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1 Introduction

Phase transitions in general are transitions where a phase, i.e. a state of matter, changes into
another state of matter. In classical statistical physics, phase transitions are discontinuous
transformations of the whole system as a function of the temperature T . There are so-called
first-order phase transitions where the derivative of a thermodynamic potential with respect
to the temperature is discontinuous. These phase transitions are the most common as the
transitions solid state ↔ fluid, gas ↔ fluid, and gas ↔ solid state are of this type. Aside
from these quite ordinary phase transitions, there exist second-order phase transitions where the
second derivative of a thermodynamic potential with respect to T is discontinuous. Examples
for second-order phase transitions are the transitions ferromagnetic material ↔ paramagnetic
material or superconductor ↔ non-superconductor.

In contrast, quantum phase transitions occur at absolute zero (what implies that the system
is in its ground state), where an external parameter that is not the temperature but e.g. a
magnetic field or the pressure causes a discontinuous change in the system’s ground states. Due
to fluctuations, the system may alter the ground state it is in as a function of this external
parameter. Since the system is at zero temperature, there cannot be thermal fluctuations, so
these fluctuations belong to the class of quantum fluctuations. This is why corresponding phase
transitions are termed quantum phase transitions.

Instead of investigating whether the system is continuous as a function of a specific parame-
ter, it is common to examine how the gap between the ground state energy and the energy of
the first excited state behaves. One may imagine this a plausible consequence by considering
the variation of the particular parameter as a perturbation and applying perturbation theory:
Assuming that there is an energy gap ∆ > 0 above the ground state energy, we can approximate
the differences of the ground state energy and any other energy of an excited state to be greater
than or equal to ∆. The k-th order perturbation theory in the perturbation strength t can then
be estimated roughly to be less than or equal to |ck|t

k

∆k−1 , where ck ∈ R is specific for the k-th order,
containing the matrix elements of the perturbation except the perturbation strength. The vari-
ation of the energy caused by the perturbation would then be bounded above by C∆

∑∞
k=1

tk

∆k ,
where C := sup

k≥1
|ck|. Choosing the perturbation strength t to be less than the energy gap (what

can always be achieved since ∆ > 0) implies that the geometric series converges, and therefore
the alteration of the energy is continuous and a phase transition cannot happen there.

Aside from this plausibility argument, the characterization that a gap implies a system does
not undergo a phase transition can also be proven rigorously using the principle of ’automorphic
equivalence’[1]. It defines a phase as an equivalence class, associated with the equivalence relation
that two systems are in the same phase if there exists a smooth path of gapped Hamiltonians
H(s), s ∈ [0, 1], where H(0) belongs to one of these phases and H(1) is the Hamiltonian of the
other phase[1]. Then their ground states are related by an automorphism that is generated by
a quasi-local unitary with almost exponential decay[1]. That means an alteration affecting only
one site cannot influence the entire chain and cause a phase transition.
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As is turns out, in one dimension, the classification of phases via gap yields different results for
open boundary conditions and periodic boundary conditions. Using periodic boundary condi-
tions (such that the system is translation invariant) yields that there is only one phase in one
dimension[2, 3].

In contrast, S. Bachmann and B. Nachtergaele introduce a model which is called the prod-
uct vacua with boundary states (PVBS) of a one-dimensional, gapped quantum spin system
with open boundary conditions, and show that these edge states require a finer classification of
quantum phases[4]. We are now interested in how these perceptions fit together. Since these
investigations are done by using the formalism of matrix product states (MPS), we will also make
use of this formalism.

In this thesis, we aim to see whether a vanishing gap also implies a phase transition, i.e. the def-
initions via gap and discontinuous change in the ground states are equivalent for open boundary
conditions. In the case where discontinuities of the ground states occur, we are further interested
in the way these discontinuities appear, for example whether the state changes completely or
only at the boundary if we add a perturbation that acts on the boundary only.

The PVBS-model that we will examine describes gapped phases, i.e. the energy of the first
excited state is always bounded below by a positive constant, even in the thermodynamic limit[2].
So we have to modify the Hamiltonian in order to force the gap to close. As it will turn out, we
just have to do that at the boundary.

The model under consideration has the specific property that the corresponding Hamiltonian
depends on certain parameters which determine how strong particles bind to the boundaries.
Thus, we can construct a simple path on which the gap vanishes.

We will especially analyze the behavior of the ground states if various perturbations are
taken into the Hamiltonian. As we will see, depending on the Hilbert space dimension and the
perturbation, the examination is more or less complicated. We also will find more than one way
to construct a path on which the gap closes.

Another point of interest is whether we can obtain a Hamiltonian that is completely translation
invariant and therefore equal to the one with periodic boundary conditions. This will prove an
aim that can be achieved in some cases more or less to our satisfaction.

As we will ascertain, a vanishing gap causes the ground state degeneracy to alter, but this fact
will not have an effect on the entire chain as the only change happens at the boundary. Thus,
we may not call this a phase transition since the bulk state does not undergo any changes at all.

In addition, we investigate the long-distance description of this system by applying Renormal-
ization Group transformations. As these results are not entirely satisfying due to a certain
instability, we develop a modified form of PVBS that is capable of avoiding these inconveniences.
These new PVBS are subsequently examined and we will see that this modified form of PVBS
also eliminates the difficulties that we encounter while examining phase transitions.
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2 Matrix Product States

Consider a system of N subsystems, for example N particles that can attain r states. Then, an
arbitrary wave function describing the total system is given by

|Ψ〉 =

r∑
i1,i2,...,iN=1

ci1,i2,...,iN |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN 〉 =:

r∑
i1,i2,...,iN=1

ci1,i2,...,iN |i1i2 · · · iN 〉, (2.1)

where ci1,i2,...,iN ∈ C, i1, . . . , iN = 1, 2, . . . , r, and {|1〉, |2〉, . . . , |r〉} is a basis of the subsystem.
The number of the constants ci1,...,iN increases exponentially with N , as does the Hilbert

space, but not all possible states in the Hilbert space are equally appropriate as ground states[5].
As there are usually nearest and next-to-nearest neighbor interactions in nature, and low-energy
eigenstates of local, gapped Hamiltonians follow the area-law for the entanglement entropy, most
of the states contained in the Hilbert space are not suitable as ground states[5]. The area-law of
entanglement entropy states that the entropy of a subsystem scales with the size of the boundary
of this subsystem. Fortunately, for most states of the Hilbert space, the entropy of the system
scales with the volume instead of the boundary, and therefore the relevant part of the Hilbert
space is, in comparison, extremely small[5]. In one dimension, an efficient notation for these
relevant states is given by matrix product states (MPS)[5].

Written as a MPS with open boundary conditions, |Ψ〉 is given by[6]:

|Ψ〉 =
r∑

i1,i2,...,iN=1

A
(1)
i1
A

(2)
i2
· · ·A(N)

iN
|i1i2 · · · iN 〉, (2.2)

whereA(1)
i1
∈ Mat(C)1×D, A(2)

i2
, . . . , A

(N−1)
iN−1

∈ Mat(C)D×D andA(N)
iN
∈ Mat(C)D×1, i1, i2, . . . , iN =

1, 2, . . . , r. In the case of periodic boundary conditions, |Ψ〉 can be written as

|Ψ〉 =
r∑

i1,i2,...,iN=1

Tr
(
A

(1)
i1
A

(2)
i2
· · ·A(N)

iN

)
|i1i2 · · · iN 〉, (2.3)

where A(1)
i1
, . . . , A

(N)
iN
∈ Mat(C)D×D[6]. The matrices A(k)

ik
, k = 1, . . . , N, ik = 1, . . . , r can be

understood as three-index tensors and represented in a graphical language as[6]

Ai,βα = β α
A

i

, (2.4)

where i is the physical index, i.e. the index that indicates the physical state. The connection
between two such diagrams

β α
A B

γ

i j

means summing over the index α[6]:
D∑
i=1

Ai,βαBj,αγ (2.5)

The complex conjugate of a matrix is represented by

A
αβ

i

,

where the physical index is directed downwards.
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2.1 Transfer Matrices

The transfer matrix is defined as

T =
r∑
i=1

Ai ⊗ Āi, (2.6)

and determines a MPS up to a local unitary transformation: if
∑r

i=1Ai ⊗ Āi =
∑r

i=1Bi ⊗ B̄i,
then Ai =

∑r
j=1 vijBj , where (vij) is an isometry[6]. In the graphical language, the transfer

matrix is depicted as

T =

A
α

β α

β

A

.

2.1.1 An Application to Renormalization Group Transformations

In order to obtain the long-distance information of a system, we can use a Renormalization Group
(RG) technique. The short-distance information is integrated out and length and operators are
rescaled, restoring the initial form[7]. In the case of a one-dimensional system with N subsystems
of r-dimensional Hilbert spaces, two neighboring subsystems are joined to a new subsystem, and
operators and length are rescaled[7]. Then, states equal up to a local unitary operation have
to be identified[7]. This transformation can be executed by using the transfer matrix (2.6),
which is invariant under local unitary operations[7]. The RG transformation corresponds to
T 7→ T ′ = T 2[7].

β

β α

α

αβ

αβ
β

β α

α

Figure 2.1: The figure depicts the RG transformation of the transfer matrix expressed in the
graphical language.

The process is shown in Fig. 2.1 in the graphical language. Squaring the transfer matrix
means we can interpret two multiplied matrices as a new one with two physical indices which are
summed over. The four left, free indices can now be understood as those of a four-index tensor,
depicted in the middle of the figure. This tensor can then be written as a sum of tensor products
of matrices with their complex conjugates. The number r′ of terms in the sum (i.e. the required
number of matrices) is between r and r2. The physical meaning of this is that, in the case r′ = r,
the number of possibilities of the combined states is equal to the former number of states; and
if r′ > r, additional possibilities arise. The fact that r′ ≤ r2 is also reasonable as there cannot
be more possibilities than the number of 2-combinations of the set of states, i.e. the order is
irrelevant. As it turns out, r′ can be calculated by computing the Kraus rank of T 2: Although
T 2 is a tensor with four indices T 2

β′βα′α, we can interpret it as a matrix T 2
(β′β)(α′α). Rearranging

the matrix elements yields a new matrix K(β′α′)(βα). The rank of K is the Kraus rank of T 2 and
corresponds to r′.

