∈ C and A ∈ B(H ) we get ∥αA∥1 = |α|∥A∥1 and ∥A∥ ⩾ 0. The fact
that ∥A∥1 = 0 if and only if A = 0 follows by noting that tr[|A|] =∑

i σi where
σi ⩾ 0 are the singular values of A. Since the singular values vanish if and
only if the matrix is the zero matrix, we have shown that the first two norm
properties hold true. The triangle inequality demands a little more effort.
The key to the proof is lemma A.7 which implies

∥A∥1 = max
U∈U (d)

| tr[AU ]|
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and thus

∥A+B∥1 = max
U∈U (d)

| tr[AU ]+ tr[BU ]|
⩽ max

U∈U (d)
| tr[AU ]|+ max

U∈U (d)
| tr[BU ]| = ∥A∥1 +∥B∥1.

Indeed, the trace norm is a special case of the Schatten p–norms ∥A∥p =
tr[|A|p ]1/p for p ∈ [1,∞). As we have already seen in the case p = 1, there
is a very convenient connection between the Schatten p–norm of a matrix
A and the Euclidean p–norm of the vector formed by the singular values of
A.

Proposition 1.21. For p ∈ [1,∞) the Schatten p–norm of amatrix A ∈Mn

is given by

∥A∥p =
(

n∑
i=1

σi (A)p

)1/p

where {σ1(A), . . . ,σn(A)} ⊂ [0,∞) is the set of the singular values of A.
Moreover, by taking p →∞, the Schatten p–norm converges to operator
norm:

∥A∥∞ := lim
p→∞∥A∥p = sup

v ̸=0

|Av |
|v | = ∥A∥op.

Proof. Bywriting the singular value decomposition A =UΣV † in the bra–ket
formalism, we obtain

A =
r∑

i=1
σi |ui 〉〈vi |

with r = rank(A) and {|ui 〉}n
i=1, {|vi 〉}n

i=1 ⊂ Cn onbs. Note that in this rep-
resentation the singular values σ1, . . . ,σr are strictly positive. Moreover, a
straight–forward computation yields

A† A =
(

r∑
i=1

σi |vi 〉〈ui |
)(

r∑
j=1

σ j |u j 〉〈v j |
)

=
r∑

i , j=1
σiσ j |vi 〉〈ui |u j 〉〈v j |

=
r∑

i=1
σ2

i |vi 〉〈vi | . (1.4)

Consequently, we conclude

∥A∥p
p = tr

[|A|p]= tr
[√

A† A
p]

= tr

[
r∑

i=1

√
σ2

i

p
|vi 〉〈vi |

]
=

r∑
i=1

σ
p
i =

n∑
i=1

σ
p
i
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since σr+1 = ·· · =σn = 0.
The convergence behavior of the Schatten p–norm follows immediately from
convergence of the Euclidean p–norm to the maximum norm and by noting
that ∥A∥op = max{σ1(A), . . . ,σn(A)}. The latter statement is proven as fol-
lows. From equation (1.4), we easily deduce

∥A∥2
op = sup

v=1
|Av |2 = sup

v=1
v† A† Av ⩽ (max{σ1(A), . . . ,σn(A)})2 .

Clearly, equality is attained by picking v the normalized eigenvector corre-
sponding to the largest eigenvalue of A† A.

The Schatten 2–norm is called the Hilbert–Schmidt norm and is induced by
the Hilbert–Schmidt inner product

〈A |B〉HS = tr
[

A†B
]

.

Actually, the Hilbert–Schmidt inner product is a quite natural choice of a
scalar product on Mn . We can think of a complex n×n A matrix as column
vector living in Cn2 endowed with the standard inner product. Then we find

⟨
a11

a12
...

ann


∣∣∣∣


b11

b12
...

bnn


⟩

Cn2
=

n∑
i , j=1

a∗
i j bi j = tr

[
A†B

]
= 〈A |B〉HS

and thus the standard dot product of these associated vectors is exactly the
Hilbert–Schmidt inner product of the matrices. The last two facts about the
Schatten p–norms we want to state and prove are Hölder’s inequality and
the triangle inequality.

Theorem 1.22 (Hölder’s Inequality). Let A,B ∈Mn and p, q ∈ [1,∞] such
that p−1 +q−1 = 1. In the case p = 1, we set q =∞ and vice versa. Then
the following bound on the trace norm holds:

∥AB∥1 ⩽ ∥A∥p∥B∥q .

Proof. Unfortunately, the standard technique using Young’s inequality is not
applicable in this case. Our proof relies mainly on the singular value decom-
position.
First, note that it suffices to prove | tr[AB ]|⩽ ∥A∥p∥B∥q since the polar de-
composition AB =U |AB | implies

∥AB∥1 = tr[|AB |] = tr[U † AB ]⩽ ∥U † A∥p∥B∥q = ∥A∥p∥B∥q .

In fact, the unitary invariance of the Schatten p–norm follows immediately
from |U † A| =

p
A†UU † A = |A|. Consider the singular value decompositions

A =
n∑

i=1
σi (A)

∣∣∣u(A)
i

⟩⟨
v (A)

i

∣∣∣ , B =
n∑

j=1
σ j (B)

∣∣∣u(B)
j

⟩⟨
v (B)

j

∣∣∣
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and note that the trace of their product can be computed via

tr[AB ] =
n∑

i=1

⟨
u(A)

i

∣∣∣ AB
∣∣∣u(A)

i

⟩
=

n∑
i , j=1

σi (A)σ j (B)
⟨

v (A)
i

∣∣∣u(B)
j

⟩⟨
v (B)

j

∣∣∣u(A)
i

⟩
︸ ︷︷ ︸

=:ξi j

.

Moreover by the ordinary Cauchy–Schwarz inequality for sums, we find

n∑
i=1

∣∣ξi j
∣∣⩽√

n∑
i=1

∣∣∣⟨v (A)
i

∣∣∣u(B)
j

⟩∣∣∣2

︸ ︷︷ ︸
=

∣∣∣u(B)
j

∣∣∣

√
n∑

i=1

∣∣∣⟨v (B)
j

∣∣∣u(A)
i

⟩∣∣∣2

︸ ︷︷ ︸
=

∣∣∣v (B)
j

∣∣∣
= 1.

Clearly, the same calculation shows ∑n
j=1

∣∣ξi j
∣∣⩽ 1. Let us now assume that

p, q ∈ (1,∞). Due to the triangle inequality and Hölder’s inequality for sums,
we conclude

| tr[AB ]| =
∣∣∣∣∣ n∑
i , j=1

σi (A)σ j (B)ξi j

∣∣∣∣∣
⩽

n∑
i , j=1

σi (A)
∣∣ξi j

∣∣1/p
σ j (B)

∣∣ξi j
∣∣1/q

⩽
(

n∑
i , j=1

(
σi (A)

∣∣ξi j
∣∣1/p

)p
)1/p (

n∑
i , j=1

(
σ j (B)

∣∣ξi j
∣∣1/q

)q
)1/q

=
(

n∑
i=1

σi (A)p
n∑

j=1

∣∣ξi j
∣∣)1/p (

n∑
j=1

σ j (B)q
n∑

i=1

∣∣ξi j
∣∣)1/q

⩽ ∥A∥p∥B∥q

In the case p = 1, q =∞ or vice versa, we find

| tr[AB ]|⩽
n∑

i , j=1
σi (A)σ j (B)

∣∣ξi j
∣∣

⩽
(

max
1⩽ℓ⩽n

σℓ(B)

) n∑
i=1

σi (A)
n∑

j=1
|ξi j |⩽ ∥A∥1∥B∥op.

In order to derive the triangle inequality of the Schatten p–norm, we present
the following lemma which reduces the problem to the triangle inequality of
the ∥ ·∥1–norm proven on page 13.

Lemma 1.23. For p ∈ (1,∞) and q the Hölder conjugated exponent of p ,
the Schatten p–norm of A ∈Mn is given by

∥A∥p = max
∥B∥q=1

∥AB∥1.
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Proof. The case ∥A∥p = 0 is trivial and hence, let A ̸= 0. For ∥B∥q = 1,
Hölder’s inequality implies ∥AB∥1 ⩽ ∥A∥p . Note that equality is clearly at-
tained if B = (|A|/∥A∥p

)p−1:

∥AB∥1 = 1

∥A∥p−1
p

tr
[√

|A|2p
]
= ∥A∥p .

Moreover, this matrix B fulfills ∥B∥q = 1 since

∥B∥q = (
tr

[|B |q])1/q = 1

∥A∥p−1
p

(
tr

[|A|(p−1)q])1/q =
(∥A∥p

p
)1/q

∥A∥p−1
p

= 1

and is hence a valid candidate for the maximum in the assertion.

Eventually, the triangle inequality of the Schatten p–norms (1 < p <∞) fol-
lows from a straight–forward calculation based on lemma 1.23:

∥A+B∥p = max
∥C∥q=1

∥(A+B)C∥1

⩽ max
∥C∥q=1

∥AC∥1 + max
∥C∥q=1

∥BC∥1

= ∥A∥p +∥B∥p .

Observe that the triangle inequality of the operator norm follows immedi-
ately from the triangle inequality of the Euclidean norm.
After this mathematical excursion, we want to give an operational interpre-
tation of the trace norm. In order to make the argument more vivid, we
present the following thought experiment. Let us consider an apparatus
which produces two different states ρ1 and ρ2 with a–priori probabilities
p1 and p2 = 1−p1. Furthermore, we have a measuring instrument with two
light bulbs. This analyzer tries to identify the incoming state and will light
up the corresponding bulb. We are now interested in the success probability
of our experiment, i.e. the probability of seeing light bulb one lighting up
given the incoming state was ρ1 or vice versa. For a pictorial illustration of
the experiment, we refer to figure 1.2. Carrying out the calculation which
mainly relies on Born’s rule (the interested reader might find further details
in appendix A.1.2), it turns out that the success probability reads

Psuccess = 1

2

(
1+∥p1ρ1 −p2ρ2∥1

)
.

This result is also known as Helstrom’s formula of ambiguous state dis-
crimination. Thus, the trace norm represents how much better than random
guessing our apparatus can perform.
As we see by the following theorem, there is no quantum operation which
can enhance the distinguishability of two quantum states.
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1

ρ1,2

ρ?

2

Figure 1.2: The setting of ambiguous state discrimination. The apparatus on
the left produces the quantum states ρ1 and ρ2 with fixed a–priori
probabilities p1 and p2. The unknown quantum state ρ? is ana-
lyzed and the light bulb corresponding to the state identified by
the analyzer lights up. As theorem A.6 shows, this identification
is defective in general. Figure adapted from [HZ11].

As we see by the following theorem, there is no quantum operation which
can enhance the distinguishability of two quantum states.

Theorem 1.24. Let ρ,σ ∈ D(H A) be two density matrices on the dA–
dimensional Hilbert space H A . Furthermore N : D(H A) → D(HB ) de-
notes quantum operation. Then the following inequality for the trace dis-
tance holds:

D(ρ,σ)⩾D
(
N (ρ),N (σ)

)
.

Proof. Since ρ−σ is Hermitian, its spectral decomposition exists and reads

ρ−σ=
dA∑
i=1

λi |i 〉〈i | =
∑

i :λ⩾0
λi |i 〉〈i |−

∑
i :λi<0

|λi | |i 〉〈i | =: P −N (1.5)

where {|i 〉}dA
i=1 forms an onb of the dA–dimensional Hilbert space H . Equa-

tion (1.5) immediately implies that the trace of the absolute value of ρ−σ

reads

tr[|ρ−σ|] = ∑
i :λi⩾0

λi +
∑

i :λi<0
|λi | = 2

∑
i :λi⩾0

λi .

Based on the spectral decomposition of N (ρ−σ)

N (ρ−σ) =
dB∑
j=1

η j | j 〉〈 j | ,

we define the projector onto the non–negative eigenvalues of N (ρ−σ) by

Π := ∑
j :η j⩾0

| j 〉〈 j | .
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From here only a small effort is needed to finish the proof. The trace–
preserving property of N together with the Cauchy Schwarz inequality im-
plies

tr
[|ρ−σ|]= 2tr[N (P )]⩾ 2tr[ΠN (P )]⩾ 2tr[ΠN (P −N )] = tr

[∣∣N (ρ−σ)
∣∣] .

1.2.2 The Fidelity of Quantum States
We continue our brief introduction into some of the most important notions
of quantum theory needed in this thesis by introducing the fidelity of two
density operators.

Definition 1.25. The mapping

F : D(H )×D(H ) → [0,∞)

(ρ,σ) 7→ ∥pσ
p
ρ∥1 = tr

[√p
ρσ

p
ρ

]
defines the fidelity of the two quantum states ρ and σ.

In order to make the notion of fidelity more vivid, we firstly note that for a
pure state ρ = |ψ〉〈ψ| the fidelity reads F (ρ,σ) =√〈ψ|σ|ψ〉. Hence, we may
think of the fidelity as a quantity which represents the overlap of the states ρ
and σ. In 1976, Uhlmann proved that this interpretation remains valid even
when considering more general density operators.

Theorem 1.26 (Uhlmann’s Theorem [Uhl76]). Let ρ,σ ∈ D(H ) be two
density operators. Then their fidelity is given by

F (ρ,σ) = max
|ψ〉,|φ〉

|〈ψ|φ〉|

where the maximum is taken over all purifications |ψ〉 of ρ and |φ〉 of σ
into H ⊗H .

For the sake of completeness, the interested reader may find a proof of the-
orem 1.26 in appendix A.2. Uhlmann’s theorem will be the main ingre-
dient in proving some important properties of the fidelity in the follow-
ing.

Proposition 1.27. Suppose ρ and σ denote two density operators. Then
the fidelity between them fulfills:

(i) F (ρ,σ) ∈ [0,1] and F (ρ,σ) = 1 if and only if ρ =σ.
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(ii) F (ρ,σ) = F (σ,ρ).

(iii) Applying a similarity transform on the density operators ρ and σ

does not change their fidelity, i.e. F (UρU †,UσU †) = F (ρ,σ) for
any unitary U .

Proof. Thefirst claim follows immediately from the application of the Cauchy
Schwarz inequality onto theorem 1.26. Recalling that equality in Cauchy
Schwarz occurs if and only if the vectors |φ〉 and |ψ〉 are collinear establishes
the second assertion under (i).
Clearly, point (ii) does not require any proof.
Finally, we note that the spectral decomposition of a matrix A ⩾ 0 impliesp

U AU † =U
p

AU † from which we easily deduce (iii).

In analogy to the trace distance, we try to establish a bound on the fidelity
of two states to which the same quantum operation was applied in terms of
their original fidelity. Contrary to the preceding results, the fidelity never
decreases; that means the overlap of the two density operators increases or
at least remains the same.