By applying the transformation p times and then taking the limit p → ∞, only the long
distance information is preserved.
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2.2 Construction of the Parent Hamiltonian

Given a set of desired ground states

|Ψ(B)〉 =

r∑
i1,...,iN=1

Tr(BAi1 · · ·AiN )|i1 . . . iN 〉, (2.7)

where B,Ai1 , . . . , AiN ∈ Mat(C)D×D, and B describes some boundary conditions, we want
to construct the parent Hamiltonian, i.e. the Hamiltonian with its ground states given by
|Ψ(B)〉. We would like the parent Hamiltonian H to be frustration free, i.e. H =

∑N−1
k=1 hk,k+1,

where hk,k+1 ≥ 0 acts on sites k and k + 1 and already minimizes the energy on these two
sites of the global ground state[8]. Therefore, we concentrate on the sites k and k + 1 and fix
i1, . . . , ik−1, ik+2, . . . , iN ∈ {1, 2, . . . , r}. Then, |Ψ(B)〉 for fixed i1, . . . ik−1, ik+2, . . . , iN can be
recast in the reduced space as

|Ψ(B, i1, . . . ik−1, ik+2, . . . , iN )〉 :=

r∑
ik,ik+1=1

Tr(BAi1 · · ·AikAik+1
· · ·AiN )|ikik+1〉 (2.8)

=

r∑
ik,ik+1=1

Tr(Aik+2
· · ·AiNBAi1 · · ·Aik−1︸ ︷︷ ︸

=:Bi1...ik−1ik+2...iN

AikAik+1
)|ikik+1〉

(2.9)

=

r∑
ik,ik+1=1

Tr(Bi1...ik−1ik+2...iNAikAik+1
)|ikik+1〉. (2.10)

In order for |Ψ(B, i1, . . . ik−1, ik+2 . . . iN )〉 to be the ground states of hk,k+1, we define

hk,k+1 = ΠΨk⊥ = 1−ΠΨk , (2.11)

where ΠΨk⊥ denotes the projector onto an orthogonal complement of

span{ |Ψ(B, i1, . . . , ik−1, ik+2, . . . , iN )〉 |B ∈ Mat(C)D×D} =: G (2.12)

and ΠΨk denotes the projector onto the subspace G.
Since hk,k+1 (k = 1, . . . , N−1) are projectors, all eigenvalues of hk,k+1 andH are non-negative,

and as G is the eigenspace of hk,k+1 corresponding to the eigenvalue zero, it is also the eigenspace
of H corresponding to the eigenvalue zero and hence the ground state space:

H|Ψ(B)〉 =
N−1∑
k=1

hk,k+1|Ψ(B)〉 (2.13)

=

N−1∑
k=1

r∑
i1,...,iN=1

hk,k+1Tr(BAi1 · · ·AiN )|i1 . . . iN 〉 (2.14)

=
N−1∑
k=1

r∑
i1,...,ik−1,

ik+2,...,iN=1

|i1 . . . ik−1〉 ⊗
(
hk,k+1|Ψ(B, i1, . . . , ik−1, ik+2, . . . , iN )〉︸ ︷︷ ︸

=0

)
⊗ |ik+2 . . . iN 〉

(2.15)

= 0, (2.16)

where we used Eq. (2.7) and (2.8).
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3 Product Vacua with Boundary States

A special type of MPS are the Product Vacua with Boundary States (PVBS) introduced by S.
Bachmann and B. Nachtergaele[4]. As this model forms the primary subject of our studies, we
give a brief review on its properties.

Considering a quantum spin chain of length L with nearest-neighbor interaction, the ground
state degeneracy is 2n, where n can be interpreted as the number of distinguishable particles
added to the product vacuum. An arbitrary product state is given by |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iL〉 =:
|i1i2 . . . iL〉, where i1, . . . , iL = 0, 1, . . . , n. The number of different values which i1, . . . , iL can
attain is called the dimension d of the Hilbert space. The integers 1, . . . , n label the particles
and 0 represents the vacuum. The matrices v0, v1, . . . , vn ∈ Mat(C)2n×2n generating the ground
states satisfy the commutation relations

vivj = eiϑijλiλ
−1
j vjvi, i 6= j (3.1)

v2
i = 0, i 6= 0 (3.2)

where ϑij and 0 6= λi are real numbers, and ϑij = −ϑji for 0 ≤ i, j ≤ n[4]. λi can be chosen to
be positive by redefining the phases ϑij , and we set λ0 = 1 for normalization purposes[4]. To
prove the existence of such matrices, S. Bachmann and B. Nachtergaele give an example[4]:

v0 =

n⊗
i=1

P 2
0iwi (3.3)

vi =
i−1⊗
j=1

Pijwj ⊗ σ+ ⊗
n⊗

k=i+1

Pikwk, i = 1, . . . , n (3.4)

where

σ+ =

(
0 1
0 0

)
, wi =

(
1 0
0 λi

)
, Pij =

(
e

1
2
iϑij 0
0 1

)
. (3.5)

The matrices vi constructed in this way satisfy the commutation relations (Eq. (3.1) and (3.2)),
and generate the MPS

ψ(B) =
n∑

i1,...,iL=0

Tr(BviL . . . vi1)|i1 . . . iL〉, (3.6)

where B ∈ Mat(C)2n×2n . Due to the commutation relation (3.1), a particle of type i, i =
1, 2, . . . , d − 1, binds to the left edge if λi < 1, to the right edge if λi > 1, or to neither edge in
the case λi = 1. These states never contain two particles of the same type on the chain because
applying Eq. (3.1) enables transpositions of vi and vj until two vi are next to each other and
then by making use of Eq. (3.2) the trace vanishes.

In order to construct the parent Hamiltonian with ground states ψ(B) of a chain with arbitrary
length L, we first only need to concentrate on a chain of length L = 2, as seen in section 2.2. In
the case L = 2, the vectors

φi = |0i〉 − e−iϑi0λi|i0〉 (3.7)

φij = |ij〉 − e−iϑjiλ−1
i λj |ji〉 (3.8)

φii = |ii〉, (3.9)
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for 1 ≤ i, j ≤ n and i 6= j are orthogonal to the MPS ψ(B), ∀B. Therefore, for L = 2, the states
{ψ(B) |B ∈ Mat(C)2n×2n} are eigenstates of the Hamiltonian

h =

n∑
i=1

|φ̂i〉〈φ̂i|+
∑

1≤i≤j≤n
|φ̂ij〉〈φ̂ij |, (3.10)

where ·̂ indicates normalization. The parent Hamiltonian for a chain of length L > 2 is then
given by

H =

L−1∑
x=1

hx,x+1, (3.11)

where

hx,x+1 = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
x−1 times

⊗h⊗ 1⊗ · · · ⊗ 1 (3.12)

represents a nearest-neighbor interaction. By construction, H is the parent Hamiltonian of the
ground states ψ(B) mentioned in Eq. (3.6)[4].

The case λi = 1, for any arbitrary i ∈ {1, 2, . . . , d − 1}, is a special case since the particle
of type i binds neither to the left nor the right edge. Moreover, the statement that the energy
of the first excited state is always bounded below by a positive constant[4] only holds for λi 6=
1, ∀i ∈ {1, 2, . . . , d − 1}. Fig. 3.1 illustrates the energy of the first excited state of H for n = 1
and L = 2, 3, . . . 20. As the energy decreases strictly monotonically as a function of L, the gap
may close in the limit λ → ∞. Bachmann and Nachtergaele actually show that the gap closes
in the thermodynamic limit whenever there is λi = 1 for any i ∈ {1, 2, . . . , d− 1}[9].

100 101 102

L

10-2

10-1

ei
ge

nv
al

ue

Eigenvalue of the first excited state of H depending on L

Figure 3.1: The plot visualizes the dependence of the eigenvalue of the first excited state of H
for λ = 1 on L. The axes-scaling is log-log. For large L, the numerical result for the
slope is approximately 2. Therefore, the eigenvalue decreases ∼ 1

L2 .
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Although PVBS are only defined for open boundary conditions, we are further interested in
what happens when using periodic boundary conditions. For this, we set B = 1 what has the
same effect as no B at all. Since then all vi with i 6= 0 are traceless because they contain σ+ (cf.
Eq. (3.5)), the only remaining ground state is |0 . . . 0〉. Therefore, PVBS with periodic boundary
conditions have always, independently of n and L, a non-degenerate ground state.

In the next chapter, we will have a closer look at the case of open boundary conditions and
analyze whether phase transitions are possible in this case.
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4 Phase Transitions

In this chapter, we strive to examine whether a vanishing gap implies a phase transition for the
PVBS-model in the case of open boundary conditions. We will analyze paths on which n changes
for the cases d = 2 (one particle type) and d = 3 (two particle types). For this purpose, we first
take the limits λi → 0, i = 1, . . . , d−1, to obtain a path as simple as possible for a change in the
number n of particle types occurring in the ground states. Physically, the limit λi → 0 means
that a particle of type i extremely binds to the left edge.

Since the commutation relation (3.1) does not hold in the limit λi → 0, there may occur dis-
continuities. So we investigate the ground states in the limit in two ways and see whether they
yield the same results. One way is to look at the Hamiltonian as a function of λi, and calculate
its ground states; and in the other way, we start with the ground states from Eq. (3.6). First
we apply the commutation relations (3.1) and (3.2), and then we take the limits λi → 0. Subse-
quently, we examine whether the ground states are equal, and we also check the numerical result
for discontinuities. For this purpose, we wrote a program that calculates the Hamiltonian and
determines its eigenvalues dependent on the parameters λi and various perturbation strengths.
Once we ascertained that the limits are continuous and the ground states of both analyzed ways
are consistent, we add perturbations that act on the boundary and investigate what happens to
the ground states and the Hamiltonian.

We aim to change n while the dimension d of the Hilbert space remains constant. But the
PVBS-model introduced by S. Bachmann and B. Nachtergaele in [4] only considers the cases
n = d− 1; so how do we understand the case where n < d− 1? Since d is the dimension of the
Hilbert space and constant, it still provides d− 1 various particle types or the vacuum to be on
a site. But not all of these possibilities occur in the ground states; only n < d− 1 particle types
or the vacuum are possible site occupancies.

If n = 0, we only expect the product vacuum |0 . . . 0〉 to be a valid ground state. Therefore,
we want the Hamiltonian to be of the form

H =

d−1∑
k=1

L∑
i=1

|k〉〈k|i, (4.1)

because then, every particle type on every site gains an energy > 0 and would not belong to
the ground state space. Moreover, this Hamiltonian is completely translation invariant, and
therefore equivalent to the one with periodic boundary conditions.

For any other 0 < n < d− 1, the sum
∑L

i=1 in Eq. (4.1) has to be replaced by
∑L

i=2 for those
k still occurring in the ground states.

As we will see, in the case of dimension d = 2, the transition of n from 1 to 0 yields the
Hamiltonian that we expect to obtain for the case n = 0, d > 1. In the case d = 3, there will be
more difficulties and the Hamiltonian we find will still contain terms of a two-particle interaction.
Nevertheless, we will be able to change n and with it the ground state degeneracy, but this will
only have an effect on the boundary.
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4.1 One Particle Type: The Case d = 2

Let us consider the case n = 1, and see whether n can be changed to n = 0 only by manipulating
the Hamiltonian at the boundary, and investigate what happens to the state.

First, we examine the ground states by taking the limit λ→ 0 of the Hamiltonian. For that,
we look at the Hamiltonian acting on two neighboring sites that is, according to Eq. (3.10),
given by

h = |φ̂1〉〈φ̂1|+ |φ̂11〉〈φ̂11|

=
1

1 + λ2

(
|01〉 − e−iϑ10λ|10〉

)(
〈01| − eiϑ10λ〈10|

)
+ |11〉〈11|

where λ 6= 0 and ϑ10 are arbitrary real numbers. For λ→ 0, this Hamiltonian can be written as:

lim
λ→0

h = |01〉〈01|+ |11〉〈11| = 1⊗ |1〉〈1| (4.2)

In order to indicate that h acts on sites x and x + 1, we write hx,x+1. In the case of vanishing
λ, the commutator [hx,x+1, hy,y+1], where x, y = 1, 2, . . . L− 1, also vanishes since the operators
are diagonal. For that reason, the eigenvalues of the Hamiltonian on the entire chain

H =

L−1∑
i=1

hi,i+1 =

L−1∑
i=1

|1〉〈1|i+1, (4.3)

where ( · )i+1 denotes that · acts on site i + 1, are all integers and actually ≥ 0 since H is a
projector. Accordingly, vectors with eigenvalue zero must be ground states. Fig 4.1 shows the
dependence of the eigenvalues on λ, and for λ→ 0, the eigenvalues become non-negative integers.
The curves are continuous in the limit as well.

0.00.20.40.60.81.0
λ

1

0

1

2

3

4

5

6

ei
ge

nv
al

ue
s 

of
 H

Dependence of the eigenvalues on λ

Figure 4.1: The plot of the dependence of the eigenvalues of H =∑L−1
i=1

((
1

1+λ2

(
|01〉 − e−iϑ10λ|10〉

) (
〈01| − eiϑ10λ〈10|

) )
i,i+1

+ |11〉〈11|i,i+1

)
on

λ is exemplarily shown for a chain of length L = 6. For larger L, there are more
curves, even for higher eigenvalues, but they behave quite the same. As λ → 0, the
curves are continuous and for λ = 0 the eigenvalues are non-negative integers.
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Now, let us see what the ground states of the Hamiltonian in the case λ → 0 are. The only
vectors that correspond to a zero eigenvalue are

|ψ0〉 := |0 . . . 0〉 (4.4)

and

|ψ1〉 := |10 . . . 0〉 (4.5)

since every vector containing a particle on any site but the first one has at least eigenvalue 1.
Therefore, (4.4) and (4.5) are the only ground states we obtain in this way.

Now, we apply the second way of calculating the ground states in the limit λ → 0, where
we start with the ground states ψ(B). As mentioned previously, the commutation relation (3.1)
does not hold in the limit λ → 0 because v1v0 → 0 for λ → 0, but limλ→0 v0v1 6= 0. Thus, we
have to apply the commutation relations (3.1) and (3.2) before taking the limit in order to obtain
the right ground states. So starting with ψ(B) defined in Eq. (3.6) and using the commutation
relations (3.1) and (3.2) leads to

ψ(B) = Tr(Bv0 . . . v0)|0 . . . 0〉+ Tr(Bv0 . . . v0v1)|10 . . . 0〉+ · · ·+ Tr(B v1v0︸︷︷︸
eiϑ10λ1v0v1

. . . v0)|0 . . . 01〉

= Tr(Bv0 . . . v0)|0 . . . 0〉

+ Tr(Bv0 . . . v0v1)

(
|10 . . . 0〉+ eiϑ10λ1|010 . . . 0〉+ · · ·+

(
eiϑ10λ1

)L−1
|0 . . . 01〉

)
. (4.6)

Taking the limit of Eq. (4.6), we obtain

lim
λ→0

ψ(B) = Tr(Bv0 . . . v0)|0 . . . 0〉+ Tr(Bv0 . . . v0v1)|10 . . . 0〉 (4.7)

which can either span a two-dimensional space or only a one-dimensional space what would
happen if Tr(Bv0 . . . v0) and Tr(Bv0 . . . v0v1) depend on the same matrix elements of B, and
could therefore not be chosen independently. Fortunately, the ground states consistently span
the same space as (4.4) and (4.5), as can be seen by the matrices vi, constructed in Eq. (3.3)
and (3.4) and the following choice of B:

v0 =

(
eiϑ01 0

0 λ1

)
, v1 =

(
0 1
0 0

)
, B =

(
c1 0
c2 0

)
,

where c1, c2 ∈ C. Then, the traces are

Tr(Bv0 . . . v0) = c1e
iLϑ01 , Tr(Bv0 . . . v0v1) = c2e

i(L−1)ϑ01 .

Since c1 and c2 are arbitrary complex numbers and therefore every arbitrary linear combination
can be constructed, the ground state space is two-dimensional. These states represent the empty
chain (|0 . . . 0〉), and the chain with one particle sticking to the left edge (|10 . . . 0〉).

Let us now investigate whether the system undergoes a phase transition if we add a pertur-
bation of the form

S = γ|1〉〈1| ⊗ 1L−1 = γ|1〉〈1|1, γ > 0, (4.8)

where 1L−1 denotes the identity map acting on L − 1 sites, and γ denotes the perturbation
strength. This perturbation might be caused by e.g. a local magnetic field. When added to
the Hamiltonian H, it removes the degeneracy of the ground state. Since H commutes with S,

13



and both are self-adjoint, there exists a common eigenbasis (fortunately, this eigenbasis is the
product basis) and the new eigenvalues can be obtained by the sum of the eigenvalues of H and
S. As a result, the former ground state |10 . . . 0〉 now corresponds to the energy γ, so |0 . . . 0〉
is the only remaining ground state. The elimination of the degeneracy can also be seen in Fig.
(4.2) as the ground state energy splits into two energies. If γ → 1, the Hamiltonian H ′ := H+S
can be written as

H ′ =
L∑
i=1

|1〉〈1|i, (4.9)

which implies that all the sites are equivalent as in the case of periodic boundary conditions.
This is the desired form for a Hamiltonian with n = 0 mentioned in Eq. (4.1). Since the ground
state energy is not degenerate, but the Hilbert space still supports a particle, even though it
appears only in excited states, the Hamiltonian H ′ belongs to the case n = 0 and d = 2. Thus,
we were able to achieve an alteration of the ground state degeneracy only by modifying the
boundary, but the change of the ground state space just has an effect at the edge. So the bulk
of the system behaves continuously, and therefore this behavior should not fall in the definition
of a phase transition.
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Figure 4.2: On the left, the limit λ → 0 for L = 4 is shown again in order to indicate the
behavior of the eigenvalues. The plot does not show the full spectrum since we are
interested in the low-energy states. On the right, the dependence of the eigenvalues
of H + S =

∑L
i=2 |1〉〈1|i + γ|1〉〈1|1 on γ for γ ∈ [0, 1] and L = 4 is depicted. Some

degeneracies are removed for non-vanishing γ as the eigenvalues split up; some of
them increase linearly with γ and others remain constant. For excited states, the
degeneracies are not completely removed as we see more than two curves intersect at
the integers in the plot on the left, but only two split up in the right plot. However,
for λ = 0 and γ = 0, the ground states are |0 . . . 0〉 and |10 . . . 0〉, and for γ > 0
they split up; thus the ground state is not degenerate for γ > 0. The linear increase
underlines the fact that the Hamiltonian H and the perturbation S have a common
eigenbasis.
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4.2 Two Particle Types: The Case d = 3

The next case for which we investigate the system’s behavior if the gap closes is the case n = 2
and d = 3. The Hamiltonian acting on two neighboring sites is created by applying Eq. (3.10)
and reads

h = |φ̂1〉〈φ̂1|+ |φ̂2〉〈φ̂2|+ |φ̂11〉〈φ̂11|+ |φ̂12〉〈φ̂12|+ |φ̂22〉〈φ̂22|

=
1

1 + λ2
1

(
|01〉 − e−iϑ10λ1|10〉

)(
〈01| − eiϑ10λ1〈10|

)
+ |11〉〈11|

+
1

1 + λ2
2

(
|02〉 − e−iϑ20λ2|20〉

)(
〈02| − eiϑ20λ2〈20|

)
+ |22〉〈22|

+
1

λ2
1 + λ2

2

(
λ1|12〉 − e−iϑ21λ2|21〉

)(
λ1〈12| − eiϑ21λ2〈21|

)
,

where λ1, λ2 ∈ R>0 and ϑ10, ϑ20, ϑ21 ∈ R.
As there are two λs, we have more possibilities for taking the limit λ1 → 0 and λ2 → 0

than in the case d = 2. First we study the limit λ1 → 0, λ2 → 0 with constant ratio λ1
λ2

=: α.
Subsequently we examine what happens when taking the limit λ1 → 0 before the limit λ2 → 0.

4.2.1 Constant Ratio α

Starting with the case α = λ1
λ2

= const., we obtain for the Hamiltonian acting on two adjacent
sites

lim
λ1→0
λ2→0

,
λ1
λ2

=α

h = |01〉〈01|+ |02〉〈02|+ |11〉〈11|+ |22〉〈22| (4.10)

+
1

α2 + 1

(
α|12〉 − e−iϑ21 |21〉

)(
α〈12| − eiϑ21〈21|

)
= 1⊗ |1〉〈1|+ 1⊗ |2〉〈2| − 1

α2 + 1

(
|12〉+ e−iϑ21α|21〉

)(
〈12|+ eiϑ21α〈21|

)
.