Theorem 1.28. Let N be a trace–preserving quantum operation acting
on the density operators ρ and σ. Then we can lower bound the fidelity
between N (ρ) and N (σ) by

F
(
N (ρ),N (σ)

)
⩾ F (ρ,σ).

Especially, tracing out an ancillary system never shrinks the fidelity of the
two quantum states, that is, F (ρAB ,σAB )⩽ F (ρA,σA).

Proof. We want to apply Uhlmann’s theorem in some fruitful manner. Thus,
we consider the tensor product space H ⊗H A with the ancillary system
H A . Moreover, let |φ〉 and |ψ〉 denote the maximizing purifications from
Uhlmann’s theorem of ρ and σ respectively, i.e. the fidelity reads F (ρ,σ) =
|〈φ|ψ〉|. According to Stinespring’s dilation in the open system represen-
tation (theorem 1.19), there are another ancillary Hilbert space HE , a pure
state |η〉〈η| ∈D(HE ) and a unitary U ∈B(H ⊗HE ) such that

N (ρ) = trE

[
U

(
ρ⊗|η〉〈η|)U †

]
holds for all density operators ρ. Hence, U (|φ〉⊗ |η〉) and U (|ψ〉⊗ |η〉) de-
note purifications of N (ρ) and N (σ) into H ⊗H A ⊗HE . Using Uhlmann’s
theorem, the following computation establishes the claim:

F
(
N (ρ),N (σ)

)
⩾

∣∣∣(〈φ|⊗〈η|)U †U
(|ψ〉⊗ |η〉)∣∣∣= |〈φ|ψ〉| = F (ρ,σ).
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We want to use the last lines of this section to investigate the relationship
between fidelity and trace distance. As we have already seen for pure states
ρ = |φ〉〈φ| and σ = |ψ〉〈ψ|, the fidelity reads F (ρ,σ) = |〈φ|ψ〉|. If we apply
Gram-Schmidt’s procedure on the two Hilbert space vectors |φ〉 and |ψ〉, we
can write them as

|φ〉 = |1〉
|ψ〉 = cosθ |1〉+ sinθ |2〉

where |1〉 and |2〉 denote to orthonormal vectors. There is no loss of gener-
ality if we choose real coefficients since a complex phase can be absorbed
in the unit vector |2〉. Hence, we find F (ρ,σ) = |cosθ|. Furthermore, the
density matrix σ is given by

σ= |ψ〉〈ψ| = cos2θ |1〉〈1|+ sinθcosθ |2〉〈1|+cosθ sinθ |1〉〈2|+ sin2θ |2〉〈2| .

The difference of the two density matrices has the following matrix repre-
sentation (in the basis {|1〉 , |2〉})

ρ−σ=
(

1−cos2θ −sinθcosθ
−sinθcosθ −sin2θ

)
which has eigenvalues ±|sinθ|. Therefore, we obtain

D(ρ,σ) = 1

2
tr

[∣∣∣∣( 1−cos2θ −sinθcosθ
−sinθcosθ −sin2θ

)∣∣∣∣]= |sinθ| =
√

1−F (ρ,σ)2.

For general density matrices ρ and σ we consider their purifications |φ〉 and
|ψ〉. Using both, Uhlmann’s theorem and the monotonicity of the trace dis-
tance (theorem 1.24), we find

D(ρ,σ)⩽
√

1−F (ρ,σ)2.

By this computationwe have proven the following proposition:

Proposition 1.29 (First Fuchs–van de Graaf Inequality). For ρ,σ ∈D(H )
the trace distance is bounded from above by

D(ρ,σ)⩽
√

1−F (ρ,σ)2.
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Chapter 2

From Classical toQuantum
Information Theory

There is a whole bunch of different quantities in the field of informa-
tion theory. We restrict to the most important notions for which we discuss
their quantum analogues in section § 2.2. The interested reader may find a
comprehensive survey of the classical quantities in the very accessible book
by Cover and Thomas [CT12]. For further information about the quantum
realm we refer to the standard reference of the subject, namely the excellent
textbook of Nielsen and Chuang [NC10].

2.1 Quantities of Classical Information Theory

Arguably the most famous quantity in information theory is the entropy H
introduced by Shannon in 1948. Actually, the name originated in statistical
mechanics, more precisely, it was adopted from Boltzmann’s entropy rep-
resenting the logarithm of the number of microstates of a system. We only
consider the case of a random variable X taking values in the finite set S. The
generalization to continuous random variables is pretty obvious. The reader
has to substitute the sums in the subsequent definitions by an integral w.r.t.
the distribution of the random variable solely.
The entropy of X is given by

H(X ) =− ∑
x∈S

P(X = x) log
[
P(X = x)

]
=− ∑

x∈S
p(x) log

[
p(x)

]=E

[
log

1

p(X )

]
⩾ 0

where p : S → [0,1], p(x) = P(X = x), denotes the probability mass func-
tion of X . Note that in this thesis log indicates the logarithm to base 2.
We use the convention that 0log0 = 0 which seems natural by noting that
limx→0 x log x = 0. In particular, this convention ensures that X = Y a.s. im-
plies H(X ) = H(Y ).

23
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Example 2.1. Let us compute the entropy of the random variable Xp ∼
Bernoulli(p). We find

H(Xp ) =−p log p − (1−p) log(1−p)

which is maximized for p = 1/2 (c.f. figure 2.1). Hence, wemight guess that
a random variable X ∼Uniform(S) maximizes the entropy. To prove this
claim, we introduce the relative entropy or Kullback–Leibler divergence
between two random variables X ∼ p(x) and Y ∼ q(x) taking values in the
same alphabet S via

D(X ∥Y ) = D(p∥q) = ∑
x∈S

p(x) log

[
p(x)

q(x)

]
.

We use the conventions that 0log(0/0) = 0, 0log(0/q) = 0 and p log(p/0) =
∞. The importance of the relative entropy becomes clearer by observing
that we have D(p∥q) ⩾ 0. In fact, by letting A = supp p , an easy appli-
cation of Jensen’s inequality to the strictly concave function x 7→ log x
reveals that

−D(p∥q) = ∑
x∈A

p(x) log

[
q(x)

p(x)

]
⩽ log

[ ∑
x∈A

q(x)

]
⩽ log

[∑
x∈S

q(x)

]
= 0.

(2.1)

From this computation, we can easily deduce the necessary and sufficient
condition for D(p∥q) = 0. Namely, the equality condition in Jensen’s in-
equality requires q(x)/p(x) = c = const. Observe that∑

x∈A
qx = c

∑
x∈A

p(x) = c

and the second bound in (2.1) requires ∑
x∈A q(x) =∑

x∈S q(x) = 1. Hence,
we find c = 1 and consequently, D(p∥q) = 0 if and only if p(x) = q(x) for
all x ∈ S.
Eventually, we conclude that the uniform distribution maximizes the en-
tropy by the following argument. Let X ∼ p(x) and Y ∼Uniform(S). Then
we have

0⩽D(X ∥Y ) = ∑
x∈A

p(x) log
[
p(x)|S|]= log(|S|)−H(X ) = H(Y )−H(X )

from which the claim follows.
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Figure 2.1: The plot depicts the function [0,1] ∋ p 7→ H(Xp ) with
Xp ∼Bernouilli(p).

The definition of the entropy can be easily generalized to a pair of random
variables (X ,Y ) : ω→ SX ×SY with a joint probability mass function p(x, y).
We define the joint entropy by

H(X ,Y ) =− ∑
x∈SX

∑
y∈SY

p(x, y) log
[
p(x, y)

]=E

[
log

1

p(X ,Y )

]
.

If the random variable X and Y are independent their joint entropy reads
H(X ,Y ) = H(X )+H(Y ). In general this does not hold true but one can prove
that

H(X ,Y ) = H(X )+H(Y |X ) (2.2)
where H(Y |X ) denotes the conditional entropy which is given by

H(Y |X ) =− ∑
x∈SX

p(x)
∑

y∈SY

p(y |x) log
[
p(y |x)

]= ∑
x∈SX

p(x)H(Y |X = x).

In the previous equationwe used the suggestive labeling p(x) for themarginal
distribution of (X ,Y ) with respect to X as well as p(y |x) for the condi-
tion marginal mass function of Y given X . Note that H(Y |X ) ⩾ 0 since
H(Y |X = x)⩾ 0.
The last quantity we want to introduce is the mutual information I (X : Y )
of two random variables (X ,Y ) with joint distribution p(x, y) and marginals
p(x) and p(y) respectively. Its definition reads

I (X : Y ) = ∑
x∈SX

∑
y∈SY

p(x, y) log

[
p(x, y)

p(x)p(y)

]
= I (Y : X ).

It can be easily seen that I (X : Y ) = H(X )−H(X |Y ). By this observation, the
definition of the conditional mutual information via

I (X : Z |Y ) = H(X |Y )−H(X |Z ,Y )

seems quite natural. The connection between the mutual information and
its conditional form is described by the following theorem.
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Theorem 2.2 (Chain Rule for Mutual Information).

I (X1, . . . , Xn : Y ) =
n∑

i=1
I (Xi : Y |Xi−1, . . . , X1)

The proof of the theorem is done by straight–forward computation. Further
details can be found in [CT12].
Eventually, we want to mention that I (X : Y ) ⩾ 0 as well as I (X : Z |Y )⩾ 0
which follows easily bywriting the (conditional)mutual information in terms
of the non–negative relative entropy. In fact, we have

I (X : Y ) = D
(
p(x, y)∥p(x)p(y)

)
,

I (X : Z |Y ) = D
(
p(x, z|y)∥p(x|y)p(z|y)

)
.

The non–negativity of the conditional mutual information will be of impor-
tance in § 2.3.

2.2 Quantities of Quantum Information Theory
After the review of a selection of important quantities from classical informa-
tion theory, we introduce their quantum counterparts in this section. Since
the presented quantities are ubiquitous in the rest of the thesis, we take them
into deeper consideration than the classical ones.
The central quantity of quantum information is the von–Neumann entropy
(or just entropy for short) which generalizes the notion of Shannon entropy
to quantum states. By recalling the convention 0log0 = 0, we define the
von–Neumann entropy of a quantum state ρ by

S(ρ) =− tr[ρ logρ] =− ∑
λ∈σ(ρ)

λ logλ.

Since the eigenvalues of ρ sum up to one, they represent a discrete prob-
ability distribution. Consequently, the von–Neumann entropy of ρ coin-
cides with the Shannon entropy corresponding to the random variable X
distributed according to ρ’s spectrum. Hence, the entropy is maximized by
themaxillymally mixed state 1

n = 1
n

∑n
i=1 |i 〉〈i |which correspondents to the

uniform distribution (c.f. example 2.1). Analogously to the classical quantity,
we define the quantum relative entropy by

S(ρ∥σ) =
{

tr
[
ρ(logρ− logσ)

]
if suppρ ⊂ suppσ,

+∞ otherwise.

The non–negativity of the relative entropy still holds true as the following
theorem shows.
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Theorem 2.3 (Klein’s Inequality). Let A, B be positive matrices and f :
(0,∞) →R convex and differentiable. Then

tr
[

f (A)− f (B)− (A−B) f ′(B)
]
⩾ 0.

Moreover, if f is strictly convex, equality holds if and only if A = B .
In particular: S(ρ||σ)⩾ 0 and S(ρ||σ) = 0 if and only if ρ =σ.

Proof. Let t ∈ [0,1] and define

ϕ(t ) = tr
[

f (B + t (A−B))
]

.

This function ϕ is convex since the trace is monotone and linear. Further-
more,ϕ is differentiable andϕ′(t ) = tr[(A−B) f ′(B+t (A−B))]. Let x, y ∈ [0,1],
y > x, and λ ∈ (0,1), then the definition of convexity reads

ϕ(λy + (1−λ)x)⩽λϕ(y)+ (1−λ)ϕ(x).

Simple arithmetics shows that this condition is equivalent to

ϕ(x +λ(y −x))−ϕ(x)

λ
⩽ϕ(y)−ϕ(x).

Finally, we let y = 1 and x = 0 and take the limit λ↘ 0 to conclude

tr[(A−B) f ′(B)] =ϕ′(0)⩽ϕ(1)−ϕ(0) = tr[ f (A)− f (B)]. (2.3)

In the case of a strictly convex function f and A−B ̸= 0, ϕ is strictly convex,
too. Hence, inequality 2.3 is strict.
The assertions about the quantum relative entropy follow by noting that
(0,∞) ∋ x 7→ x log x is strictly convex.

The argument presented in the proof above is more general than the original
one of Klein [Kle31] (see [NC10] for a modern version).
We collect some of the basic properties of the von–Neumann entropy in the
subsequent proposition.

Proposition 2.4.

(i) The von–Neumann entropy S(ρ) is non–negative and it vanishes if
and only if ρ is pure.

(ii) Only the maximally mixed state 1
n maximizes the entropy.

(iii) If ρAB ∈D(H A ⊗HB ) is pure, then S(ρA) = S(ρB ).

Proof. The non–negativity of the von–Neumann entropy emerges immedi-
ately from the definition. Note that a quantum state ρ is pure if and only if
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σ(ρ) ⊂ {0,1} and there is only one non–vanishing eigenvalue from which the
second assertion under (i) follows.
Imitating the classical proof, point (ii) can be immediately deduced from
Klein’s inequality (theorem 2.3):

0⩽ S

(
ρ
∥∥∥1

n

)
=−S(ρ)+ logd .

Since the eigenvalues of a density operator determine its entropy completely,
claim (iii) follows from the discussion subsequent to the Schmidt decompo-
sition (theorem 1.10).

As a notional convenience, we occasionally use the abbreviation S(ρA) ≡
S(A) in the following. Moreover, we define the joint entropy in a natural
way:

S(A,B) =− tr
[
ρAB logρAB

]
.

The three remaining quantities, which we want to consider in our brief dis-
cussion, are the conditional entropy S(A|B) = S(A,B)−S(B), the quantum
mutual information I (A : B) = S(A)+S(B)−S(A,B) and the quantum condi-
tional mutual information I (A : C |B)ρ = S(A,B)+S(B ,C )−S(B)−S(A,B ,C ).
At this point, we are able to present the first major difference between clas-
sical and quantum information theory. From equation (2.2) it immediately
follows that H(X ,Y )⩾ H(X ) which seems to be a quite apodictic statement
since the uncertainty of the random variable X should not exceed the vague-
ness of the random vector (X ,Y ). This fact does not hold true in the quantum
realm as we show by the following example.

Example 2.5. Let |ψ〉 = 1p
2

(|1〉⊗ |1〉+ |2〉⊗ |2〉) ∈ C2 ⊗C2 be the EPR state.
The state ρAB = |ψ〉〈ψ| is clearly pure and hence S(A,B) = 0. Nevertheless,
according to example 1.4 (ii), we obtain the marginal

ρA = 1

2

by tracing out the latter Hilbert space. Consequently, 0 = S(A,B)⩾̸ S(A) =
1.