(4.11)

So in this limit, the Hamiltonian of the entire chain is given by

H =
L−1∑
i=1

hi,i+1 (4.12)

=

L∑
i=2

|1〉〈1|i +

L∑
i=2

|2〉〈2|i −
1

α2 + 1

L−1∑
i=1

((
|12〉+ e−iϑ21α|21〉

)(
〈12|+ eiϑ21α〈21|

))
i,i+1

,

(4.13)

where hi,i+1 is defined as in Eq. (3.12).
To investigate the ground states of this Hamiltonian, we start with investigating the eigen-

states of h. In the product basis, h is almost diagonal. The only subspace h is not diagonal in
is the space spanned by |12〉 and |21〉. Diagonalizing the matrix(

1
1+α−2

−eiϑ21α−1

1+α−2

−e−iϑ21α−1

1+α−2
α−2

1+α−2

)

yields the additional eigenstates |12〉+e−iϑ21α|21〉√
1+α2

and |12〉−e−iϑ21α−1|21〉√
1+α−2

. The eigenstates that be-

long to zero energy are |00〉, |10〉, |20〉 and |12〉+e−iϑ21α|21〉√
1+α2

=: |ω〉 as can be seen by applying h
to them.
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Now, we will examine the ground states on a chain of length L > 2. Since our Hamiltonian
is frustration free, we know that it already minimizes the energy on every two neighboring sites.
We will make use of this fact by constructing the ground states for the chain of length L+ 1 out
of the ground states for the chain of length L. For this, we take the ground states on the chain
of length L and try a linear combination of this ground states extended with all possibilities for
the next site. Then, we apply the Hamiltonian to this linear combination and require the result
to be zero since zero is the ground state energy. As we already know the ground states on the
chain of length L = 2, we will start from those. The ground states for L = 3 must then be of
the form

|Φ〉 := |00〉 ⊗ |x1〉+ |10〉 ⊗ |x2〉+ |20〉 ⊗ |x3〉+ |ω〉 ⊗ |x4〉, (4.14)

where

|xi〉 = ci0|0〉+ ci1|1〉+ ci2|2〉, ci0, c
i
1, c

i
2 ∈ C. (4.15)

We now have to find solutions of H|Φ〉 !
= 0:

H|Φ〉 = h1,2|Φ〉︸ ︷︷ ︸
=0

+h2,3|Φ〉 (4.16)

=

(
1⊗ 1⊗ |1〉〈1|+1⊗ 1⊗ |2〉〈2| −1⊗ 1

α2 + 1

(
|12〉+ e−iϑ12α|21〉

)(
〈12|+ eiϑ12α〈21|

))
·
(
|00〉 ⊗ |x1〉+ |10〉 ⊗ |x2〉+ |20〉 ⊗ |x3〉+ |ω〉 ⊗ |x4〉

)
(4.17)

= c1
1|001〉+ c1

2|002〉+ c2
1|101〉+ c2

2|102〉+ c3
1|201〉+ c3

2|202〉

+
c4

1√
1 + α2

(
|121〉+ e−iϑ21α|211〉

)
+

c4
2√

1 + α2

(
|122〉+ e−iϑ21α|212〉

)
(4.18)

− c4
1

(1 + α2)
3
2

α
(
eiϑ12 |112〉+ α|121〉

)
− c4

2

(1 + α2)
3
2

α
(
eiϑ12 |212〉+ α|221〉

)
= 0 (4.19)

The equation is satisfied if and only if c1
1 = c1

2 = c2
1 = c2

2 = c3
1 = c3

2 = c4
1 = c4

2 = 0 because
of linear independence. Therefore, the ground states are |Φ〉 = c1

0|000〉 + c2
0|100〉 + c3

0|200〉 +
c40√

1+α2

(
|120〉+ e−iϑ21α|210〉

)
for arbitrary c1

0, c
2
0, c

3
0, c

4
0 ∈ C.

Going on to the chain of length L = 4, the ground states are of the form

|Φ4〉 := |000〉 ⊗ |x1〉+ |100〉 ⊗ |x2〉+ |200〉|x3〉+
1√

1 + α2

(
|120〉+ e−iϑ21α|210〉

)
⊗ |x4〉,

(4.20)

where the states |xi〉 are defined as in Eq. (4.15). Applying H to |Φ4〉 yields

H|Φ4〉 = (h1,2 + h2,3)|Φ4〉︸ ︷︷ ︸
=0

+h3,4|Φ4〉 (4.21)

= c1
1|0001〉+ c1

2|0002〉+ c2
1|1001〉+ c2

2|1002〉+ c3
1|2001〉+ c3

2|2002〉

+
c4

1√
1 + α2

(
|1201〉+ e−iϑ21α|2101〉

)
+

c4
2√

1 + α2

(
|1202〉+ e−iϑ21α|2102〉

)
. (4.22)

For fulfilling the condition H|Φ4〉 = 0, ci1, ci2 have to be zero ∀i = 1, 2, 3, 4 due to linear
independence, and the ground states are given by |Φ4〉 = c1

0|0000〉 + c2
0|1000〉 + c3

0|2000〉 +
c40√

1+α2

(
|1200〉+ e−iϑ21α|2100〉

)
for any arbitrary ci0 ∈ C, i = 1, 2, 3, 4.

Now we show that, for a chain with length L + 1, the ground states are given by |0 . . . 0〉,
|10 . . . 0〉, |20 . . . 0〉, and 1√

1+α2

(
|120 . . . 0〉+ e−iϑ21α|210 . . . 0〉

)
if, for the chain with length L,
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the ground states are of the same form. We already know that this holds for a chain of length 4.
Let the assumption hold for any arbitrary 4 ≤ L ∈ N.

The ground states on a chain of length L+ 1 are then given by

|ΦL+1〉 = |0 . . . 0〉 ⊗ |x1〉+ |10 . . . 0〉 ⊗ |x2〉+ |20 . . . 0〉 ⊗ |x3〉

+
1√

1 + α2

(
|120 . . . 0〉+ e−iϑ21α|210 . . . 0〉

)
⊗ |x4〉, (4.23)

where |xi〉 is defined as in Eq. (4.15). By applying H to |ΦL+1〉, we use that H is frustration
free:

H|ΦL+1〉 =
L−1∑
i=1

hi,i+1|ΦL+1〉︸ ︷︷ ︸
=0

+hL,L+1|ΦL+1〉 (4.24)

= c1
1|0 . . . 01〉+ c1

2|0 . . . 02〉+ c2
1|10 . . . 01〉+ c2

2|10 . . . 02〉+ c3
1|20 . . . 01〉+ c3

2|20 . . . 02〉

+
c4

1√
1 + α2

(
|120 . . . 01〉+ e−iϑ21α|210 . . . 01〉

)
+

c4
2√

1 + α2

(
|120 . . . 02〉+ e−iϑ21α|210 . . . 02〉

)
(4.25)

!
= 0

Due to linear independence, ci1 = ci2 = 0, i = 1, 2, 3, 4, and therefore |ΦL+1〉 = c1
0|0 . . . 0〉 +

c2
0|10 . . . 0〉+c3

0|20 . . . 0〉+ c40√
1+α2

(
|120 . . . 0〉+ e−iϑ21α|210 . . . 0〉

)
for any arbitrary ci0, i = 1, 2, 3, 4.

Since the statement holds for L = 4 and the inductive step has been performed, the state-
ment holds for any 4 ≤ L ∈ N due to the principle of mathematical induction. Including
the cases L = 2 and L = 3 which we calculated separately, we obtain that for any chain of
length L ≥ 2, there are four ground states which are given by |0 . . . 0〉, |10 . . . 0〉, |20 . . . 0〉, and

1√
1+α2

(
|120 . . . 0〉+ e−iϑ21α|210 . . . 0〉

)
.

Now we examine whether we obtain the same ground states by taking the limits of ψ(B) from
Eq. (3.6). For that, we apply the commutation relations (3.1) and (3.2) to rearrange the terms
of the sum of Eq. (3.6). Hence, we obtain

ψ(B) =

2∑
i1...iL=0

Tr(BviL . . . vi1)|i1 . . . iL〉 (4.26)

= Tr(Bv0 . . . v0)|0 . . . 0〉+ Tr(Bv0 . . . v0v1)

L−1∑
n=1

(
λ1e

iϑ10
)n−1

|0. . . 010 . . .
↑

position n

0〉


+ Tr(Bv0 . . . v0v2)

L−1∑
n=1

(
λ2e

iϑ20
)n−1

|0. . . 020 . . .
↑

position n

0〉


+ Tr(Bv0 . . . v0v2v1)

(
L−1∑
n=1

(
λ1e

iϑ10
)n−1

L−1∑
m=n

(
λ2e

iϑ20
)m−1

|0 . . . 010
↑

position n,

. . . 020
↑

position m+1

. . . 0〉

+ e−iϑ21α
L−1∑
n=1

(
λ2e

iϑ20
)n−1

L−1∑
m=n

(
λ1e

iϑ10
)m−1

|0 . . . 020
↑

position n,

. . . 010
↑

position m+1

. . . 0〉

)
, (4.27)

and it is not hard to see that

lim
λ1→0
λ2→0

,
λ1
λ2

=α

ψ(B) = Tr(Bv0 . . . v0)|0 . . . 0〉+ Tr(Bv0 . . . v0v1)|10 . . . 0〉+ Tr(Bv0 . . . v0v2)|20 . . . 0〉

+ Tr(Bv0 . . . v0v2v1)
(
|120 . . . 0〉+ e−iϑ21α|210 . . . 0〉

)
(4.28)
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unless one of Tr(Bv0 . . . v0),Tr(Bv0 . . . v0v1),Tr(Bv0 . . . v0v2), and Tr(Bv0 . . . v0v2v1) vanishes
with λ1 or λ2. Now, we show that for the matrices defined by Eq. (3.3) and (3.4) for n = 2,
there always exists a B such that all traces do not vanish. Using the definitions (3.3) and (3.4),
we obtain the matrices:

v0 =


ei(ϑ01+ϑ02) 0 0 0

0 eiϑ01λ2 0 0
0 0 eiϑ02λ1 0
0 0 0 λ1λ2

 (4.29)

v1 =


0 0 ei

ϑ12
2 0

0 0 0 λ2

0 0 0 0
0 0 0 0

 (4.30)

v2 =


0 ei

ϑ21
2 0 0

0 0 0 0
0 0 0 λ1

0 0 0 0

 (4.31)

For

B =


c1 0 0 0
c2 0 0 0
c3 0 0 0

λ−1
2 c4 0 0 0

 , (4.32)

where ci ∈ C for i ∈ {1, 2, 3, 4}, the traces are

Tr(Bv0 . . . v0) = c1e
iL(ϑ01+ϑ02),

Tr(Bv0 . . . v0v1) = c3e
i
ϑ12
2 ei(L−1)(ϑ01+ϑ02),

Tr(Bv0 . . . v0v2) = c2e
i
ϑ21
2 ei(L−1)(ϑ01+ϑ02),

Tr(Bv0 . . . v0v2v1) = c4e
i
ϑ21
2 ei(L−2)(ϑ01+ϑ02).

Since none of them depends on λ1 or λ2, none of them vanishes in the limit. For special choices
of ci, i ∈ {1, 2, 3, 4}, the vectors |0 . . . 0〉, |10 . . . 0〉, |20 . . . 0〉, and |120 . . . 0〉 + e−iϑ21α|210 . . . 0〉
can be chosen linearly independently. These vectors are identical to those we obtained as ground
states of the Hamiltonian (4.13).

Next, we would like to investigate whether a change in n caused by boundary modifications
yields a phase transition in this case of dimension d = 3. In order to alter n, we can once more
make use of the perturbation S introduced in Eq. (4.8). The fact that [H,S] 6= 0 in this case is
shown by the following counter-example

HS|120 . . . 0〉 = γH|120 . . . 0〉 =
γ

1 + α−2

(
|120 . . . 0〉 − e−iϑ21α−1|210 . . . 0〉

)
6= SH|120 . . . 0〉 =

1

1 + α−2
S
(
|120 . . . 0〉 − e−iϑ21α−1|210 . . . 0〉

)
=

γ

1 + α−2
|120 . . . 0〉,

and implies that computations cannot be done as easy as in the case d = 2, and thus we will use
degenerate perturbation theory to see what happens to the states.
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Degenerate Perturbation Theory

Using degenerate perturbation theory allows us to make a statement about the effect of the
perturbation S on the ground states and their energies, at least for small perturbation strengths
γ. In order to improve readability, we set α = 1 and ϑ = 0 in this calculation. Restricted
to the eigenspace E(0) of H corresponding to the eigenvalue zero and represented in the basis(
|0 . . . 0〉, |10 . . . 0〉, |20 . . . 0〉, |120...0〉+|210...0〉√

2

)
, S is given by

S|E(0) =


0 0 0 0
0 γ 0 0
0 0 0 0
0 0 0 γ

2

 , (4.33)

which is already a diagonal matrix. Hence, the ground states of H are the states in zeroth-order
perturbation theory, and the energy shifts in first-order perturbation theory can directly be read
off from the matrix:

E
(1)
|0...0〉 = 0

E
(1)
|10...0〉 = γ

E
(1)
|20...0〉 = 0

E
(1)
1√
2

(|120...0〉+|210...0〉) =
γ

2

Since the states |0 . . . 0〉, |10 . . . 0〉, and |20 . . . 0〉 are also eigenstates of S, the states in zeroth-
order perturbation theory and the energies in first-order perturbation theory are exact. However,
the vector |χ(0)〉 := 1√

2
(|120 . . . 0〉 + |210 . . . 0〉) is not an eigenvector of S, so first-order pertur-

bation theory for this state results in

|χ(1)〉 = |χ(0)〉+
∑
m

Em 6=0

〈m|S|χ(0)〉
−Em

|m〉

= |χ(0)〉+
1
2 (〈120 . . . 0| − 〈210 . . . 0|)S (|120 . . . 0〉+ |210 . . . 0〉)

−1

1√
2

(|120 . . . 0〉 − |210 . . . 0〉)

=
1√
2

(|120 . . . 0〉+ |210 . . . 0〉)− 1

2
√

2
γ (|120 . . . 0〉 − |210 . . . 0〉)

=
1√
2

((
1− γ

2

)
|120 . . . 0〉+

(
1 +

γ

2

)
|210 . . . 0〉

)
where the vectors |m〉 indicate the eigenvectors of H. The numerical computation for γ →
1 is presented in Fig. 4.3. For γ = 1 and L = 6, we obtain the first excited state as
0.383|120000〉 + 0.924|210000〉. Thus, the first excited state is expected to lie in the subspace
spanned by |120 . . . 0〉 and |210 . . . 0〉 for all γ, and if this assumption is correct, this state can be
calculated analytically. The calculated state can then be checked for being an eigenstate what
justifies the assumption a posteriori if it is really an eigenstate.
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Figure 4.3: The plot on the left shows the eigenvalues ofH less than or equal to 1 vs. λ := λ1 = λ2

(meaning α = 1) in the case of length L = 6. On the right, the dependence of the
eigenvalues ≤ 1 of H + S on γ is depicted. The states |0 . . . 0〉 and |20 . . . 0〉 are
ground states, even for increasing γ. Hence, the ground state is still degenerate. The
linearly increasing state is |10 . . . 0〉. The forth former ground state (red curve) is the
one we assume to lie in the subspace spanned by |120 . . . 0〉 and |210 . . . 0〉.

Exact Calculation

As just mentioned, we may be able to calculate the first excited state exactly. For that, we will
use the assumption that the first excited state lies in the vector space span{|120 . . . 0〉, |210 . . . 0〉}
which is also generated by the eigenvectors |χ1〉 := |120...0〉+|210...0〉√

2
and |χ2〉 := |120...0〉−|210...0〉√

2
of H. Then, we check whether the computed state is really an eigenstate since if it is, the
assumption is justified.

The vectors |χ1〉 and |χ2〉 are mapped by H and S to

H|χ1〉 = 0, H|χ2〉 = |χ2〉

S|χ1〉 =
γ√
2
|120 . . . 0〉, S|χ2〉 =

γ√
2
|120 . . . 0〉

so that the matrix elements are given by

〈X|(H + S)|χ1〉 =

{
γ
2 for |X〉 = |χ1〉 or |X〉 = |χ2〉
0 otherwise

〈X|(H + S)|χ2〉 =


γ
2 for |X〉 = |χ1〉
1 + γ

2 for|X〉 = |χ2〉
0 otherwise

.

As H + S is self-adjoint, the only non-vanishing matrix elements are

M :=

(γ
2

γ
2

γ
2 1 + γ

2

)
.

20



Diagonalizing M leads to the characteristic polynomial

det

(γ
2 − x

γ
2

γ
2 1 + γ

2 − x

)
= x2 − (γ + 1)x+

γ

2
, (4.34)

from which the energies

x1 =
γ + 1

2
+

1

2

√
γ2 + 1 (4.35)

x2 =
γ + 1

2
− 1

2

√
γ2 + 1 (4.36)

can be extracted. These do not depend on the length L of the chain, because for larger L, there
are only zeros on sites 3, 4, . . . , L− 1 which do not contribute to the energy. Therefore, the only
sites relevant for the energy are the first three sites.

We are interested in the eigenstate with the smaller eigenvalue x2 ∈ (0, 1− 1√
2
) for γ ∈ (0, 1),

and since 1 − 1√
2
< 0.5, this eigenvalue belongs to the first excited state as can be seen in

the numerical result in Fig. 4.3. This state is given by |v〉 = N
(
γ|χ1〉+ (1−

√
1 + γ2)|χ2〉

)
.

Finally, normalization leads to the first excited state

|v〉 =
1

2

√
γ2 + 1−

√
γ2 + 1

[(
1−

√
γ2 + 1 + γ

)
|120 . . . 0〉+

(√
γ2 + 1− 1 + γ

)
|210 . . . 0〉

]
.

A simple calculation shows that H|v〉 =
(
γ+1

2 −
1
2

√
γ2 + 1

)
|v〉. Accordingly, the assumption

that the first excited state lies in the subspace generated by |120 . . . 0〉 and |210 . . . 0〉 for all γ
was justified.

Let us now have a look at the Hamiltonian for γ = 1 which is then given by

H ′ := H + S (4.37)

=
L∑
i=1

|1〉〈1|i +
L∑
i=2

|2〉〈2|i −
1

1 + α2

L−1∑
i=1

((
|12〉+ e−iϑ21α|21〉

)(
〈12|+ eiϑ21α〈21|

))
i,i+1

.

(4.38)

As computed previously, it has the ground states |0 . . . 0〉 and |20 . . . 0〉. Hence, the ground state
is twofold degenerate, and this Hamiltonian belongs to n = 1, d = 3, albeit not of the desired
form

L∑
i=1

|1〉〈1|i +

L−1∑
i=2

|2〉〈2|i (4.39)

because it still contains a two-particle interaction. Nevertheless, it serves as an example of a way
to force an alteration of n only by adding a modification to the boundary. But even in this case,
the change of the ground state space has only an effect on the edge of the system and the bulk
remains continuous.
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Adding a Perturbation Acting on Particle Type 2

Next, we analyze the transition n = 1 7→ n = 0 for dimension d = 3. Therefore, we turn on a
perturbation acting on particle type 2 on the first site with perturbation strength β

W := β|2〉〈2| ⊗ 1, β > 0, (4.40)

yielding the Hamiltonian

H ′′ := H ′ +W (4.41)

=
L∑
i=1

|1〉〈1|i +
L∑
i=2

|2〉〈2|i + β|2〉〈2|1

− 1

1 + α2

L−1∑
i=1

((
|12〉+ e−iϑ21α|21〉

)(
〈12|+ eiϑ21α〈21|

))
i,i+1

. (4.42)

Calculating the expectation values of the ground states of H ′′ shows that the ground state
|20 . . . 0〉 gains the energy β, and therefore no longer belongs to the ground state space. Since
|20 . . . 0〉 is an eigenstate of W , the energy increases linearly with the perturbation scale β as can
be seen in Fig. 4.4. So |0 . . . 0〉 is the only ground state of the Hamiltonian (4.41). As a result,
this Hamiltonian belongs to the case n = 0 and d = 3. But even for β = 1, the Hamiltonian is
not translation invariant.
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Figure 4.4: On the left, the figure shows the dependence of the eigenvalues of H =∑L
i=2 (|1〉〈1|i + |2〉〈2|i) − 1

2

∑L−1
i=1 ((|12〉+ |21〉) (〈12|+ 〈21|))i,i+1 on λ := λ1 = λ2

in the case L = 6. Only the lower part of the spectrum is plotted since we
are interested in the energy of the ground states and the first excited states. In
the middle we see how the eigenvalues of H + S =

∑L
i=1 |1〉〈1|i +

∑L
i=2 |2〉〈2|i −

1
2

∑L−1
i=1 ((|12〉+ |21〉) (〈12|+ 〈21|))i,i+1 depend on γ. On the right, the plot depicts

the behavior of the eigenvalues of H+S+W =
∑L

i=1 |1〉〈1|i+
∑L

i=2 |2〉〈2|i+β|2〉〈2|1−
1
2

∑L−1
i=1 ((|12〉+ |21〉) (〈12|+ 〈21|))i,i+1 depending on β. It shows that the ground

states split up and the energy of the new first excited state |20 . . . 0〉 increases lin-
early with β. The remaining ground state |0 . . . 0〉 remains constant at zero energy.
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Adding a Perturbation Acting on Both Particle Types

So far we have only changed n by one; in the following we strive to examine the situation when
the number n of particle types occurring in the ground states is altered by 2, i.e. from 2 to 0. In
order to do this, we make an ansatz containing a perturbation which acts on both particle types
on the left boundary:

V = δ (|1〉〈1| ⊗ 1L−1 + |2〉〈2| ⊗ 1L−1) , δ > 0 (4.43)

where 1L−1 acts on (L− 1) sites, and δ denotes the perturbation strength. The commutator of
H and V vanishes, which can be proven as follows:
h can be decomposed into a diagonal part and a non-diagonal part:

h = |01〉〈01|+ |02〉〈02|+ |11〉〈11|+ |22〉〈22|︸ ︷︷ ︸
=:hD

+
1

1 + α2

(
α|12〉 − e−iϑ21 |21〉

)(
α〈12| − eiϑ21〈21|

)
︸ ︷︷ ︸

=:hN

The diagonal part commutes with V since V is diagonal as well, thus

[h, V ] = [hD, V ]︸ ︷︷ ︸
=0

+[hN, V ].