A legitimate question which arises by the consideration of example 2.5 is
whether there exists a similar inequality to H(X ) ⩽ H(X ,Y ) in quantum
information. The answer to this question is positive as the following theorem
shows.

Theorem 2.6. The von–Neumann entropy satisfies

(i) subadditivity: S(A,B) ⩽ S(A)+ S(B) with equality if and only if
ρAB = ρA ⊗ρB ,
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(ii) triangle inequality (Araki–Lieb inequality): S(A,B)⩾ |S(A)−S(B)|.

Proof. The subadditivity of the von–Neumann entropy is essentially a corol-
lary of Klein’s inequality (theorem 2.3). In fact, we find for quantum states ρ
andσ that S(ρ)⩽− tr[ρ logσ]. Consequently, we set ρ = ρAB andσ= ρA⊗ρB

to compute

S(A,B)⩽− tr
[
ρAB

(
log(ρA ⊗ρB )

)]
=− tr

[
ρAB

(
logρA + logρB

)]
=− tr

[
ρA logρA

]− tr
[
ρB logρB

]
= S(A)+S(B).

Note that the penultimate manipulation is due to the definition of the partial
trace. Moreover, Klein’s inequality implies that equality in subadditivity is
attained if and only if ρAB is a product state.
Inequality (ii) is established by introducing an ancillary system HE which
purifies the state ρAB . The already proven subadditivity implies

S(A,E)⩽ S(A)+S(E). (2.4)

According to proposition 2.4 (iii) the entropies of the states ρAE and ρB co-
incide. Moreover, the same holds for ρE and ρAB . Eventually, equation (2.4)
reads

S(B)−S(A)⩽ S(A,B).

The same argument shows S(A)−S(B) ⩽ S(A,B) and hence the Araki–Lieb
inequality.

Themost famous inequality which the von–Neumann entropy satisfies is the
strong subadditivity established by Lieb and Ruskai in 1973 [LR73]. There
were several other proofs of strong subaddivity published in the subsequent
years.

Theorem 2.7 (Strong Subadditivity). For any state acting on the tripartite
system H A ⊗HB ⊗HC the inequality

S(A,B ,C )+S(B)⩽ S(A,B)+S(B ,C )

holds.

We do not want to give a proof of strong subadditivity in this thesis since all
known arguments are quite long and usually there is some technicality in-
volved. A proof based on Lieb’s and Ruskai’s original one is given in [NC10].
Moreover, the reader can find a proof requiring no knowledge beyond lin-
ear algebra in the paper of Ruskai [Rus07]. Note that the statement of strong
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subadditivity is equivalent to the non–negativity of the quantum conditional
mutual information I (A : C |B)ρ = S(A,B)+ S(B ,C )− S(B)− S(A,B ,C ) ⩾ 0.
This fact can also be easily derived from the recoverability theorem presented
in chapter 4.

2.3 Markov Chains

We start this section by giving a definition of classical Markov chains. Af-
terwards we investigate some interesting examples from probability and in-
formation theory.
Let (Ω,F ,P) be a probability space and (Xi )i∈N0 be a real–valued stochastic
process in discrete time. The filtration the stochastic process is adapted to is
of no particular interest and hence, we can conveniently work with the fil-
tration generated by (Xi )i∈N0 , that is, Fi =σ(X0, . . . , Xi ). Since we deal with
conditional probabilities in the following, all statement require that these
are well–defined; in particular that the event conditioned on is not a null set.
We assume that this is always the case and do not mention this prerequisite
explicitly.

Definition 2.8. A discrete stochastic process (Xi )i∈N0 is called a Markov
chain if for all i ∈N0 and all x0, . . . , xi+1 ∈R

P(Xi+1 = xi+1|Xi = xi , . . . , X0 = x0) =P(Xi+1 = xi+1|Xi = xi )

holds.

The first example a probability theorist might think of when hearing the term
Markov Chain is the random walk on Zd :

Example 2.9. Let x ∈ Zd be the starting point of our random walk and
let Xi , i ∈ N, be iid. Zd–valued random variables. For example, a signed
Bernoulli distribution seems to be an appropriate choice. Then the stochas-
tic process (Sn)n∈N0 ,

Sn = x +
n∑

i=1
Xi ,

forms a Markov Chain.

There are numerous examples of Markov Chains in probability theory and
even more subtle ones as the Galton–Watson branching process which mod-
els the size of a population reproducing itself asexual. Nevertheless, this
stochastic process is usually studied using martingale methods in order to
have their very strong convergence results at hand.
The information theoretic part of this thesis requires only a small subset of
the general notions from probability theory. As before, we only consider
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random variables X ,Y , Z taking values in countable alphabets S,T and U
respectively. Boiling down the theory to this specific setting, we can give
the following equivalent characterization of Markov chains.

Theorem 2.10. The random variables X ,Y , Z form a Markov chain if and
only if the probability mass functions satisfy

p(x, y, z) = p(x)p(y |x)p(z|y)

for all (x, y, z) ∈ S ×T ×U .
As a notational convenience, we write X → Y → Z in this case.

Proof. For the «only if» part using the Markov property of definition 2.8, we
easily compute

p(x, y, z) =P(X = x,Y = y, Z = z)

=P(X = x)P(Y = y |X = x)P(Z = z|Y = y, X = x)

= p(x)p(y |x)p(z|y).

The «if» part follows from

P(Z = z|Y = y, X = x) = p(x, y, z)

p(x, y)

= p(x)p(y |x)p(z|y)

p(x, y)

= p(z, y)

p(y)

=P(Z = z|Y = y).

In order to understand Markov chains in information theory better, we give
another equivalent characterization of them. To this end, we consider the
conditional mutual information I (X : Z |Y ).

Theorem 2.11. X ,Y , Z form a Markov chain if and only if I (X : Z |Y ) = 0.

Proof. We start by assuming X → Y → Z . Due to the characterization from
theorem 2.10, we find

p(x|z, y) = p(x, y, z)

p(y)
= p(x)p(y |x)p(z|y)

p(y)
= p(x, y)p(z|y)

p(y)
= p(x|y)p(z|y).

From the concluding remarks of § 2.1, we obtain I (X : Z |Y ) = 0.
Contrarily, I (X : Z |Y ) = 0 implies p(x|z, y) = p(x|y)p(z|y) and hence
p(x, y, z) = p(x)p(y |x)p(z|y) which shows X → Y → Z .
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Note that X → Y → Z implies Z → Y → X wherefore some authors use
X ↔ Y ↔ Z to indicate a Markov chain. The notion of Markov chains in in-
formation theory can be enlivened further by investigating their operational
consequences. The most famous of these is the so–called data processing
inequality.

Theorem 2.12 (Data Processing Inequality). If X → Y → Z , then I (X :
Y )⩾ I (X : Z ).

Proof. Due to theorem 2.2, we can expand the mutual information as follows:

I (X : Y , Z ) = I (X : Y )+ I (X : Z |Y ) = I (X : Y ),

I (X : Y , Z ) = I (X : Z )+ I (X : Y |Z ).

Since I (X : Y |Z )⩾ 0, we find I (X : Y )⩾ I (X : Z ).

Observe that X → Y → f (Y ) forms a Markov chain. Therefore the preceding
theorem implies I (X : Y ) ⩾ I (X : f (Y )) which shows that post–processing
Y cannot increase the mutual information between X and Y . Following the
previous proof, another inequality can be derived. If X → Y → Z , then I (X :
Y |Z )⩽ I (X : Y ). Roughly spoken, the dependence of X and Y is reduced by
conditioning on an auxiliary random variable Z which lays on the data road
in between them.
In light of theorem 2.11, we say that a tripartite system H A ⊗HB ⊗HC

forms a quantum Markov chain, denoted by A → B → C , if the quantum
conditional mutual information between A and C given B vanishes, that is,
I (A : C |B) = 0. As we will see in § 4.2, this definition is equivalent to the
characterization of quantum Markov chains as systems where for any given
state ρABC ∈D(H A ⊗HB ⊗HC ) there exists a recovery map RB→BC which
exactly recovers ρABC from the marginal ρAB = trC [ρABC ], that is, ρABC =
RB→BC (ρAB ).
Finally, we want to state the necessary and sufficient condition on a tripartite
system in order to form a quantum markov chain.

Theorem2.13 (Equality in the Strong Subadditivity [Hay+04,Theorem 6]).
A state ρABC ∈D(H A ⊗HB ⊗HC ) satisfies

S(A,B ,C )+S(B) = S(A,B)+S(B ,C )

if and only if there exists a decomposition of the system B of the form

HB =⊕
j

HbL
j
⊗HbR

j
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such that

ρABC =⊕
j

q j

(
ρ(A)

bL
j

⊗ρ(C )
bR

j

)

for states ρ(A)
bL

j

∈ D
(
H A ⊗HbL

j

)
, ρ(C )

bR
j

∈ D
(
HbR

j
⊗HC

)
and q j ⩾ 0 with∑

j q j = 1.
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Chapter 3

Matrix Product States in a Nutshell

In order to see how the notion of matrix product states (mps) arises natu-
rally in quantum many body physics, we consider the following simple sys-
tem in one spatial dimension. Supposewe have a chain of N quantum objects
which are all described by the finite dimensional Hilbert space Cd . This easy
setting is depicted in figure 3.1. Every ground state of this system is of the
form

|Ψ〉 =
d∑

i1,...,iN=1
ci1...iN |i1, . . . , iN 〉

where the ci1...iN denote the complex coefficients of the expansion in the
onb {|i1, . . . , iN 〉}i1,...,iN . Unfortunately, the number of these coefficients grows
exponentially in the generic case, in particular ∼ d N , since the Hilbert space
of the whole system is given by

(
Cd

)⊗N . Hence, it is impractical to apply this
approach to typical systems condensed matter physicists are interested in.
In fact, the reader might think of N in the order of Avogadro’s number, that
is, N ∼ 1023. Taking d = 2 for a simple spin–up and spin–down chain, the
dimension of the total system’s Hilbert space exceeds the number of atoms
in the universe (∼ 1082) by numerous orders of magnitude.

1

Cd

2

Cd

3

Cd

4

Cd

· · ·
N

Cd

Figure 3.1: Chain of N quantum systems with associated Hilbert space Cd .

3.1 Area Laws

Formally, we describe a n–dimensional lattice as a simple graph G = (V ,E)
with a set of vertices V and set of edges E . The total Hilbert space H of the
system is the tensor product of the local Hilbert spaces H i associated to the

35
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vertex i :

H = ⊗
i∈V

H i .

Imposing the assumption that the total Hamiltonian H acts locally on the
lattice sites, e.g. by nearest or next–to–nearest neighbor interaction, the total
Hamiltonian reads

H = ∑
L⊂V

HL

where the local Hamiltonians HL have compact support L. Such approx-
imations are ubiquitous in the models of condensed matter physicists. For
instance, onemay think of the famous Lennard–Jones potential which shows
a O(r−6) decay as r →∞. We use the ad–hoc notation dist(i , j ) to indicate
the natural graph distance between the two vertices i , j ∈ V . In the spe-
cial case of a square lattice modeled by a set of vertices V ⊂Zd , the natural
graph distance dist(i , j ) of two vertices i , j ∈ V is given by ∥i − j∥1 where
∥ ·∥1 indicates the 1–norm in Zd , that is,

∥i∥1 =
d∑

k=1
|ik |.

For a distinguished region A ⊂ V , as depicted in figure 3.2, we define the
boundary ∂A by

∂A = {
i ∈ A

∣∣ ∃ j ∈V \ A : dist(i , j ) = 1
}

.

Tracing out the complement of this distinguished region A, i.e. forming
ρA = trV \A

[
ρ
]
for a state ρ ∈ D(H ) acting on the total system, the entan-

glement between the region A on the rest of the lattice is given by the von–
Neumann entropy of ρA . In the generic case of a lattice consisting of d–
dimensional constituents, it can be shown that the expectation of the von–
Neumann entropy fulfills E

[
S(ρA)

] ∼ |A| logd [Pag93; FK94; Sen96]. Nev-
ertheless, while studying the ground states of local Hamiltonians in further
detail, it turns out that the entanglement between the distinguished region A
and the remainder of the lattice V \ A scales with the volume of the boundary
|∂A| rather than with the volume of the whole region, that is, S(ρA) ∼ |∂A|. It
turns out that this requirement is too strict in case of a gapples Hamiltonian
(i.e. the ground state is degenerate) where we say that ρA fulfills an area
law if S(ρA) ∼ |∂A| log |A|. A rigorous mathematical prove is only known in
the case of a one–dimensional system with a gapped Hamiltonian [Has07].
In this setting of a spin chain, the area law states that the von–Neumann
entropy of the state ρA is bounded by a constant independent of the system
size N and the length of the distingushed region L (cf. figure 3.2). Hence, the
physically reasonable states of the many body system live in a small subset
of the total Hilbert space and are of a specific structure which we will ex-
ploit in the subsequent section. Finally, we want to mention that the notion
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of area laws are not solely of interest in the fields of quantum information
and condensed matter physics. The survey of Eisert et al. [ECP10] provides
further information about area laws and gives a short review of their various
applications.

A

L

∂A

A

Figure 3.2: The distinguished region A and its boundary ∂A in the one and
two spatial dimensions.

3.2 Matrix Product States
We restrict the upcoming discussion to the one–dimensional case only. The
reader may find generalizations, in particular to two–dimensional systems,
in [BC17; Sch13; Oru14].
Motivated by the area law presented in the previous section, we suppose
that the entanglement is concentrated on the boundary of the distinguished
region. Therefore, we decompose the vertices of our chain into to two D–
dimensional, virtual subsystems. Their dimension may vary from site to site.
Nevertheless, we can conveniently think of a single bond dimension D if we
set

D = max
i∈V

Di

where Di denotes the dimension of the virtual subsystems associated with
the lattice site i . We impose the assumption that the neighboring virtual
subsystems of adjacent sites are in the maximally entangled state

|ωD〉 =
D∑

i=1
|i 〉⊗ |i 〉 .

This construction clearly satisfies an area law since by «cutting» the bonds
at the boundary of a distinguished region A, we are left with two maximally
entangled states and hence 2logD is an upper bound on the von–Neumann
entropy S(A). In order to recover the original state |Ψ〉 of the whole chain,
we apply the site dependent linear map

P s : CD ⊗CD →Cd

P s |ψ〉 =
(

d∑
i=1

D∑
α,β=1

A[s]
i ,αβ |i 〉〈α|⊗〈β|

)
|ψ〉 , s = 1, . . . , N (3.1)
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on the maximally entangled states |ωD〉. Note that equation (3.1) deals with
three–index tensors A[s]

i ,αβ which can be interpreted as D ×D matrices A[s]
i .