The remaining commutator [hN, V ] also vanishes what can be seen by

hNV =

(
1

1 + α2

(
α|12〉 − e−iϑ21 |21〉

)(
α〈12| − eiϑ21〈21|

))
δ (|1〉〈1| ⊗ 1 + |2〉〈2| ⊗ 1)

= δ

(
α

1 + α2

(
α|12〉 − e−iϑ21 |21〉

)
〈12|+ 1

1 + α2

(
|21〉 − eiϑ21α|12〉

)
〈21|

)
= V hN = δ (|1〉〈1| ⊗ 1 + |2〉〈2| ⊗ 1)

(
1

1 + α2

(
α|12〉 − e−iϑ21 |21〉

)(
α〈12| − eiϑ21〈21|

))
= δ

(
α

1 + α2
|12〉

(
α〈12| − eiϑ21〈21|

)
+

1

1 + α2
|21〉

(
〈21| − e−iϑ21α〈12|

))
= δ

(
α

1 + α2

(
α|12〉 − e−iϑ21 |21〉

)
〈12|+ 1

1 + α2

(
|21〉 − eiϑ21α|12〉

)
〈21|

)
.

So [h, V ] = 0, yielding for the total Hamiltonian

[H,V ] =

L−1∑
x=1

[hx,x+1, V ]

= [h, δ (|1〉〈1| ⊗ 1 + |2〉〈2| ⊗ 1)]⊗ 1⊗ · · · ⊗ 1 +
L−1∑
x=2

[hx,x+1, V ]

=
L−1∑
x=2

[1⊗ · · · ⊗ 1⊗︸ ︷︷ ︸
x−1≥1 times

h⊗ 1⊗ · · ·1, V ] = 0,

which is also confirmed by the linear increase in δ as plotted in Fig. 4.5. The ground states
|0 . . . 0〉, |10 . . . 0〉, |20 . . . 0〉 and |120...0〉+e−iϑ21α|210...0〉√

1+α2
are already eigenstates of the perturbation

V . Therefore, the eigenvalues can be summed and since three of the former four ground states
get a positive energy, the four-dimensional vector space of the ground states becomes a one-
dimensional subspace spanned by |0 . . . 0〉. Due to the fact that a change only happens at the
boundary, the bulk of the system again remains unchanged. Thus, we obtain no phase transition.
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Figure 4.5: On the left, the eigenvalues of H less than or equal to 1.5 are shown as functions
of λ := λ1 = λ2. The plot on the right depicts the dependence of the eigenvalues
of H + V on δ. The linearly increasing curves indicate that [H,V ] = 0. For δ >
0, the only remaining ground state is |0 . . . 0〉; the states |10 . . . 0〉, |20 . . . 0〉, and
1
2 (|120 . . . 0〉) + e−iϑ21 |210 . . . 0〉 increase with δ. Therefore, the degeneracy of the
ground state is removed.

In this case, the Hamiltonian belonging to n = 0 and d = 3 where we set δ = 1 is given by

H ′ = H + V (4.44)

=
L∑
i=1

|1〉〈1|i +
L∑
i=1

|2〉〈2|i −
1

1 + α2

L−1∑
i=1

((
|12〉+ e−iϑ21α|21〉

)(
〈12|+ eiϑ21α〈21|

))
i,i+1

,

(4.45)

which, again, is not translation invariant.
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4.2.2 Taking the Limits One After The Other

In the last section, we investigated the behavior of the PVBS-model when taking the limits
λ1 → 0 and λ2 → 0 with constant ratio λ1

λ2
. In the following, we examine the case where the

limits λ1 → 0 and λ2 → 0 are taken consecutively, i.e. a particle of type 1 binds to the left edge
before particles of type two do.

Taking the limits this way, the Hamiltonian acting on two neighboring sites is given by:

lim
λ2→0

lim
λ1→0

h = lim
λ2→0

lim
λ1→0

[
1

1 + λ2
1

(
|01〉 − e−iϑ10λ1|10〉

)(
〈01| − eiϑ10λ1〈10|

)
+ |11〉〈11|

+
1

1 + λ2
2

(
|02〉 − e−iϑ20λ2|20〉

)(
〈02| − eiϑ20λ2〈20|

)
+ |22〉〈22|

+
1

λ2
1 + λ2

2

(
λ1|12〉 − e−iϑ21λ2|21〉

)(
λ1〈12| − eiϑ21λ2〈21|

)]
= lim

λ2→0

[
|01〉〈01|+ |11〉〈11|+ 1

1 + λ2
2

(
|02〉 − e−iϑ20λ2|20〉

)(
〈02| − eiϑ20λ2〈20|

)
+ |22〉〈22|+ |21〉〈21|

]
= |01〉〈01|+ |11〉〈11|+ |02〉〈02|+ |22〉〈22|+ |21〉〈21|
= 1⊗ |1〉〈1|+ 1⊗ |2〉〈2| − |12〉〈12|

Hence, the Hamiltonian

H =
L−1∑
i=1

hi,i+1 =
L−1∑
i=1

(|1〉〈1|i+1 + |2〉〈2|i+1 − |12〉〈12|i,i+1) (4.46)

acting on the entire chain is already diagonal if it is written in the product basis. The ground
state space is spanned by |0 . . . 0〉, |10 . . . 0〉, |20 . . . 0〉, and |120 . . . 0〉.

In order to verify that we obtain the same ground states by starting with ψ(B), we take the
limits of Eq. (4.27):

lim
λ2→0

lim
λ1→0

ψ(B) = lim
λ2→0

(
Tr(Bv0 . . . v0)|0 . . . 0〉+ Tr(Bv0 . . . v0v1)|10 . . . 0〉

+ Tr(Bv0 . . . v0v2)

L−1∑
n=1

(
λ2e

iϑ20
)n−1

|0. . . 020 . . .
↑

position n

0〉


+ Tr(Bv0 . . . v0v2v1)

(
L−1∑
m=1

(
λ2e

iϑ20
)m−1

|10 . . . 020 . . .
↑

position m+1

0〉

))
= Tr(Bv0 . . . v0)|0 . . . 0〉+ Tr(Bv0 . . . v0v1)|10 . . . 0〉
+ Tr(Bv0 . . . v0v2)|20 . . . 0〉+ Tr(Bv0 . . . v0v2v1)|120 . . . 0〉

This only holds if Tr(Bv0 . . . v0),Tr(Bv0 . . . v0v1),Tr(Bv0 . . . v0v2), and Tr(Bv0 . . . v0v2v1) do not
vanish in the limit. Since we are explicitly able to provide an appropriate B (cf. Eq. (4.32)), we
know that a B exists such that the traces do not vanish. As this B allows us to obtain the vectors
|0 . . . 0〉, |10 . . . 0〉, |20 . . . 0〉, and |120 . . . 0〉 separately, the ground state space is four-dimensional.
These states are equal to those we found as ground states of the Hamiltonian (4.46) directly.

Since hi,i+1 is diagonal, it is obvious that [hi,i+1, hj,j+1] = 0 ∀i, j = 1, 2, . . . , L−1. Therefore,
after taking the limits λ1 → 0 and λ2 → 0, the eigenvalues of H become integers as can be seen
in Fig. 4.6.

25



0.00.20.40.60.81.0
λ2

0.0

0.5

1.0

1.5

2.0

2.5

ei
ge

nv
al

ue
s 

of
 H

Dependence of the eigenvalues on λ2

0.00.20.40.60.81.0
λ1

0.0

0.5

1.0

1.5

2.0

2.5
ei

ge
nv

al
ue

s 
of

 H
Dependence of the eigenvalues on λ1

Figure 4.6: The plot on the left depicts the eigenvalues ofH dependent on λ1 where λ2 = 1− 1
1000 ,

exemplarily in the case of chain length L = 6. Here, only the eigenvalues which are
less then or equal to 2.5 are shown for clarity. On the right, the dependence of the
eigenvalues of H on λ2 where λ1 = 0 is shown. For λ2 → 0, the eigenvalues become
integers; this indicates that for λ1 → 0 and then λ2 → 0 the hi,i+1 commute with
each other.

Adding a Perturbation Acting on Both Particle Types

Now, let us change n from 2 to 0 by adding the perturbation V acting on the first site and both
types of particles (cf. Eq. (4.43)) to the Hamiltonian:

H ′ = H + V =

L−1∑
i=1

(|1〉〈1|i+1 + |2〉〈2|i+1 − |12〉〈12|i,i+1) + δ (|1〉〈1| ⊗ 1 + |2〉〈2| ⊗ 1) (4.47)

δ→1−→
L∑
i=1

(|1〉〈1|i + |2〉〈2|i)−
L−1∑
i=1

|12〉〈12|i,i+1 (4.48)

The states |10 . . . 0〉, |20 . . . 0〉 and |120 . . . 0〉 are eigenstates of V with eigenvalue δ. Hence, their
energies increase with δ, and they do not belong to the space of ground states anymore which
means that the gap vanished. The only ground state left is |0 . . . 0〉 and the Hamiltonian belongs
to n = 0 although it does not have the desired, translation invariant form (4.1).
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Figure 4.7: The figure shows (exemplarily for L = 6) the eigenvalues of H dependent on λ1

for λ2 = 1 on the left, and dependent on λ2 for λ1 = 0 in the middle. The plot
on the right depicts the dependence of the eigenvalues of H + V on δ. The linear
increase indicates that [H,V ] = 0. What cannot be seen explicitly is that the states
|10 . . . 0〉, |20 . . . 0〉 and |120 . . . 0〉 increase with δ, so the remaining ground state is
only |0 . . . 0〉.

Adding a Perturbation Acting Only on One Particle Type

By taking the limit λ1 → 0 before the limit λ2 → 0, particle type 1 is given a special role. And
though this was not important yet, it becomes relevant for the change n = 2 7→ n = 1 because it
makes a difference whether the perturbation on the first site acts on particle type 1 or particle
type 2.

To see this, we consider the perturbation acting on particle type 1:

S1 := γ1|1〉〈1| ⊗ 1, γ1 > 0. (4.49)

The ground states of the Hamiltonian

H ′ = H + S1 =
L−1∑
i=1

(|1〉〈1|i+1 + |2〉〈2|i+1 − |12〉〈12|i,i+1) + γ1|1〉〈1| ⊗ 1 (4.50)

are given by |0 . . . 0〉 and |20 . . . 0〉 such that the Hamiltonian belongs to n = 1. For γ1 = 1, the
Hamiltonian can even be written in the form

H ′ =
L∑
i=1

|1〉〈1|i +
L−1∑
i=1

(|2〉〈2|i+1 − |12〉〈12|i,i+1) . (4.51)
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In order to change the number of particle types occurring in the ground states from n = 1 to
n = 0, a perturbation acting on particle type 2 is added to the first site:

S2 := γ2|2〉〈2| ⊗ 1, γ2 > 0 (4.52)

H ′′ := H + S1 + S2 =
L∑
i=1

|1〉〈1|i +
L−1∑
i=1

(|2〉〈2|i+1 − |12〉〈12|i,i+1) + γ2|2〉〈2| ⊗ 1 (4.53)

This Hamiltonian belongs to n = 0 since the only ground state is given by |0 . . . 0〉. For γ2 = 1,
we obtain the same Hamiltonian (4.48) as in the case n = 2 7→ n = 0.

However, if the perturbation acting on particle type 2 (Eq. (4.52)) is added first, we obtain
the following Hamiltonian

H ′ = H + S2 =
L−1∑
i=1

(|1〉〈1|i+1 + |2〉〈2|i+1 − |12〉〈12|i,i+1) + γ2|2〉〈2| ⊗ 1 (4.54)

with ground states |0 . . . 0〉, |10 . . . 0〉 and |120 . . . 0〉. That is interesting since, in this case, the
degeneracy of the ground state is three and not given by 2n where n ∈ N. Thus, the Hamiltonian
H ′ given in Eq. (4.54) does not fit to the scheme of PVBS.

4.2.3 Manipulations on the Entire Chain

The Hamiltonians we obtained in order to change n read for α = const.,

H ′n=2→n=1 =

L∑
i=1

|1〉〈1|i +

L∑
i=2

|2〉〈2|i −
1

1 + α2

L−1∑
i=1

((
|12〉+ e−iϑ21α|21〉

)(
〈12|+ eiϑ21α〈21|

))
i,i+1

(4.55)

H ′n=2→n=0 =
L∑
i=1

|1〉〈1|i +
L∑
i=1

|2〉〈2|i −
1

1 + α2

L−1∑
i=1

((
|12〉+ e−iϑ21α|21〉

)(
〈12|+ eiϑ21α〈21|

))
i,i+1

,

(4.56)

and those for λ1 → 0 before λ2 → 0, read

H ′n=2→n=0 =
L∑
i=1

|1〉〈1|i +
L∑
i=1

|2〉〈2|i −
L−1∑
i=1

|12〉〈12|i,i+1 (4.57)

H ′n=2→n=1 =

L∑
i=1

|1〉〈1|i +

L−1∑
i=1

|2〉〈2|i −
L−1∑
i=1

|12〉〈12|i,i+1. (4.58)

They all have in common that there are still terms of a two-particle interaction. Now, we try to
artificially eliminate them.

This can be achieved by adding terms like

wi,i+1 =
(ε

2

(
|12〉+ e−iϑ21α|21〉

)(
〈12|+ eiϑ21α〈21|

))
i,i+1

, i = 1, . . . , L− 1 (4.59)

in the cases where α = const., and taking the limit ε → 1. In the case n = 2 7→ n = 0 and
n = 2 7→ n = 1, respectively, this yields the Hamiltonian

H ′′n=2→n=0 =
L∑
i=1

(|1〉〈1|i + |2〉〈2|i) (4.60)
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and

H ′′n=2→n=1 =
L∑
i=1

|1〉〈1|i +
L∑
i=2

|2〉〈2|i. (4.61)

These are the forms we desired for the Hamiltonian if d > n + 1. As can be seen in Fig. (4.8),
the added terms leave the gap open so the ground states remain the same, and therefore the
system does not undergo a phase transition.
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Figure 4.8: On the left, a part of the spectrum of H vs. λ := λ1 = λ2 for L = 6 is shown.
The linear dependence of the eigenvalues of H + V on the perturbation strength δ
is depicted in the middle. On the right, we see how the eigenvalues of H + V +∑L−1

i=1 wi,i+1 depend on ε. For ε→ 1, all eigenvalues become non-negative integers.

In the case where λ1 → 0 before λ2 → 0, the terms of a two-particle interaction still remain
on the entire chain, but they are not entangled like in the case of constant ratio α. So we can
obtain the Hamiltonian (4.60) or (4.61) by adding a two-particle interaction like

w′i,i+1 = ρ|12〉〈12|i,i+1, i = 1, . . . , L− 1 (4.62)

and taking the limit ρ→ 1.
Since the operators wi,i+1 and w′i,i+1 represent two-particle interactions, it might be difficult

to realize them in an experiment. Moreover, they have to be provided on the entire chain. Thus,
for n = 2 it is not possible to obtain a Hamiltonian which has the same effect on every site,
except the first one in the case n = 2 7→ n = 1, only by modifying the boundary. However,
in chapter 6, we will develop a new modified form of PVBS which is capable of avoiding this
problem.
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4.3 Moving Particles from One Boundary to the Other

Coming back to the case of dimension d = 2 and n = 1, we now try to examine whether it is
possible to move the particle from one edge to the other continuously. For that, we construct a
path by superposing the Hamiltonian h as a function of λ or λ−1, respectively, and using θ ∈ [0, 1]
as an interpolation parameter. For readability, ϑ01 is fixed to zero. In order to send the particle
to the edges, we take the limit λ→ 0:

lim
λ→0

[
θh(λ) + (1− θ)h(λ−1)

]
= lim

λ→0

[ 1

1 + λ2

(
λ2|01〉〈01| − λ|01〉〈10| − λ|10〉〈01|+ |10〉〈10|

)
+ |11〉〈11|+ θ

1 + λ2

(
(1− λ2)|01〉〈01|+ (λ2 − 1)|10〉〈10|

) ]
= |11〉〈11|+ |10〉〈10|+ θ (|01〉〈01| − |10〉〈10|)
= (1− θ)|1〉〈1| ⊗ 1 + θ1⊗ |1〉〈1| =: hθi,i+1
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Figure 4.9: The plot depicts the eigenvalues of Hθ
C :=

∑L−1
i=1 h

θ
i,i+1 = (1 − θ)|1〉〈1|1 +∑L−1

i=2 |1〉〈1|i + θ|1〉〈1|L dependent on θ for a chain of length L = 5. For θ = 0
or θ = 1, the ground state energy is degenerate. In the case θ = 0, the ground state
space is spanned by |0 . . . 0〉 and |0 . . . 01〉, whereas in the case θ = 1, it is generated
by |0 . . . 0〉 and |10 . . . 0〉. For θ ∈ (0, 1), the only ground state is |0 . . . 0〉.

On a chain of length L, the Hamiltonian is then given by

Hθ
C :=

L−1∑
i=1

hθi,i+1 = (1− θ)|1〉〈1|1 +
L−1∑
i=2

|1〉〈1|i + θ|1〉〈1|L.

Interpolating θ from 0 to 1, we see that in the cases θ = 0 or θ = 1 the particle binds to the
right or to the left edge. As can also be seen in Fig. 4.9, for θ ∈ (0, 1) the degeneracy vanishes,
and the particle on the chain does not belong to the ground state (the only ground state is
|0 . . . 0〉). Moreover, the important change only happens at the boundaries. For θ ∈ (0, 1), this
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Hamiltonian also belongs to the case n = 0, d = 2 since there are d = 2 possibilities for each
site (particle or vacuum), but in the ground state only the vacuum occurs, i.e. n = 0 particles
appear in the ground state space.

Using a ring of length L instead of the chain, we obtain the Hamiltonian

Hθ
R =

L∑
i=1

hθi,i+1 =
L∑
i=1

|1〉〈1|i,

which has no edges at all, meaning that all sites are equivalent. Therefore, the only ground state
is given by |0 . . . 0〉, independent of θ.

So, in the case of periodic boundary conditions, the Hamiltonian is constant and there is only
one phase for all θ. Using open boundary conditions instead, we can move the particle from one
edge to the other. Nevertheless, since the system only changes at the boundaries, we may not
call it a phase transition.

Now we strive to investigate whether we obtain an analogous Hamiltonian in the case d =
3, n = 2. For that, we superpose the Hamiltonian h for (λ1, λ2) and the Hamiltonian h for
(λ−1

1 , λ−1
2 ), and take the limits λ1 → 0 and λ2 → 0:

lim
λ1→0
λ2→0

[
θh(λ1, λ2) + (1− θ)h(λ−1

1 , λ−1
2 )
]

= lim
λ1→0
λ2→0

[
|11〉〈11|+ |22〉〈22|+ θ

(
1

1 + λ2
1

(|01〉 − λ1|10〉) (〈01| − λ1〈10|)

+
1

1 + λ2
2

(|02〉 − λ2|20〉) (〈02| − λ2〈20|) +
1

1 + α2
(α|12〉 − |21〉) (α〈12| − 〈21|)

)

+ (1− θ)

(
1

1 + λ2
1

(λ1|01〉 − |10〉) (λ1〈01| − 〈10|)

+
1

1 + λ2
2

(λ2|02〉 − |20〉) (λ2〈02| − 〈20|) +
1

1 + α2
(|12〉 − α|21〉) (〈12| − α〈21|)

)]
(4.63)

= θ

(
|11〉〈11|+ |22〉〈22|+ |01〉〈01|+ |02〉〈02|+ 1

1 + α2
(α|12〉 − |21〉) (α|12〉 − |21〉)

)
+ (1− θ)

(
|11〉〈11|+ |22〉〈22|+ |10〉〈10|+ |20〉〈20|+ 1

1 + α2
(|12〉 − α|21〉) (〈12| − α〈21|)

)
(4.64)

For α = 1, Eq. (4.64) can be simplified, but it is not of the same form as in the case d = 2, since
there is still a two-particle interaction:

lim
λ1→0
λ2→0

[
θh(λ1, λ2) + (1− θ)h(λ−1

1 , λ−2
2 )
]

= θ (1⊗ |1〉〈1|+ 1⊗ |2〉〈2|) + (1− θ) (|1〉〈1| ⊗ 1 + |2〉〈2| ⊗ 1)− 1

2
(|12〉+ |21〉) (〈12|+ 〈21|)

Nevertheless, putting this Hamiltonian on a chain of length L yields

HC := (1− θ) (|1〉〈1|1 + |2〉〈2|1) +
L−1∑
i=2

(|1〉〈1|i + |2〉〈2|i) + θ (|1〉〈1|L + |2〉〈2|L)

− 1

2

L−1∑
i=1

((|12〉+ |21〉) (〈12|+ |21〉))i,i+1 ,
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which is for θ = 0 or θ = 1 the Hamiltonian describing the particles linked to the edges, and for
θ ∈ (0, 1) the Hamiltonian belonging to n = 0 and d = 3. Hence, it is indeed possible to move
the particles from one edge to the other by scaling θ.