The state of the whole one–dimensional system is given by

|Ψ〉 =
(

N⊗
s=1

P s

)
|ωD〉⊗N (3.2)

with the linear maps P s defined in equation (3.1). We want to mention the
technicality that in (3.2) we assumed a system with closed boundary condi-
tions where the first and the last site share a common bound. For a pictorial
explanation, we refer to figure 3.3.

P1 P2 P3 P4 P5 P6 PN

Figure 3.3: Our original spin chain, represented by the dark blue dots, is re-
covered by the application of the map P on the ancillary system
containing two virtual subsystems on each site (light blue circles).
Moreover, note that |ωD〉 = represents the maximally
entangled state.

Eventually, we are able to show that the state |Ψ〉 has amatrix product state
(mps) representation. We encapsulate this result in the following proposi-
tion.

Proposition 3.1. The state |Ψ〉 has a representation of the form

|Ψ〉 =
d∑

i1,...,iN=1
tr

[
A[1]

i1
A[2]

i2
· · · A[N ]

iN

]
|i1, . . . , iN 〉 .

Proof. Let us investigate how themaps applied to the first and the second site
act on the bond between them. Using 1=∑

α1
|α1〉〈α1| and 1=∑

β2
|β2〉〈β2|

(probably not of the same dimension), we find

(P1 ⊗P2)(1⊗|ωD〉⊗1)

= ∑
i1,i2, j ,

α1,β1,α2,β2

A[1]
i1,α1β1

A[2]
i2,α2β2

|i1, i2〉〈α1,β1,α2,β2| (1⊗| j , j 〉⊗1)

= ∑
i1,i2,α1,β1,β2

A[1]
i1,α1,β1

A[2]
i2,β1β2

|i1, i2〉〈α1,β2| .
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By iterating the argument, we obtain from (3.2) a final state of the form

|Ψ〉 = ∑
i1,...,iN ,
α,β,...,ω

A[1]
i1,αβ · · · A[N ]

iN ,ωα |i1, . . . , iN 〉 = ∑
i1,...,iN

tr
[

A[1]
i1

· · · A[N ]
iN

]
|i1, . . . , iN 〉 .

(3.3)

Clearly, the small finite number of Greek letters does not suffice to label all
the tensors in the generic case. In order to avoid several technicalities (e.g.
distinguishing between N even or odd), we prefer this lax notion since the
reader is able to fill in the details in a more specific situation.

Note that in the case of open boundary conditions, the tensors associated to
the first and the last site are row and column vectors respectively. Hence in
this setting, we find

|Ψ〉 = ∑
i1,...,iN

A[1]
i1

· · · A[N ]
iN

|i1, . . . , iN 〉 (3.4)

where we are allowed to omit the trace.
Occasionally, one encounters translational invariant mps for which Ai j :=
A[1]

i j
= ·· · = A[N ]

i j
for any j ∈ {1, . . . , N }. Consequently, equation (3.3) simplifies

as follows:

|Ψ〉 = ∑
i1,...,iN

tr
[

Ai1 · · · AiN

] |i1, . . . , iN 〉 .

3.2.1 A Graphical Language for Matrix Product States

We want to introduce briefly a widespread and convenient notation for ten-
sor networks, and especially mps, which is adapted from the Penrose no-
tation used in multilinear algebra. Let us start with one of the three index
tensors A[s]

i ,αβ occurring in equation (3.4). We represent it graphically by a
box with three adjacent «legs», each corresponding to one of the three in-
dices:

A[s]
i ,α,β

α

i

β.

When two of the legs are connected, we sum over the corresponding com-
mon index. In graphical language:

A[s]
i ,αβ

α

i

A[s+1]
i ,βγ

γ

j

β =∑
β

A[s]
i ,αβA[s+1]

j ,βγ .
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With these illustrations at hand, we obtain for the full mps representation of
the state |Ψ〉

|Ψ〉 =
d∑

i1,...,iN=1
ci1,...,iN |i1, . . . , iN 〉 = ∑

i1,...,iN

tr
[

A[1]
i1

· · · A[N ]
iN

]
|i1, . . . , iN 〉

the diagrammatic expression

A[1]
i1,αβ

i1

A[2]
i2,βγ

i2

β

|Ψ〉 ci1,...,iN

iNi1 i2 i3 · · ·

A[3]
i3,γδ

i3

γ
A[N ]

iN ,ωα

iN

α

=

=

δ ω

where we used closed boundary conditions.

3.2.2 Examples of Matrix Product States

In order to familiarize ourselves with the notion of mps, we will discuss sev-
eral easy examples. In the presented settings, we will always be able to give
the exact mps representation of the total system’s state.

Product States

Arguably the easiest example we can consider is the case where the total
state is of the simplest factorized form, that is for instance, |Ψ〉 = |1, . . . ,1〉.
This state can be represented by introducing the translational invariant mps
formed by the 1×1–matrices

A1 = (1), A j = (0) for j ⩾ 2.

An alternative representation is given by the D ×D–matrices

A1 =


1 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0

 , A j = 0 for j ⩾ 2

for some arbitrary bond dimension D ∈ N. In order to achieve an efficient
description, we choose the mps representation with the smallest bond di-
mension. Nevertheless, even the mps representation with the smallest bond
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dimension is not unique since for Bs , 1 ⩽ s ⩽ N −1, with right inverse B−1
s ,

we can perform a gauge transformation of the form

A[s]
i → A[s]

i Bs

A[s+1]
i → B−1

s A[s+1]
i

without changing the representation.

W State

Let us investigate the mps generated by the matrices

A[s]
1 = 1

2N
p

N

(
1 0
0 1

)
, A[s]

2 = 1
2N
p

N

(
0 1
0 0

)
for s ∈ {2, . . . , N −1} and

A[1]
i = (

1 0
)

A[2]
i , A[N ]

i = A[2]
i

(
0
1

)
for i ∈ {1,2}. Since A[s]

2 , 2⩽ s ⩽ N −1, is nilpotent, we find the W state:

|W 〉 =
N∑

i=1
|1, . . . ,1,2

↑
i th position

,1, . . . ,1〉 .

Greenberger-Horne-Zeilinger State

The Greenberger–Horne–Zeilinger state, which is of interest in the field of
quantum cryptography, is given by

|GHZ〉 = 1p
2

(|1, . . . ,1〉+ |2, . . . ,2〉) .

Clearly, the simplest translational invariant matrix product representation is
obtained by setting

A1 = 1
2N
p

2

(
1 0
0 0

)
, A2 = 1

2N
p

2

(
0 0
0 1

)
.

AKLT State

Eventually, we study amodel of a spin chain introduced by Affleck, Kennedy,
Lieb and Tasaki [Aff+87; Aff+88]. According to Perez–Garcia et al. [Per+07]
the ground state of this system is the «father of all matrix product states».
We start with a slightly different setup as under § 3.2. Let us impose the
assumption that the site of the spin chain consist of two virtual spin–1/2

subsystems. In contrast to the construction of a mps, we put the bond in the
spin–1/2 singlet state (S = 0)

|ξ〉 = 1p
2

(|↑↓〉− |↓↑〉).
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Note that by this construction, we still obtain a mps since the unitary matrix

(
0 1
−1 0

)

which transforms |ξ〉 to

|ω2〉 = 1p
2

(|↑↑〉+ |↓↓〉)

can be absorbed in the map P . In contrast to § 3.2, we choose P = ΠS=1

where ΠS=1 denotes the orthogonal projection on the spin–1 subspace. The
whole model is depicted in figure 3.4. Using a group theoretic argument,
it can be shown that the partial trace of two consecutive sites cannot be in
the state S = 2. Since this is non–trivial constraint, we have found a local
Hamiltonian for which the AKLT state forms the ground state. We do not
want to study the construction of the Hamiltonian in further detail. The
interested reader may find a detailed exposition in [Sch13].

ΠS=1

S = 1

ΠS=1

S = 1

ΠS=1

S = 1

S = 0 S = 0

ΠS=1

S = 1

S = 0

Figure 3.4: The AKLTmodel with closed boundary conditions.Analogue toto
§ 3.2, we obtain a mps by this construction. Note that |ξ〉 =

represents the singlet state.

Summing up the local Hamiltonians yields

H =
N−1∑
i=1

Si ·Si+1 + 1

3
(Si ·Si+1)2 .

The vector Si ∈ C3 is the the spin–1 operator associated to site i . Note
that the first term of the sum coincides with the ordinary one–dimensional
Heisenberg spin model without a magnetic field (except the fact that the
AKLT Hamiltonian deals with spin–1 operators).
The followingmatrices [Sch11] represent the ground state of theAKLTHamil-
tonian as mps:

A+ =
(

0
√

2
3

0 0

)
, A0 =

(− 1p
3

0

0 1p
3

)
, A− =

(
0 0

−
√

2
3 0

)
.
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We changed the indexing of the matrices in order to emphasize the corre-
spondence to the triplet states (S = 1)

|+〉 = |↑↑〉
|0〉 = |↑↓〉+ |↓↑〉p

2
|−〉 = |↓↓〉 .

The preceding examples were only a selection from the models with an ex-
act mps representation. Unfortunately, the most interesting physical system
do not have such simple ground states. Nevertheless, mps often provide a
powerful numerical tool for their approximation.
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Chapter 4

Recovery Maps

In this chapter, we introduce and study the main topic of this thesis. The
concept of recovery maps was adressed by Petz [Pet86; Pet88] for the first
time. He investigated the equality conditions in the monotonicity of quan-
tum relative entropy and established the so–called «transpose channel». The
topic had been only of minor interest for several years before the ground-
breaking paper of Fawzi and Renner [FR15] was published. Together with
Sutter [SFR16], they were able to improve their result even further. We will
consider their work in § 4.2. Fortunately, an explicit structure of a recovery
map is known for finite–dimensional systems. It has a nice mathematical
derivation, in particular it uses some basic notions of complex and harmonic
analysis, and thus we want to sketch the proof given by Wilde [Wil15] (c.f.
§ 4.1 and appendix A.3).
Before we address the mathematical details of the recovery maps, we should
motivate our interest in the concept of recoverability. Let us recall the sim-
ple setting of a one–dimensional chain of finite length from figure 3.1. We
impose the assumption that we already know the state of the first two sites
σ1,2 = tr3,...,N [|Ψ〉〈Ψ|]. We aim to reconstruct the total state σ1,...,N = |Ψ〉〈Ψ|
by a successive application of linear maps on σ1,2. To this end, we con-
sider the action of a single recovery map at the first place. In the case of
a vanishing quantum conditional mutual information I (1 : 3|2)ρ = 0, it is
well–known that the Petz recovery map ensures a perfect recoverability of
σ1,2,3. In particular, we have I (1 : 3|2)ρ = 0 if σ1,2,3 is a product state, that
is, σ1,2,3 = σ1 ⊗σ2 ⊗σ3.* However in general, we are not permitted to as-
sume that a pure state σ1,2,3 is of product form. We can define a natural
probability measure on the unit sphere Sn−1 ⊂ Cn by considering the Haar
measure on the unitary group U (n). To this end, we pick a starting vector
|ψ0〉 ∈ Sn−1 which we undertake a random unitary evolution drawn w.r.t.
the Haar measure. Invoking Lévy’s lemma [Led05], a result from the study
of the concentration of measure phenomenon, it can be shown that a given
state is almost maximally entangled with an overwhelming probability, i.e.

*Recall that the necessary and sufficient condition of a vanishing quantum conditional in-
formation is encapsulated in theorem 2.13.
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exponential saturation to one as n →∞. Based on the work of Fawzi, Renner
and Sutter, we are interested in states with a small but non–vanishing quan-
tum conditional mutual information, that is, 0 < I (A : C |B)ρ ⩽ ε for some
small ε> 0. These states are said to form an approximate Markov chain (cf.
§ 2.3). Nevertheless, we start our exposition with studying the Petz recovery
map and Wilde’s recoverability theorem in § 4.1.

4.1 Recoverability Theorem

The exposition of this section mainly follows the textbook of Wilde [Wil17].
We start by introducing an explicit recovery map which will appear slightly
modified in Wilde’s recoverability theorem. Moreover, this map will play an
important role in the subsequent sections.

Definition 4.1. Let ρ ∈ D(H A) and N : D(H A) → D(HB ) be a quantum
channel. We define the Petz recovery map by

Pρ,N : B(HB ) →B(H A)

X 7→ ρ
1/2N †

((
N (ρ)

)−1/2 X
(
N (ρ)

)−1/2
)
ρ

1/2.

The adjoint E † : B(HB ) →B(H A) of a linear map E : B(H A) →B(HB )
is defined as the unique linear operator satisfying

〈B |E (A)〉HS = 〈E †(B)|A〉HS

for all A ∈B(H A), B ∈B(HB ). It can be shown that the adjoint of a quan-
tum is unital and completely positive, but not necessarily trace preserving.

A legitimate question the reader may ask is whether the adjoint N † of a
quantum channel N is a quantum operation itself. The answer is negative
in the generic case. In fact using the Kraus representation of N (cf. theorem
1.17), we observe that

〈B |N (A)〉HS = tr

[
B †

∑
j

V j AV †
j

]
= tr

(∑
j

V †
j BV j

)†

A


and hence, N †(B) = ∑

j V †
j BV j . Consequently, we deduce that the adjoint

of a quantum channel is completely positive and unital. N † is in addition
trace–preserving if and only if N is unital.
Since the Petz recovery map from definition 4.1 is a concatenation of three
completely positive linear maps, it is linear and completely positive as well.
Furthermore, if supp X ⊂ suppρ, then the Petz recovery map Pρ,N is trace–
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preserving. In fact, we have

tr
[
Pρ,N (X )

]= tr
[
ρN †

((
N (ρ)

)−1/2 X
(
N (ρ)

)1/2
)]

= tr
[
N (ρ)

(
N (ρ)

)−1/2 X
(
N (ρ)

)1/2
]

= tr
[
ΠN (ρ)X

]= tr [X ] .

In the case supp X ̸⊂ suppρ following the lines of the computation above, we
can deduce that the Petz recovery map Pρ,N is at least trace–nonincreasing,
that is, tr

[
Pρ,N (X )

]
⩽ tr [X ], due to the fact ΠN (ρ)X ⩽ X and the mono-

tonicity of the trace.
For t ∈R and a density operator ρ ∈D(H ), we introduce a partial isometry
via

Uρ,t : B(H ) →B(H )

X 7→ ρi t Xρ−i t

where we defined ρ±i t =∑
j :λ j ̸=0λ

±i t
j |φ j 〉〈φ j | using the spectral decomposi-

tion of ρ as usual. Observe that ρi tρ−i t =Πρ and hence, this partial isometry
has a rather convenient property:

Uρ,t (ρ) = ρ.

The fact that Uρ,t leaves the state of its first index invariant is the impetus
of the definition of the rotated Petz recovery map.

Definition 4.2. For t ∈ R, a density operator ρ ∈ D(H ) and a quantum
channel N : D(H A) →D(HB ), we define the rotated Petz recovery map
as follows:

Prot t
ρ,N : D(HB ) →B(H A)

X 7→ (
Uρ,−t ◦Pρ,N ◦UN (ρ),t

)
(X ).

After having introduced and studied all the necessary ingredients, we are
now able to state themain result of this section, that is, Wilde’s recoverability
theorem.

Theorem 4.3 (Wilde’s Recoverability Theorem; Theorem 4 in [Wil15]
and Chapter 12 in [Wil17]). Let ρ,σ ∈D(H A) such that suppρ ⊂ suppσ

and let N : D(H A) →D(HB ) be a quantum channel.

(i) Then we have

S(ρ∥σ)−S(N (ρ)∥N (σ))

⩾−2
∫ ∞

−∞
β0(t ) log

[
F

(
ρ,

(
Prot t/2

σ,N ◦N
)

(ρ)
)]

d t
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where β0(t ) = limθ↘0βθ(t ) = π/2 (cosh(πt )+1)−1 (cf. theorem A.10
and figure 4.1). Observe that β0(t ) is a probability density.

(ii) Then there exists a recovery map Rσ,N : D(HB ) → D(H A) such
that

S(ρ∥σ)−S(N (ρ)∥N (σ))⩾−2logF
(
ρ, (Rσ,N ◦N )(ρ)

)
and (Rσ,N ◦N )(σ) =σ. Moreover, a possible recovery map Rσ,N

is given by

Rσ,N (X ) =
∫ ∞

−∞
β0(t ) Prot t/2

σ,N (X ) d t + tr
[
(1−ΠN (σ))X

]
η

for some η ∈D(H A). The last summand ensures the trace–preserving
property of Rσ,N .

From this theorem, we want to draw a simple consequence. Observe that
theorem 4.3 (ii) together with proposition 1.27 (i) implies the monotonicity of
the quantum relative entropy under a quantum channel N , that is, S(ρ∥σ)⩾
S(N (ρ)∥N (σ)). This is a highly non–trivial and quite important result of
quantum information theory first proven by Lindblad [Lin75] and Uhlmann
[Uhl77] back in the 1970s.

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

t

β
0
(t

)

Figure 4.1: The plot depicts the probability density function R ∋ t 7→β0(t ) =
π/2 (cosh(πt )+1)−1 from theorem 4.3. Observe that the peak at
t = 0 corresponds to the ordinary Petz recovery map.

4.2 The Breakthrough Result of Fawzi and Renner

In 2014, Fawzi and Renner [FR15] proved a lower bound on the fidelity be-
tween the exact quantum state and the recovered one in terms of the quan-
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tum mutual information. Unfortunately, their proof was non–constructive
and did not reveal any information about a particular recovery map which
satisfies this bound. Moreover, their argument is rather technical involved
and uses several quantities from quantum information theory which we do
not consider in this thesis. Together with Sutter [SFR16], they were able to
generalize the previous result towards the existence of a universal recovery
map which satisfies the bound for any extension ρABC ∈D(H A ⊗HB ⊗HC )
of a given marginal ρBC ∈ D(HB ⊗HC ), that is, trA[ρABC ] = ρBC . Hence,
this universal recovery map may only depend on the marginals ρB and ρBC

but neither on ρAB nor ρABC .
The main results of the paper of Fawzi, Renner and Sutter are the following
two theorems forming the cornerstone of our subsequentwork.

Theorem 4.4 (Theorem 2.1 in [SFR16]). For any density operator ρBC on
B⊗C there exists a trace–preserving completely positive mapRB→BC such
that for any extension ρABC ∈D(A⊗B ⊗C )

I (A : C |B)ρ ⩾−2logF
(
ρABC ,RB→BC (ρAB )

)
, (4.1)

where A,B and C are separable Hilbert spaces.

Note that we adopt their notational convenience of writing RB→BC (ρAB )
instead of (1A ⊗RB→BC )(ρAB ) whenever there is no possibility of confu-
sion.

Theorem 4.5 (Corollary 2.4 and Remark 2.5 in [SFR16]). For any density
operator ρBC on B ⊗C there exists a trace–preserving completely positive
map RB→BC such that for any extension ρABC ∈D(A⊗B ⊗C )

F
(
ρABC ,RB→BC (ρAB )

)
⩾ 1− ln2

2
I (A : C |B)ρ.

The recovery map RB→BC has the form

XB 7→
∫

V s
BCρ

1/2
BC

(
ρ−1/2

B U s
B XBU s†

B ρ−1/2
B ⊗1C

)
ρ

1/2
BC V s†

BC dµ(s) (4.2)

for some probability measure µ on some set S. The family of unitaries
{V s

BC }s∈S on B ⊗C commutes with ρBC and the unitaries {U s
B }s∈S on B

commute with ρB . For µ–almost all density operators ρBC , we can replace
the unitaries U s

B and V s
BC by complex matrix exponentials of the form ρi t

B
and ρi t

BC , respectively, with t ∈R.

Actually, theorem 4.4 can be deduced from theorem 4.3 in the case of finite–
dimensional Hilbert spaces. To this end, we set ρ = ρABC , σ = 1A ⊗ ρBC

and N = trC . Hence, we obtain N (ρ) = ρAB , N (σ) = 1⊗ρB and N †(X ) =



50 Chapter 4. Recovery Maps

X ⊗1C . Moreover, we have

S(ρ∥σ)−S(N (ρ)∥N (σ)) = S(ρABC∥1A ⊗ρBC )−S(ρAB∥1A ⊗ρB )

=−S(A,B ,C )+S(B ,C )+S(A,B)−S(B)

= I (A : C |B)ρ

where the defining property of the partial trace as well as log(1⊗ A) =
1⊗ log A was used. Thus, part (ii) of Wilde’s recoverability theorem implies

I (A : C |B)⩾−2log
(
F (ρABC ,RB→BC (ρAB ))

)
for some recoverymapRB→BC : D(H A⊗HB ) →D(H A⊗HB⊗HC ). Wilde’s
theorem provides even an explicit form of this map which we now going to
compute. To this end, note that

Pσ,N (XB ) =σ
1/2N † (

(N (σ))−1/2 XB (N (σ))−1/2
)
σ

1/2

=1A ⊗ [
ρ

1/2
BC

(
ρ−1/2

B Xρ−1/2
B ⊗1C

)
ρ

1/2
BC

]
and hence, the recovery map reads

RB→BC (XB ) =
∫ ∞

−∞
β0(t )ρi t/2

BCρ
1/2
BC

(
ρ−1/2

B ρ
i t/2
B XBρ

i t/2
B ρ−1/2

B ⊗1C
)
ρ

1/2
BCρ

−i t/2
BC d t

since the additional summand vanishes (1−ΠN (σ) =Π(suppN (σ))⊥).
Let us finish this section with a brief summary. We have seen that Wilde’s
approach gives an explicit form of a universal recovery map. In particu-
lar, we now know a possible probability measure µ in equation (4.2): we
have µ Î λ and dµ

dλ
(t ) = π/2 (cosh(πt )+1)−1. A recent paper of Berta, Sut-

ter and Tomamichel [SBT17] used the interpolation techniques of Wilde to
prove a generalization of Lieb’s three–matrix inequality and they obtained
a strengthening of Wilde’s recoverability theorem in terms of the measured
quantum relative entropy as side product. We do not want to consider their
results further in thesis.



Chapter 5

Iterating the Recovery Map
through the Spin Chain

Based on the results of Fawzi, Renner and Sutter, we are now able to
present our own results from the investigation of the recovery procedure
sketched in the introduction of this thesis. The following paragraphs are
used to restate the considered setting and to fix some notation. Further-
more, we deduce a proposition from theorem 4.5 which provides an upper
bound on the error we make by a successive application of the recovery map
on the spin chain. Afterwards in § 5.1, we show that we can approximate
the pure system’s state σ1,...,N by a mps. As we will see below, an impor-
tant cornerstone underlying our argument is lemma 5.3 which exploits the
geometry of convex combinations of unit vectors in spaces equipped with
a scalar product. Eventually, § 5.2 studies the scaling of the bond dimen-
sion of the obtained mps and deduces constraints on the saturation behavior
of the von–Neumann entropy in order to achieve a polynomial, or at least
quasi–polynomial*, ascent due to an increasing number of sites.
Recall the setup of the one–dimensional chain depicted in figure 3.1. We
use the intuitive labeling 1, . . . , N for the respective systems. The exact, but
unknown, state of a distinguished region, containing the j subsystems i , i +
1, . . . , i + j −1, 1⩽ i ⩽ N − j +1, is denoted by σi ,i+1,...,i+ j−1. Using the same
notational convention, we label the recovered, and probably defective, state
by ρi ,i+1,...,i+ j−1. In order to give an upper bound on the inevitable error we
make by iterating the recovery map, we investigate its propagation through
the process. We assume that the state of the whole system σ1,...,N = |Ψ〉〈Ψ|
is pure, start our reconstruction procedure with the exact state

σ1,2 = tr3,...,N
[
σ1,...,N

]
and apply the recovery map from theorem 4.5 successively. This process is
illustrated in figure 5.1.
*The reader may note that the term «quasi–polynomial» has no consistent use throughout
the literature. We require a scaling behavior comparable to exp(poly(ln(x))) to say that a
given quantity scales quasi–polynomial in x.
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1 2 4 N

· · ·

3

σ1,...,N = |Ψ〉〈Ψ|

1 2 4 N

· · ·

3

σ1,2 = tr3,...,N [σ1,...,N ]

1 2 4 N

· · ·

3

ρ1,2,3 =R2→2,3(σ1,2)

1 2 4 N

· · ·

3

ρ1,2,3,4 =R3→3,4(ρ1,2,3)

Figure 5.1: The figure depicts a sketch of the reconstruction procedure we
consider in this thesis. Note that in the last step we let the recov-
ery map only act on system three. Up to now, we do not known
whether this is the optimal choice. We tackle this question in
§ 5.2.

It turns out that the error grows linear in the system size N as the following
proposition shows.

Proposition 5.1. Let n ∈ N, 2 ⩽ n ⩽ N , then the error generated by the
procedure described above is upper bounded by

∥ρ1,...,n −σ1,...,n∥1 ⩽ 2
p

ln2
n∑

i=3

p
εi (5.1)

where we defined εi = I (i −2 : i |i −1)ρ for i = 3, . . . ,n.
In particular, if the quantum conditional mutual information remains con-
stant throughout the chain, that is, ε3 = ·· · = εn =: ε, we have

∥ρ1,...,n −σ1,...,n∥1 ⩽ 2
p

ln2(n −2)
p
ε.

Proof. We prove the statement by induction over n ∈ N, 2 ⩽ n ⩽ N . The
basis is trivial since both sides of equation (5.1) vanish. In this case, we have
ρ1,2 =σ1,2.
For the inductive step, first observe that

∥ρ1,...,n+1 −σ1,...,n+1∥1 ⩽ ∥R(ρ1,...,n)−R(σ1,...,n)∥1 +∥R(σ1,...,n)−σ1,...,n+1∥1
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where we omitted the index of the recovery map to enhance readability. By
theorem 1.24 and the induction hypothesis, we have

∥R(ρ1,...,n)−R(σ1,...,n)∥1 ⩽ ∥ρ1,...,n −σ1,...,n∥1 ⩽ 2
p

ln2
n∑

i=3

p
εi . (5.2)

Moreover, due to the first Fuchs–van de Graaf inequality (proposition 1.29)
and the result of Fawzi et al. (theorem 4.5), the second summand can be
bounded by

∥R(σ1,...,n)−σ1,...,n+1∥1 ⩽ 2
√

1−F
(
R(σ1,...,n),σ1,...,n+1

)2

⩽ 2

√
ln(2)εn+1 −

(
ln(2)εn+1

2

)2

⩽ 2
√

ln(2)εn+1. (5.3)

Combining the equations (5.2) and (5.3) yields the desired result and proves
the proposition.

5.1 Constructing a Mps
In order to construct an explicit mps through iterating the recovery map, we
consider the Kraus operators of the latter. Recall that the (non–universal)
recovery maps has the form

RB→BC (XB ) =VBCρ
1/2
BC

(
ρ−1/2

B UB XBU †
Bρ

−1/2
B ⊗1C

)
ρ

1/2
BC V †

BC .

By introducing MBC =VBCρ
1/2
BC (ρ−1/2

B UB ⊗1C ), we obtain the Kraus represen-
tation of the recovery map:

RB→BC (XB ) = MBC (XB ⊗1C )M †
BC . (5.4)

Let us investigate how the recovery maps act on our starting state σ1,2 =
tr3,...,N [σ1,...,N ]. We find

ρ1,2,3 = (11 ⊗R2→2,3)(σ1,2) = (11 ⊗M2,3)(σ1,2 ⊗13)(11 ⊗M2,3)†. (5.5)

To avoid confusing expressions in the following, we define Ni = 11,...,i−1 ⊗
Mi ,i+1, 2⩽ i ⩽ N −1, such that equation (5.5) simplifies towards

ρ1,2,3 = N2(σ1,2 ⊗13)N †
2 .

A moment’s thought reveals that after n −2 iterations, we obtain the state

ρ1,...,n = (11,...,n−2 ⊗Rn−1→n−1,n)(ρ1,...,n−1)

= Nn−1(ρ1,...,n−1 ⊗1n)N †
n−1

= Nn−1

({
Nn−2

[
· · ·N3

[(
N2(σ1,2 ⊗13)N †

2

)
⊗14

]
N †

3 · · ·
]

N †
n−2

}
⊗1n

)
N †

n−1

=
(
Nn−1 ◦ · · · ◦N2

)
(σ1,2 ⊗13,...,n)

(
Nn−1 ◦ · · · ◦N2

)†
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We now show that iterating the recoverymap through the spin chain yields a
mps. To this end, we first consider the special casewhereσ1,2 = tr3,...,N [σ1,...,N ]
is pure, that is, σ1,2 = |φ1,2〉〈φ1,2| and generalize the obtained results later on
to a mixed starting state. Moreover, we fix for each site k , k = 1, . . . N , a com-
putational onb {|ik〉}ik . Let {| jk〉} jk , {|αk〉}αk and {|βk〉}βk be further onbs of
the Hilbert space associated to site k . Without loss of generality, we may
assume that the latter two are identical, and hence 〈αk |βk〉 = δαk ,βk , since
otherwise we introduce the matrices A[k]

αk ,βk
= 〈βk |αk〉 which represent the

change

|. . . ,αk , . . .〉→ |. . . ,βk , . . .〉
and can be absorbed in the matrix product operator representation of the
Kraus operator Mk,k+1.
The mps representation of a pure state |φ1,2〉〈φ1,2| ∈D(H1⊗H2) is obtained
by the standard procedure [Vid03]. From the Schmidt decomposition and a
unitary change of basis, we easily see that

|φ1,2〉 =
∑

i1,α2,β1

A[1]
i1,β1

A[2]
β1,α2

|i1,α2〉 =
∑

i1,α2

ξi1,α2 |i1,α2〉 .

Observe that ∑
β1

A[1]
i1,β1

A[2]
β1,α2

is the product of a row and column vector
which is abbreviated by ξi1,α2 in order to enhance readability. The bond
dimension of the mps is D ⩽min{dimH1,dimH2} = d (cf. theorem 1.10).
The expansion of the Kraus operator M2,3 in the chosen basis reads

M2,3 =
∑

i2, j3,α2,β3

M[2,3] i2,β3

α2, j3
|i2,β3〉〈α2, j3| .

Let | j3〉 ∈ {| j3〉} j3 be an arbitrary member of the onb. The actual choice is of
no particular interest since we will sum over j3 later on. For N2(|φ1,2〉⊗| j3〉)
we obtain the expression

N2(|φ1,2〉⊗ | j3〉) = (11 ⊗M2,3)(|φ1,2〉⊗ | j3〉)
= ∑

i1,i2,α2,β3

ξi1,α2 M[2,3] i2,β3

α2, j3
|i1, i2,β3〉 .

Let us investigate the next step in detail such that afterwards we got familiar-
ized with this expansion and are able to write down the whole mps. Again,
we start with the expansion of the Kraus operator M34

M3,4 =
∑

i3, j4,α3,β4

M[3,4] i3,β4

α3, j4
|i3,β4〉〈α3, j4|

and pick | j4〉 ∈ {| j4〉} j4 to find

N3(N2(|φ1,2〉⊗ | j3〉⊗ | j4〉)) = (11,2 ⊗M3,4)
(
(11 ⊗M2,3)(|φ1,2〉⊗ | j3〉⊗ | j4〉)

)
= ∑

i1,i2,i3,
α2,β3,β4

ξi1,α2 M[2,3] i2,β3

α2, j3
M[3,4] i3,β4

β3, j4
|i1, i2, i3,β4〉 .
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By iterating the procedure, we finally arrive at the total system’s state

(NN−1 ◦NN−2 ◦ · · · ◦N3 ◦N2)(|φ1,2〉⊗ | j3〉⊗ · · ·⊗ | jN 〉)
= ∑

i1,...,iN−1,
α2,β3,··· ,βN

ξi1,α2 M[2,3] i2,β3

α2, j3
· · · M[N−1,N ] iN−1,βN

βN−1, jN
|i1, . . . , iN−1,βN 〉

= ∑
i1,...,iN ,

α2,β3,··· ,βN

ξi1,α2 M[2,3] i2,β3

α2, j3
· · · M[N−1,N ] iN−1,βN

βN−1, jN
A[N ]
βN ,iN

|i1, . . . , iN 〉 . (5.6)

The last equality follows by introducing the matrix A[N ]
βN ,iN

= 〈iN |βN 〉 which
transforms the onb {βN }βN to the computational basis. Translating the con-
struction of the mps into the graphical notation yields the diagram depicted
in figure 5.2. Abbreviating Ntot = (NN−1◦· · ·◦N2) and decomposing 13,...,N =∑

j3,..., jN
| j3, . . . , jN 〉〈 j3, . . . , jN |, we find

ρ1,...,N = Ntot
(∣∣φ1,2

⟩⟨
φ1,2

∣∣⊗13,...,N
)

N †
tot

= ∑
j3,..., jN

Ntot
(∣∣φ1,2, j3, . . . , jN

⟩⟨
φ,

1,2 j3, . . . , jN

∣∣∣)N †
tot. (5.7)

Unfortunately, as we have seen under example 1.4, forming the partial trace
of a pure state yields a mixed one in general. Consequently, we are required
to generalize our results obtained under the simplifying assumption σ1,2 =
|φ1,2〉〈φ1,2|. In the generic case, our starting state σ1,2 is of the form

σ1,2 =
∑

i
λi

∣∣∣φ(i )
1,2

⟩⟨
φ(i )

1,2

∣∣∣ .

Nevertheless exploiting the linearity of the recovery map, we easily arrive at

ρ1,...,N =∑
i
λi Ntot

(∣∣∣φ(i )
1,2

⟩⟨
φ(i )

1,2

∣∣∣⊗13,...,N

)
N †

tot

= ∑
i , j3,..., jN

λi Ntot
(∣∣∣φ(i )

1,2, j3, . . . , jN

⟩⟨
φ(i )

1,2, j3, . . . , jN

∣∣∣)N †
tot. (5.8)

instead of equation (5.7).
It is worthwhile noting that the preceding construction can also be carried
out with a three index tensor representation of the Kraus operators. To this
end, observe that the Kraus representation of the recovery map from equa-
tion (5.4) can be reformulated as follows:

RB→BC (XB ) = MBC (XB ⊗1C )M †
BC =

dim(HC )∑
j=1

M ( j )
BC XB M ( j )†

BC

where we defined M ( j )
BC : B(HB ) →B(HB ⊗HC ), M ( j )

BC = MBC (1B ⊗| j 〉) for
some onb {| j 〉} j ⊂ HC . Consequently, the expansion of the Kraus operator
M ( js )

s−1,s , s = 3, . . . , N , reads

M ( js )
s−1,s =

∑
is−1,αs−1,βs

M[s−1,s],( js ) is−1,βs
αs−1

|is−1,βs〉〈αs−1| .
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Since the Kraus operators depend on the index js , our notation needs to be
adapted. We define N ( js )

s−1 =11,...,s−2⊗M ( js )
s−1,s , s = 3, . . . , N , and obtain the three

index analogue of equation (5.6):(
N ( jN )

N−1 ◦ · · · ◦N ( j3)
2

)
(|φ1,2〉)

= ∑
i1,...,iN

ξi1,α2 M[2,3],( j3) i2,β3
α2

· · · M[N−1,N ],( jN ) iN−1,βN

βN−1
A[N ]
βN ,iN

|i1, . . . , iN 〉 .

Consequently, abbreviating N ( j3,..., jN )
tot = N ( jN )

N−1 ◦ · · · ◦N ( j3)
2 yields

ρ1,...,N = ∑
i , j3,..., jN

λi N ( j3,..., jN )
tot

∣∣∣φ(i )
1,2

⟩⟨
φ(i )

1,2

∣∣∣N ( j3,..., jN )†
tot ,

instead of equation (5.8).

A[1]
i1,β1

i1

A[2]
β1,α2

β1

α2

M[2,3] i2,β3

α2, j3

i2

β3

M[3,4] i3,β4

β3, j4

i3

βN−1

M[N−1,N ] iN−1,βN

βN−1, jN

iN−1

β4

A[N ]
βN ,iN

iN

βN

| j3〉

| j4〉

| jN 〉

Figure 5.2: The figure translates the preceding calculation in the four index
formulation into the graphical language introduced in § 3.2.1. The
notation | jk〉, k = 3, . . . , N , for the second incoming index of the
tensor M[k−1,k] ik−1βk

αk−1, jk
indicates that this index takes only a single

value fixed by | jk〉 and over which we sum up in equation (5.8).
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The reader might have noticed that the two approaches show only minor
differences. In particular, the two mps representations have the same bond
dimension given by

D = dγ (5.9)

where γ denotes the largest number of sites blocked together before the re-
covery map was applied. For instance, let us suppose we arrived at the state
ρ1,...,10. Since the result of Fawzi and Renner does not impose any constraint
on the system HB and HC , we are free to block several sites together. We
choose HB =H4 ⊗·· ·⊗H10 and HC =H11 ⊗H12 to find γ= 7. Clearly, in
this case the construction has to be slightly adapted since we only consid-
ered the reconstruction of one site by acting on the adjacent one in order to
ensure the readability of our expressions. In § 5.2 we further investigate the
dependence between bond dimension D and system size N .
In the further discussion, we use the four index formulation. Recall from (5.6)
that we can represent Ntot

( |φ(i )
1,2, j3, . . . , jN 〉) as mps. However, both, (5.7) and

(5.8), provide a mixed approximation of the pure state σ1,...,N = |Ψ〉〈Ψ| and
are consequently not of the required mps structure. To resolve this dilemma,
we would like to pick one of the pure states in the decomposition (5.8) (in
the generic case) which lays nearby the state we aimed to approximate. As
the following two lemmas show, there is at least one choice of (i , j3, . . . , jN )
such that the corresponding vector has the desired property. The first lemma
connects the trace norm and the Hilbert–Schmidt norm of pure states and is
needed in order to prove the second one.

Lemma 5.2. Let ρ,σ ∈D(H ) be pure states, then

∥ρ−σ∥1 =
p

2∥ρ−σ∥2.

Proof. Let ρ = |ψ〉〈ψ| and σ = |φ〉〈φ|. Hence, the Hilbert–Schmidt norm
reads

∥ρ−σ∥2
2 = ∥|ψ〉〈ψ|− |φ〉〈φ|∥2

2

= tr
[|ψ〉〈ψ|+ |φ〉〈φ|−〈ψ|φ〉 |ψ〉〈φ|−〈φ|ψ〉 |φ〉〈ψ|]

= 2
(
1−|〈ψ|φ〉|2)

where the last equality follows immediately by a suitable chosen onb in order
to calculate the trace. For the trace distance, we have (cf. the derivation of
the first Fuchs–van de Graaf inequality (proposition 1.29)):

∥ρ−σ∥1 = 2
√

1−|〈ψ|φ〉|2 =p
2∥ρ−σ∥2.



58 Chapter 5. Iterating the Recovery Map through the Spin Chain

Lemma 5.3. Let ρ,σ ∈ D(H ) be two density operators where σ is a pure
state and ρ = ∑

i λiρi is a mixture of pure states ρi . Moreover, let ε > 0
such that ∥σ−ρ∥1 ⩽ ε, then there exists at least one ρk from the convex
decomposition of ρ such that

∥σ−ρk∥1 ⩽ 2
p
ε.

Proof. The lemma is proven by deducing a contradiction. Assume that for
all i , we have that ∥σ−ρi∥1 > 2

p
ε and hence, ∥σ−ρi∥2 >

p
2ε according to

lemma 5.2. Restricted to the set of Hermitian operator, the Hilbert–Schmidt
inner product is symmetric. Indeed, we find for A,B ∈Mn Hermitian that

〈A |B〉HS = tr
[

A†B
]
= tr

[
B † A

]
= 〈B | A〉HS .

Hence, the identity 〈A|B〉HS = 1
2

(∥A∥2
2 +∥B∥2

2 −∥A−B∥2
2

)
, well–known from

real Euclidean vector spaces, holds true in the case of interest. Plugging the
pure states ρi and σ in, we obtain 〈σ|ρi 〉 < 1− ε for any i . Invoking the
linearity of the scalar product, we deduce

〈σ|ρ〉 =∑
i

pi 〈σ|ρi 〉 < 1−ε.

Observe that the characterization of the operator norm using singular values
(cf. the proof of proposition 1.21) immediately implies ∥σ∥op ⩽ 1. Due to
Hölder’s inequality (cf. the proof of theorem 1.22) for inner products

|〈A|B〉HS | =
∣∣∣tr

[
A†B

]∣∣∣⩽ ∥A∥op∥B∥1,

we eventually conclude that

∥σ−ρ∥1 ⩾ ∥σ∥op∥σ−ρ∥1 ⩾ 〈σ|σ−ρ〉HS > 1− (1−ε) = ε.

Consequently, we have showed that the assumption ∥σ−ρi∥1 > 2
p
ε for any

i leads to a contradiction.

We are now able to sum the error up which was made during the mps ap-
proximation of the total system’s state |Ψ〉 through successive application
of the recovery map. For simplicity, let us assume that the quantum condi-
tional mutual information remains constant throughout the spin chain, that
is, I (s : s+2|s+1) = ε, s = 1, . . . , N −2. Proposition 5.1 yields an upper bound
on the inevitable error of

∥ρ1,...,N −σ1,...,N∥1 ⩽ 2
p

ln2(N −2)
p
ε.

Due to lemma 5.3 and equation (5.8), there exists a vector |φ(i )
1,2, j3, . . . , jN 〉 in

the convex combination of

σ1,2 ⊗13,...,N = ∑
i , j3,..., jN

λi

∣∣∣φ(i )
1,2, j3, . . . , jN

⟩⟨
φ(i )

1,2, j3, . . . , jN

∣∣∣
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such that ∥∥∥Ntot
(∣∣∣φ(i )

1,2, j3, . . . , jN

⟩⟨
φ(i )

1,2, j3, . . . , jN

∣∣∣)N †
tot−|Ψ〉〈Ψ|

∥∥∥
1

⩽ 23/2

√p
ln2(N −2)

p
ε.

Since the vector Ntot
( |φ(i )

1,2, j3, . . . , jN 〉) is represented exactly by (5.6), we
have constructed a mps approximation |Ψ̃〉 = (

Ntot |φ(i )
1,2, j3, . . . , jN 〉) of the

system’s state σ1,...,N = |Ψ〉〈Ψ| fulfilling

∥|Ψ〉〈Ψ|− |Ψ̃〉〈Ψ̃|∥1 ⩽ 23/2

√p
ln2(N −2)

p
ε. (5.10)

Eventually, we want to note that the scaling behavior of the error in the sys-
tem size coincides with the result of Verstraete and Cirac [VC06, Lemma 1].
Observe that they used the Euclidean norm to express the distance between
|Ψ〉 and |Ψ̃〉 which upper bounds the trace norm via

∥|Ψ〉〈Ψ|− |Ψ̃〉〈Ψ̃|∥1 ⩽
p

2 | |Ψ〉− |Ψ̃〉 |.

5.2 Connection between Mutual Information and
Bond Dimension

As we have already mentioned in § 3.1, Hastings [Has07] proved an one–
dimensional area law for ground states of gapped Hamiltonians. In this set-
ting, the area law boils down to the statement that the entanglement entropy
S(A) between a distinguished region A and the rest of the chain V \ A is uni-
formly bounded by a constant independent of the size of this region and the
length of the whole chain. In his paper, Hastings conjectured that a similar
behavior holds true for the ground states of gapless Hamiltonians. Brandao
and Horodecki were able to show that an exponential decay of correlations
implies an one–dimensional area law [BH13; BH15]. Since Hastings proved
that in any dimension the ground state of a gapped Hamiltonian exhibits
exponential decay, their result give another proof of the one–dimensional
area law. Nevertheless, we lack a rigorous proof of a two– or even higher–
dimensional area and also in one dimension nothing is known about how
the entanglement entropy of the distinguished region saturates towards the
proven bound. Furthermore, it is unclear whether this saturation is mono-
tonically. We present two different settings, exponential and polynomial sat-
uration, and investigate the dependence between the quantum conditional
mutual information and the size of the subsystem.

Exponential Saturation

Let A be a distinguished region of the spin chain and L A denote its length.
We make the ansatz

S(A) = Smax−ηe−L A/ξ, ξ> 0 (5.11)



60 Chapter 5. Iterating the Recovery Map through the Spin Chain

for the entropy of the reduced density operator ρA . Observe that the constant
η> 0 in (5.11) only encodes information about the unit and is of no particular
interest. Doing the algebra, one obtains the quantum conditional mutual
information

I (A : C |B)ρ = S(A,B)+S(B ,C )−S(B)−S(A,B ,C )

= ηe− L A+LB+LC
ξ

(
eL A/ξ−1

)(
e1/ξ−1

)
⩽ η̃e−2ℓ/ξ

where we defined η̃ = η
(
e1/ξ−1

)
and assumed ℓ = LB = LC for simplicity.

Hence, we deduce from (5.10)

∥|Ψ̃〉〈Ψ̃|− |Ψ〉〈Ψ|∥1 ⩽ 2
√p

ln2η̃N e− ℓ
2ξ =: εtot (5.12)

as upper bound on the error of the approximation. Inserting the bond di-
mension of the mps representation of |Ψ̃〉 from equation (5.9) into (5.12), we
find

D ∼
(

N

ε2
tot

)ξ lnd

and hence, D ∼ poly(N ).

Polynomial Saturation

Again, we assume LB = LC = ℓ and let

S(A) = Smax− η

Lξ
A

, ξ> 0

where η > 0 contains the information about the unit. We find a quantum
conditional mutual information of

I (A : C |B)ρ = η

(
1

(L A +ℓ)ξ
+ 1

(2ℓ)ξ
− 1

ℓξ
− 1

(L A +2ℓ)ξ

)
⩽ η

(2ℓ)ξ

and whence

∥|Ψ̃〉〈Ψ̃|− |Ψ〉〈Ψ|∥1 ⩽ 2
√p

ln2ηN
1

(2ℓ)ξ/2
= εtot.

Consequently, the bond dimension scales exponentially in the system size,
namely

D ∼ exp

(
lnd

N 2/ξ

ε
4/ξ
tot

)
.

To conclude this section, we turn the question upside down. Which sat-
uration behavior of the entropy is necessary in order to achieve a quasi–
polynomial scaling of the bond dimension with the system size, that is, D ∼
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exp
(

poly(ln N )
)
? From equation (5.12), we easily see that I (A : C |B)ρ ∼

e−ℓ1/ζ , ζ> 0, is required to ensure

D ∼ exp

(
ln(d) lnζ

(p
N

εtot

))
.

Since an efficient description of a state in the matrix product formalism re-
quires a polynomial, or at most quasi–polynomial, scaling behavior of the
bond dimension, it is crucial that the quantum conditional mutual informa-
tion satisfies I (A : C |B)ρ ≲ e−ℓ1/ζ for some reasonably small ζ.
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Conclusion

In the course of this thesis, the reader hopefully became aware of the
highly non–trivial interplay of twomajor areas from the apparently different
fields of physics and computer science, namely quantummany body physics
and information theory. Their connection is essentially established by one
of the most important theorems of modern analysis, the spectral theorem.
We aimed at giving a comprehensive introduction to both areas in the first
two chapters and brought them together in order to study matrix product
states in the third one. Chapter 4 gave a review of a selection of related
work on the recovery map acting on a tripartite system.
These works motivated this thesis and provided the groundwork our own re-
sults, presented in chapter 5, are based upon. The latter consist of an explicit
construction of a mps approximation of the state σ1,...,N describing a spin
chain of N sites provided σ1,...,N is pure. We applied the results of Fawzi,
Renner and Sutter to an iterative reconstruction process starting with the
state of the first two sites σ1,2 = tr3,...,N [σ1,...,N ] and we were able to rigor-
ously establish an upper bound on the defect our mps representation may
carry. To this end, we proved proposition 5.1 which investigated the error
propagation through the recovery process based on the bound of Fawzi et al.
(theorem 4.5).
In order to achieve a good approximation of the system’s state σ1,...,N , we
exploited the geometric properties of convex combinations of unit vectors
in inner product spaces. The resulting lemma 5.3 was the key to overcome
the issues arisen in the equations (5.7) and (5.8) respectively, and formed the
decisive step of our argument. This lemma ensures that there exists at least
one index combination (i , j3, . . . , jN ) such that Ntot

( |φ(i )
1,2, j3, . . . , jN 〉) from the

mixed approximation of the pure state σ1,...,N is a mps representation of the
latter which may only carry a minor error.
In § 5.2 we have seen that a rapid saturation of the von–Neumann entropy to-
wards Smax, namely fast enough to ensure the bound I (A : C |B)ρ ≲ exp

(−ℓ1/ζ
)

for some ζ> 0, is crucial to achieve a quasi–polynomial scaling of the bond
dimension D in the system size N and thus in case of a reasonably small ζ,
an efficient approximation of the system’s state.
An interesting starting point of further work might be a generalization of
lemma 5.3 in the following way: If we interpreted the the coefficients {λi }
of ρ’s convex combination in pure states as probability distribution, we may
draw the ρk according to this mass function. In this case, a probabilistic
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upper bound on the error would be an appealing result since it provides
further information about the construction of the mps representation |Ψ̃〉 of
σ1,...,N = |Ψ〉〈Ψ|.

64



Appendix A

Miscellanea

A.1 Measurements in QuantumMechanics

We start this chapter with a brief introduction to positive operator val-
ued measures which are used in appendix A.1.2 to revisit the ambiguous
state discrimination mentioned in § 1.1 and to derive the result of Helstrom
in full mathematical rigor. For further information about the measurement
in quantummechanics we refer the reader to the textbook of Heinosaari and
Ziman [HZ11].

A.1.1 Positive Operator Valued Measures

The mathematical concept used for the proper description of the measure-
ment in quantum mechanics is a generalization of abstract measure theory
which we want to develop in the following. We denote for an arbitrary
set Ω whose elements are the possible measurement outcomes (↔ sample
space in probability theory) the Borel sets over Ω byB(Ω) (↔ set of events).
We choose F = P (Ω) for a countable Ω and F =B(Ω) for Ω ⊂ Rn as σ–
algebra.

Definition A.1. Every measurement is described by a positive operator
valued measure (POVM) which is a mapping M : F →B(H ) such that:

(i) ∀B ∈F : M(B)⩾ 0.

(ii) Suppose (Bn)n∈N ⊂ F with ∪
n∈N Bn = Ω and Bk ∩Bℓ = ; for all

k ̸= ℓ (note that non-emptiness is not required and hence M(;) = 0),
then ∑

n∈N
M(Bn) =1.

In analogy to classical measure theory, we are able to prove monotonicity
and finite (sub-)additivity for POVM, too. It is convenient to introduce the
following partial order on the set of bounded operators. For A,B ∈ B(H )
we write A ⩾B if A−B ⩾ 0.
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Lemma A.2. For a POVM M : F → B(H ) and A,B ∈ F the following
statements hold:

(i) A ⊂ B implies M(B \ A) = M(B)−M(A) and M(A)⩽ M(B).

(ii) M(A∪B)⩽ M(A)+M(B) and M(A∪B) = M(A)+M(B) if A∩B =
;.

(iii) M(A∪B)+M(A∩B) = M(A)+M(B).

Proof. Ad (i): Since Ω = (B \ A)∪̇A we get 1 = M(Ω \ B)+M(B). The same
argument yields 1= M(A)+M(B \ A)+M(Ω\B). By subtracting these equa-
tions, we obtain M(B) = M(B \ A) + M(A) and especially M(B) − M(A) =
M(B \ A)⩾ 0.
Ad (ii): We use exactly the same technique as in classical measure theory:

M(A∪B) = M(A)+M((A∪B) \ A)
(i )
⩽ M(A)+M(B).

Ad (iii): This point is also proved analogously as in basic measure theory.
Note that A ∪B = A∪̇[(A ∪B) \ A] and therefore we get M(A ∪B) = M(A)+
M((A∪B) \ A). Since [(A∪B) \ A]∪̇(A∩B) = B , we conclude

M(A∪B)+M(A∩B) = M(A)+M((A∪B) \ A)+M(A∩B)

= M(A)+M(B).

The reason why we introduced the abstract notion of POVM is the fact that
we identify them with the observables.

Definition A.3. An observable M is called sharp if M(B)2 = M(B) (i.e.
M(B) is a projection) for every B ∈F .

Only the sharp observables are relevant in physical applications. Hence,
some authors introduce POVM as projector valued measures but we choose
a more general approach. Nevertheless, the rest of this chapter only deals
with sharp observables.

Lemma A.4. For an observable M the conditions

(i) M is sharp,

(ii) M(A)M(B) = M(A∩B) ∀A,B ∈F ,

(iii) M(A)M(Ac ) = 0 ∀A ∈F
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are equivalent.

Proof. In first place, we prove the equivalence of (i) and (iii). Let A ∈F , then
we immediately get

M(A)−M(A)2 = M(A)(1−M(A)) = M(A)M(Ac )

and thus, M(A) = M(A)2 if M(A)M(Ac ) = 0 or M(A)M(Ac ) = 0 if M(A)2 =
M(A).
Now assume that M is sharp. Then we get M(A)M(A ∩B) = [M(A \ (A ∩
B))+ M(A ∩B)]M(A ∩B) = M(A ∩B) since 0 ⩽ M(A \ (A ∩B))M(A ∩B) ⩽
M((A∩B)c )M(A∩B) = 0. Analogously we find that M(A)M(A∪B) = M(A).
Multiplying the inclusion-exclusion formula from lemma A.2 (iii) with M(A)
yields

M(A)+M(A∩B) = M(A)+M(A)M(B)

which proves the assertion.
For the last implication consider B = Ac and note that

M(A∩ Ac ) = A(;) = A(Ω\Ω) =1−1= 0.

The last lines of this section are intended to connect our abstract mathemati-
cal definitions with the physics of the quantum system. As mentioned at the
beginning of § 1.1, we want to predict the outcomes which our experimenter
may measure (at least probabilistically). To this end, we need to connect
our concepts of observables with the probability of an outcome B ∈F . This
connection is established by Born’s rule which we present in the following
postulate.

Postulate A.5 (Born’s rule). Let (Ω,F ) denote an outcome space. We
describe the measurement with a sharp observable M : F →B(H ) and
the preparation with a density operator ρ ∈D(H ). Then for B ∈F the
conditional probability P(B |M ,ρ) is given by

P(B |M ,ρ) = tr[M(B)ρ].

To convince ourselves that the preceding formula defines indeed a probabil-
ity measure, we check the Kolmogorov axioms briefly:

• P(B)⩾ 0 for all B ∈F since M(B),ρ⩾ 0 and the trace is monotone.

• P(Ω) = tr[M(Ω)ρ] = tr[ρ] = 1.

• Let (Bn)n∈N ⊂F pairwise disjoint sets. Then due to the continuity of
the trace:

P

( ∪
n∈N

Bn

)
= tr

[
M

( ∪
n∈N

Bn

)
ρ

]
= ∑

n∈N

tr[M(Bn)ρ] = ∑
n∈N

P(Bn).
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A.1.2 Binary Hypothesis Testing
To keep the following discussion simple, we only consider a finite sample
space Ω of possible outcomes and use its power set P (Ω) as σ–algebra.
Moreover, the Hilbert space H has dimension d .
The first approach we make is trying to transfer our concepts from macro-
scopic world into quantum world. To this end, we consider a generalization
of the thought experiment presented in § 1.2.1. Suppose we have an appa-
ratus producing the states ρ1, . . . ,ρn and our analyzer is able to identify the
right state with full probability. The reader might think of drawing balls with
different colors from an urn. Consequently, we choose the outcome space
Ω= {1, . . . ,n}. Then we say the states are perfectly discriminated if there is
an observable M such that

tr[M({1})ρ1] = ·· · = tr[M({n})ρn] = 1.

Hence, in case of a perfectly discriminated set we are able to identify the
states in a single-shot experiment.
A set of orthogonal states {ρ1, . . . ,ρn} (i.e. suppρi ⊥ suppρ j for i ̸= j and
hence, ρiρ j = 0) is always perfectly discriminated. To see this, we consider
the spectral decompositions

ρ1 =
d∑

j=1
λ

( j )
1

∣∣∣e( j )
1

⟩⟨
e( j )

1

∣∣∣ , . . . , ρn =
d∑

j=1
λ

( j )
n

∣∣∣e( j )
n

⟩⟨
e( j )

n

∣∣∣ .

Since the ρ j ’s are orthogonal, the eigenvectors of the set of the non-vanishing
eigenvalues

A =
{∣∣∣e( j )

i

⟩ ∣∣∣λ( j )
i > 0, i ∈ {1, . . . ,n}, j ∈ {1, . . . ,d}

}
is orthonormal. We expand this set by a collection of appropriate unit vectors
B to an onb A∪B of H . Now we can define the sharp observable

M : P (Ω) →B(H )

{1} 7→ ∑
j :λ

( j )
1 >0

∣∣∣e( j )
1

⟩⟨
e( j )

1

∣∣∣+ ∑
e∈B

|e〉〈e|

and for i ∈ {2, . . . ,n} : {i } 7→ ∑
j :λ

( j )
i >0

∣∣∣e( j )
i

⟩⟨
e( j )

i

∣∣∣ .

Eventually, for all i ∈ {1, . . . ,n}:

tr[M({i })ρi ] = ∑
j :λ

( j )
i >0

λ
( j )
i = 1.
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Theorem A.6. Consider the pure states ρ1 and ρ2. They are perfectly dis-
criminated if and only if they are orthogonal.

Proof. Thefirst implication is only special case of what we have already seen.
Thus, we only need to prove the second assertion.
Therefore, let Ω = {1,2}. Since ρ1 and ρ2 are perfectly discriminated, there
is an observable M such that tr[M({1})ρ1] = tr[M({2})ρ2] = 1. Furthermore,
the purity of the states implies that there are unit vector ψ1, ψ2 such that
ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2|. Applying the Cauchy Schwarz inequality
gives

1 = tr[M({i })ρi ]
(⋆)= ⟨

ψ1
∣∣M({i })ψi

⟩
⩽ ∥M({i })ψi∥⩽ ∥M({i })∥ = 1.

Thus, we require equality in Cauchy Schwarz and hence ψ = cM({i })ψ for
some c ∈ C. The equality (⋆) shows c = 1 and hence M({i })ρi = ρi . Note
that M({2}) = 1−M({1}) and thus M({2})ρ2 = ρ2 −M({1})ρ2 from which we
conclude M({1})ρ2 = 0. Consequently, we compute

|〈ψ1|ψ2〉|2 = tr[ρ1ρ2] = tr[M({1})ρ1ρ2] = tr[ρ1M({1})ρ2] = 0

and thus ψ1 ⊥ψ2.

The preceding theorem shows that our naïve approach from macroscopic
world fails when considering non-orthogonal states. Therefore, we have to
develop weaker concepts to handle the issues caused by quantummechanics.

Ambiguous State Discrimination

Recall the setup of the ambiguous discrimination of two states ρ1 and ρ2 oc-
curring with a priori probabilities p1 respectively p2 = 1−p1 from § 1.2.1 and
figure 1.2. We are not really free in the choice of our observable. Obviously,
we have M({2}) =1−M({1}) and the success probability reads

Psuccess = p1 tr[M({1})ρ1]+p2 tr[M({2})ρ2] = 1

2
(1− tr[Λ])︸ ︷︷ ︸

=2p2

+ tr[M({1})Λ],

with Λ := p1ρ1−p2ρ2. Clearly, Λ is Hermitian and thus the spectral decom-
position implies that choosing

M({1}) := ∑
j :λ j>0

λ j | j 〉〈 j | ,

where λ j denote the eigenvalues of Λ and {| j 〉} j forms an orthonormal set
of corresponding eigenvectors, maximizes the success probability. Eventu-
ally, the success probability is given by the following formula, known as
Helstrom’s result:

Psuccess = 1

2
(1+ tr[|Λ|]) = 1

2

(
1+∥p1ρ1 −p2ρ2∥1

)
.
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A.2 Proof of Uhlmann's Theorem

In order to prove Uhlmann’s theorem, we need the following lemmawhich
provides a convenient characterization of the trace norm. We mainly follow
the proof presented in the textbook of Nielsen and Chuang [NC10].

Lemma A.7. Let A ∈ Mn be a square complex matrix and U ∈ Mn be
unitary. Then

| tr[AU ]|⩽ tr[|A|]

with equality being attained by choosing U = V †, where A = V |A| is the
polar decomposition of A.

Proof. First note that

| tr[AU ]| = | tr[|A|V U ]| =
∣∣∣tr

[√
|A|

√
|A|V U

]∣∣∣= ∣∣∣⟨√
|A|

∣∣∣√|A|V U
⟩

HS

∣∣∣ .

Thus due to Cauchy Schwarz, we find

| tr[AU ]|⩽
√

tr[|A|] tr[U †V †|A|V U ] = tr[|A|].

Clearly, equality is attained for the adjoint of the unitary matrix from the
polar decomposition of A.

Now we are able to prove Uhlmann’s theorem.

Proof of Uhlmann’s theorem. For onbs {e j }d
j=1, {e ′

j }d
j=1 of the d–dimensional

Hilbert space H we define the vector |η〉 :=∑d
j=1 |e j 〉⊗|e ′

j 〉.The Schmidt de-
composition reveals that the purifications of ρ and σ are of the form

|ψ〉 = (
p
ρU1 ⊗U2) |η〉

|φ〉 = (
p
σV1 ⊗V2) |η〉

whereU1,U2,V1,V2 ∈Md denote unitarymatriceswhich arise from the change
of basis. Let us check briefly that |ψ〉 is in fact a purification of ρ. First notice
that we trace out the correct density operator

trB [|ψ〉〈ψ|] = trB

[
d∑

i , j=1
(
p
ρU |ei 〉〈e j |U †pρ)⊗ (|e ′

i 〉〈e ′
j |)

]

=
d∑

i=1

p
ρU |ei 〉〈ei |U †pρ = ρ.

Furthermore, we get tr[|ψ〉〈ψ|] = tr[trB [|ψ〉〈ψ|]] = tr[ρ] = 1 due to proposi-
tion 1.5.



A.3. Sketch of the Proof of Wilde’s Recoverability Theorem 71

Taking the scalar product of the two purifications gives

|〈ψ|φ〉| =
∣∣∣⟨η ∣∣∣(U †

1
p
ρ
p
σV1 ⊗U †

2 V2

)
η
⟩∣∣∣ . (A.1)

Here we use the quite helpful formula 〈η|(A⊗B)η〉 = tr
[

AB t
]
which follows

with the unitary change of basis U e ′
j = e j :

〈η|(A⊗B)η〉 =
d∑

i , j=1
〈ei ⊗e ′

i |(A⊗B)|e j ⊗e ′
j 〉 =

d∑
i , j=1

〈ei |A|e j 〉〈e ′
i |B |e ′

j 〉 .

Whilst the other side yields

tr[AB t ] = tr[AU B tU †] =
d∑

i , j=1
〈ei |A|e j 〉〈e j |U B tU †|ei 〉

=
d∑

i , j=1
〈ei |A|e j 〉〈e ′

j |B t |e ′
i 〉 .

Since 〈e ′
i |B |e ′

j 〉 is the i j -th element of the matrix B in the Basis {e ′
j }d

j=1, both
sides coincide and the identity is proven.
The last step in the proof of Uhlmann’s theorem is the application of this
identity onto equation (A.1). We find

|〈ψ|φ〉| = tr
[
U †

1
p
ρ
p
σV1V t

2 U2

]
⩽ tr

[√p
σρ

p
σ

]
.

Note that U := U †
1 V1V t

2 U 2 (U † = U t
2V 2V †

1 U1 and V 2V t
2 = (V2V †

2 )t = 1) is
unitary and hence we are allowed to apply lemma A.7. Equality is attained
by choosing U1 =U2 =V2 =1 and V1 =V where p

ρ
p
σ=V |pρ

p
σ|.

Remark A.8. Uhlmann’s theorem also holds true if we fix a purification |ψ〉
of ρ and take the maximum over all purifications |φ〉 of σ.

A.3 Sketch of the Proof of Wilde's Recoverability
Theorem

The proof ofWilde’s recoverability theorem is basically obtained as corol-
lary to an interpolation result of the Schatten p–norms. We start our dis-
cussion with a brief review of some concepts from complex and harmonic
analysis and derive afterwards the aforementioned interpolation theorem.
In appendix A.3.2, we give a sketch of the actual proof of Wilde’s recover-
ability theoremwhich requires a simple result about the Rényi generalization
of the relative entropy. Nevertheless, this lemma has a rather technical proof
and hence, we refer the reader to the original work at the respective place of
the discussion.
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A.3.1 Some Result from Harmonic Analysis

We denote the standard strip in the complex plane by

S = {z ∈C |0 < Re z < 1}.

On S, themaximummodulus principle takes the following form.

Proposition A.9 (Hadamard Three–Lines Theorem). Let f : S → C be a
bounded and continuous function, which is holomorphic on S, such that
M(x) = supy∈R | f (x + i y)| > 0 for all x ∈ [0,1]. Then we have

ln M(x)⩽ (1−x) ln M(0)+x ln M(1).

Proof. We follow the classical proof presented in [RS75].
The function g : S →C,

g (z) = f (z)M(0)z−1M(1)−z

is holomorphic on S and satisfies |g (z)|⩽ 1 for z ∈ ∂S. If g (z) → 0 as | Im(z)|→
∞, the maximum modulus principle immediately implies |g (z)| ⩽ 1 for all
z ∈ S. Since this does not necessarily hold in the generic case, we consider
for n ∈N the functions

gn(z) = g (z)exp

(
z2 −1

n

)
.

For all n ∈N, they fulfill gn(z) → 0 as | Im(z)|→∞. Hence, by the maximum
modulus principle, we have |gn(z)| ⩽ 1 for all z ∈ S. Moreover,
limn→∞ gn(z) = g (z) and thus |g (z)|⩽ 1 for all z ∈ S.
Eventually, the claim follows by taking the logarithm on both sides.

In order to prove an interpolation result of the Schatten p–norms, the follow-
ing extension of theHadamard three–lines theorem is needed.

Theorem A.10 (Hirschman [Hir52]). Let f : S →C be bounded, holomor-
phic on S and continuous on the boundary ∂S. Then for all θ ∈ (0,1)

ln | f (θ)|⩽
∫ ∞

−∞
αθ(t ) ln

(
f |(i t )|1−θ

)
+βθ(t ) ln

(
| f (1+ i t )|θ

)
d t

holds where

αθ(t ) = sin(πθ)

2(1−θ)(cosh(πt )−cos(πθ))
,

βθ(t ) = sin(πθ)

2θ(cosh(πt )+cos(πθ))
.
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Rather than presenting a proof of the theorem (an amenable exposition can
be found in [Gra14]), wewant to show that the functionsαθ andβθ emerging
in theorem A.10 represent in fact probability density functions. The non–
negativity of the twomaps is obvious and it remains to show that for θ ∈ (0,1)∫ ∞

−∞
αθ(t ) d t =

∫ ∞

−∞
βθ(t ) d t = 1.

By substituting u = eπt , we obtain

2θ

sin(πθ)

∫ ∞

−∞
βθ(t ) d t = 2

π

∫ ∞

0

du

u2 +2u cos(πθ)+1

= 2

π

∫ ∞

0

du

(u +cos(πθ))2 + sin2(πθ)

= 2

π

[
1

sin(πθ)
arctan

(
u +cos(πθ)

sin(πθ)

)]∞
0

= 2θ

sin(πθ)
.

Exactly the same computation shows that αθ is normalized, too. With these
integrals at hand, Hadamard’s three–lines theorem can be easily deduced
from theorem A.10. The main ingredient of the proof of Wilde’s recover-
ability theorem is an application of theorem A.10 in order to interpolate the
Schatten p–norms.

Theorem A.11 (Interpolation of Schatten p–Norms). Let G : S →Mn be
a matrix–valued, bounded function which is holomorphic on S and con-
tinuous on the boundary ∂S.
For θ ∈ (0,1) and p0, p1 ∈ [1,∞] we define pθ by

1

pθ
= 1−θ

p0
+ θ

p1
.

Then we have

ln∥G(θ)∥pθ
⩽

∫ ∞

−∞
αθ(t ) ln

(
∥G(i t )∥1−θ

p0

)
+βθ(t ) ln

(
∥G(1+ i t )∥θp1

)
d t

with the probability density functions defined in theorem A.10.

Note that we say a matrix–valued function z 7→G(z) = (gi j (z))i , j is holomor-
phic if this holds for any component function z 7→ gi , j (z).

Proof of Theorem A.11. For θ ∈ (0,1) fixed, we denote by q0, q1, qθ the Hölder
conjudated exponents of p0, p1 and pθ respectively. Due to the characteriza-
tion of the Schatten p–norms from lemma 1.23, there exists a matrix A ∈Mn ,
∥A∥qθ

= 1, such that tr[G(θ)A] = ∥G(θ)∥pθ
. Without loss of generality are

allowed to omit the absolute value in the argument of the trace since we
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can absorb the unitary emerging in the polar decomposition into A without
changing its Schatten qθ–norm. Let A =UΣV be the singular value decom-
position of A and define the map

X : S →Mn

z 7→UΣ
qθ

(
1−z
q0

+ z
q1

)
V.

Moreover, we introduce the bounded map

g : S →C

z 7→ tr [G(z)X (z)]

which is in addition holomorphic on S and continuous on the boundary ∂S.
By theorem A.10, we get

ln∥G(θ)∥pθ
= ln |g (θ)| (A.2)

⩽
∫ ∞

−∞
αθ(t ) ln

(
|g (i t )|1−θ

)
+βθ(t ) ln

(
|g (1+ i t )|θ

)
d t . (A.3)

From Hölder’s inequality (theorem 1.22), we have

|g (i t )| = |tr [G(i t )X (i t )]|⩽ ∥X (i t )∥q0∥G(i t )∥p0 = ∥G(i t )∥p0 ,

|g (1+ i t )| = |tr [G(1+ i t )X (1+ i t )]|
⩽ ∥X (1+ i t )∥q1∥G(1+ i t )∥p1

= ∥G(1+ i t )∥p1

where we used that ∥X (i t )∥q0 = ∥X (1+ i t )∥q1 = 1 for all t ∈ R. Inserting
these bounds in equation (A.2) proves the claim.

A.3.2 Sketch of the Proof

With these results from harmonic analysis at hand, it requires only a minor
effort to sketch a proof of Wilde’s theorem 4.3.
To start the proof, we letU : H A →HB ⊗HE denote the Stinespring dilation
(cf. theorem 1.18) of the quantum channel N : H A → HB . In order to ap-
ply the interpolation theorem of the Schatten p–norms A.11, we define the
bounded function

G : S →B(HB ⊗HE )

z 7→
((

N (ρ)
)z/2

(N (σ))−z/2 ⊗1E

)
Uσ

z/2ρ
1/2

which is holomorphic on S and continuous on the boundary ∂S. We now
fix θ ∈ (0,1) and choose p0 = 2, p1 = 1 to obtain pθ = 2

1+θ in theorem A.11.
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Evaluating the operator–valued function G at the points given in the inter-
polation theorem yields

∥G(θ)∥2/1+θ =
∥∥∥((

N (ρ)
)θ/2

(N (σ))−θ/2 ⊗1E

)
Uσ

θ/2ρ
1/2

∥∥∥
2/1+θ

∥G(i t )∥2 =
∥∥∥((

N (ρ)
)i t/2

(N (σ))−i t/2 ⊗1E

)
Uσ

i t/2ρ
1/2

∥∥∥
2

⩽ ∥ρ1/2∥2

= 1

∥G(1+ i t )∥1 =
∥∥∥((

N (ρ)
)(1+i t )/2

(N (σ))−(1+i t )/2 ⊗1E

)
Uσ

(1+i t )/2ρ
1/2

∥∥∥
1

=
∥∥∥((

N (ρ)
)1/2

(N (σ))−i t/2 (N (σ))−1/2 ⊗1E

)
Uσ

1/2σ
i t/2ρ

1/2
∥∥∥

1

= F
(
ρ,

(
Uσ,−t/2 ◦Pσ,N ◦UN (σ),t/2

)
(N (ρ))

)
= F

(
ρ, Prot t/2

σ,N

)
and consequently we obtain

ln
∥∥∥((

N (ρ)
)θ/2

(N (σ))−θ/2 ⊗1E

)
Uσ

θ/2ρ
1/2

∥∥∥
2/1+θ

⩽ θ

∫ ∞

−∞
βθ(t ) ln

(
F

(
ρ, Prot t/2

σ,N

))
d t . (A.4)

The left–hand site of the previous equation is (apart from a prefactor) known
as Rényi generalization of the relative entropy [BSW15; SBW15]. More pre-
cisely, this quantity is defined for α ∈ (0,1)∪ (1,∞) via

∆̃α(ρ,σ,N ) = 2α

α−1
ln

∥∥∥((
N (ρ)

)(1−α)/2α
(N (σ))−(1−α)/2α⊗1E

)
Uσ

(1−α)/2αρ
1/2

∥∥∥
2α

.

It can be shown (cf. appendix A of the original work of Wilde [Wil15]) that

lim
α→1

∆̃α(ρ,σ,N ) = S(ρ∥σ)−S
(
N (ρ)∥N (σ)

)
.

Hence, letting θ = (1−α)/α for α ∈ (1/2,1) and using dominated convergence in
(A.4) proves part (i) of the theorem.
Assertion (ii) follows by inserting the given recovery map.
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