In the case of a ring, all sites become equivalent, and thus the problem again provides trans-
lational invariance and resembles periodic boundary conditions as in the case d = 2:

HR :=
L∑
i=1

(
|1〉〈1|i + |2〉〈2|i −

1

2
((|12〉+ |21〉) (〈12|+ 〈21|))i,i+1

)
,

where site L+ 1 is equal to site 1.

All in all, each of the manipulations under consideration was capable of changing the ground
state degeneracy without actually causing a phase transition. This fact exhibits the necessity to
aim for a finer definition of quantum phase transitions in the case of open boundary conditions
for one-dimensional gapped phases.
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5 Renormalization Group Transformation

The aim we pursue in this chapter is to understand the long-distance information of PVBS
and what λ → 0 means in this context. For this, we make use of the Renormalization Group
(RG) transformation, explained in section 2.1.1. We examine whether the system is stable under
blocking, i.e. grouping adjacent sites into effective new sites. If it is not, we look for physical
reasons which may cause these instabilities.

5.1 One Particle Type

First, we examine the case of one particle type that is n = 1 and dimension d = 2 and see
whether the system is stable under blocking sites. Squaring the transfer matrix defined by

T =
∑
i

vi ⊗ v̄i, (5.1)

we obtain, by using the commutation relations (3.1) and (3.2), that T 2 is of the same form as T :

T 2 = (v0 ⊗ v̄0 + v1 ⊗ v̄1) (v0 ⊗ v̄0 + v1 ⊗ v̄1)

= v2
0 ⊗ v̄2

0 + v0v1 ⊗ v̄0v̄1 + v1v0 ⊗ v̄1v̄0︸ ︷︷ ︸
eiϑ10λ1v0v1⊗e−iϑ10 λ̄1v̄0v̄1

+ v1v1︸︷︷︸
0

⊗v̄1v̄1

= v2
0 ⊗ v̄2

0 +

(√
1 + λ2

1v0v1

)
⊗
(√

1 + λ2
1v̄0v̄1

)
Using the definitions

v′0 := v2
0, v′1 :=

√
1 + λ1v0v1, (5.2)

T 2 can be recast as

T 2 = v′0 ⊗ v̄′0 + v′1 ⊗ v̄′1,

consisting of two terms. That is reasonable as squaring the transfer matrix physically corresponds
to grouping two adjacent sites. So two neighboring sites become a new site, and since there are
two possibilities for such a blocked site, the transfer matrix squared consists of two summands.
These two possibilities for a blocked site are: Either there is one particle on one of the former
two sites, or there is no particle on one of the former two sites. Investigating whether the new
v′i , i ∈ {0, 1} satisfy the commutation relations (3.1) and (3.2)

v′1v
′
0 =

√
1 + λ2

1v0 v1v0v0︸ ︷︷ ︸
eiϑ10λ1v0v1v0

= e2iϑ10λ2
1 v0v0︸︷︷︸

v′0

√
1 + λ2

1v0v1︸ ︷︷ ︸
v′1

!
= eiϑ

′
10λ′1v

′
0v
′
1 (5.3)

v′1v
′
1 =

(
1 + λ2

1

)
v0v1v0v1 =

(
1 + λ2

1

)
eiϑ10λ1v0v0 v1v1︸︷︷︸

0

= 0 (5.4)

leads to the conditions for the new parameters

ϑ′10 = 2ϑ10 , λ′1 = λ2
1. (5.5)
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This system, consisting of a chain with one particle type, is stable under blocking.
Applying the commutation relations (5.3) and (5.4) to T p which corresponds to grouping p

sites with 2 ≤ p ∈ N results in

T p = (v0 ⊗ v̄0 + v1 ⊗ v̄1)p = vp0 ⊗ v̄
p
0 +

p−1∑
n=0

λ2n
1 vp−1

0 v1 ⊗ v̄p−1
0 v̄1.

Here, the sum can be reduced to two terms as well, leading to new v
(p)
i s for the p-times blocked

sites:

v
(p)
0 := vp0 v

(p)
1 :=

√√√√p−1∑
n=0

λ2n
1 vp−1

0 v1

These v(p)
i also satisfy the commutation relations

v
(p)
1 v

(p)
1 =

p−1∑
n=0

λ2n
1 vp−1

0 v1v
p−1
0 v1 =

p−1∑
n=0

λ2n
1 vp−1

0 ei(p−1)ϑ10λp−1
1 vp−1

0 v1v1︸︷︷︸
0

= 0

v
(p)
1 v

(p)
0 =

√√√√p−1∑
n=0

λ2n
1 vp−1

0 v1v
p
0 =

√√√√p−1∑
n=0

λ2n
1 vp−1

0 eipϑ10λp1v
p
0v1

= eipϑ10λp1v
(p)
0 v

(p)
1

!
= eiϑ

(p)
10 λ

(p)
1 v

(p)
0 v

(p)
1

if ϑ(p)
10 and λ(p)

1 fulfill the conditions

ϑ
(p)
10 = pϑ10 , λ

(p)
1 = λp1. (5.6)

The relation (5.6) for λ(p)
1 means that if the number of grouped sites p → ∞, λ(p)

1 → 0 for
λ1 < 1 or λ(p)

1 →∞ for λ1 > 1. We can comprehend what physically happens as follows: For a
chain of sufficient length, the particle is located near the boundaries, even if the corresponding
λ1 is close to one. By increasing the value of p, the sites grow ever larger such that the particle
gets eventually placed on one of the boundary sites since the probability for the particle to
stay far away from the edges decreases rapidly (cf. Eq. (4.6)). Therefore, it is reasonable that
the remaining information only consists of the preferred side being either left (λ1 < 1) or right
(λ1 > 1). Since the information how strong the particle binds to the edges seems to be a
short-distance information, it vanishes in this limit. So the long-distance information is which
boundary a particle binds to. Considering λ1 < 1, blocking leads to the limit we investigated in
chapter 4.

However, if the chain length L is finite, the actual limit stops at p = L where the entire chain
is only one site. In that case, the only information left is whether a particle occurs in the ground
state or not which makes it effectively the long-distance information.
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5.2 Two Particle Types

Let us now have a look at the case of two particle types, and investigate which effects can be
observed by blocking. Squaring T and applying the commutation relations (3.1) and (3.2) yields

T 2 = (v0 ⊗ v̄0 + v1 ⊗ v̄1 + v2 ⊗ v̄2)2 (5.7)

= v2
0 ⊗ v̄2

0 + v0v1 ⊗ v̄0v̄1 + v1v0 ⊗ v̄1v̄0︸ ︷︷ ︸
λ21v0v1⊗v̄0v̄1

+v0v2 ⊗ v̄0v̄2 + v2v0 ⊗ v̄2v̄0︸ ︷︷ ︸
λ22v0v2⊗v̄0v̄2

+v1v2 ⊗ v̄1v̄2 + v2v1 ⊗ v̄2v̄1︸ ︷︷ ︸
λ22λ
−2
1 v1v2⊗v̄1v̄2

(5.8)

= v2
0 ⊗ v̄2

0 +
(
λ2

1 + 1
)
v0v1 ⊗ v̄0v̄1 +

(
λ2

2 + 1
)
v0v2 ⊗ v̄0v̄2 +

(
λ2

2λ
−2
1 + 1

)
v1v2 ⊗ v̄1v̄2, (5.9)

which is a transfer matrix consisting of four terms, instead of three terms that would have
been the structure of T . This is, as previously mentioned in section 2.1.1, because of the four
possibilities of states that a blocked site can attain: Grouping two adjacent sites yields for a new
site to be occupied by a particle of type 1, by a particle of type 2, by particles of both types
or the vacuum. A calculation of the Kraus rank of T 2 yields that T 2 indeed has this structure
of four terms. Hence, it is not just physically reasonable but also mathematically consistent.
Therefore, the system of a chain with two particle types is not stable under blocking the sites in
the first step. Nevertheless, we can also define new matrices v′i, i ∈ {0, 1, 2, (12)} where (12)
denotes the new case of two particles of different types being on a site:

v′0 := v2
0, v′1 :=

√
1 + λ2

1 v0v1,

v′2 :=
√

1 + λ2
2 v0v2, v′(12) :=

√
1 + λ−2

1 λ2
2 v1v2.

This will prove useful when developing our new model later on.
We find the following commutation relations that slightly differ from those mentioned in Eq.

(3.1) and (3.2) for the new v′i:

v′1v
′
0 =

√
1 + λ2

1 v0v1v0v0 = e2iϑ10λ2
1

√
1 + λ2

1 v0v0v0v1 = e2iϑ10λ2
1v
′
0v
′
1

!
= eiϑ

′
10λ′1v

′
0v
′
1 (5.10)

v′2v
′
0 =

√
1 + λ2

2 v0v2v0v0 = e2iϑ20λ2
2

√
1 + λ2

2 v0v0v0v2 = e2iϑ20λ2
2v
′
0v
′
2

!
= eiϑ

′
20λ′2v

′
0v
′
2 (5.11)

v′1v
′
2 =

√
1 + λ2

1

√
1 + λ2

2 v0v1v0v2 = ei(ϑ10+ϑ12−ϑ20)λ2
1λ
−2
2 v′2v

′
1

!
= eiϑ

′
12λ′1λ

′−1
2 v′2v

′
1 (5.12)

v′(12)v
′
0 =

√
1 + λ−2

1 λ2
2 v1v2v0v0 = e2i(ϑ10+ϑ20)λ2

1λ
2
2v
′
0v
′
(12)

!
= e

iϑ′
(12)0λ(12)v

′
0v
′
(12) (5.13)

v′1v
′
(12) = v′(12)v

′
1 = v′2v

′
(12) = v′(12)v

′
2 = v′1v

′
1 = v′2v

′
2 = v′(12)v

′
(12) = 0 (5.14)

The corresponding conditions for the new λ′i and ϑ
′
ij are

ϑ′10 = 2ϑ10, λ′1 = λ2
1 (5.15)

ϑ′20 = 2ϑ20, λ′2 = λ2
2 (5.16)

ϑ′12 = ϑ10 + ϑ12 − ϑ20, λ′1λ
′−1
2 = λ2

1λ
−2
2 (5.17)

ϑ′(12)0 = 2(ϑ10 + ϑ20), λ(12) = λ2
1λ

2
2. (5.18)

Furthermore, there exists an additional commutation relation, which has no analogue among the
commutation relations (3.1) and (3.2):

v′(12)v
′
0 =

√
1 + λ−2

1 λ2
2 v1v2v0v0 =

√
1 + λ−2

1 λ2
2 e

2iϑ20λ2
2e
iϑ10λ1v0v1v0v2 (5.19)

=
λ2

2

√
λ2

2 + λ2
1√

1 + λ2
1

√
1 + λ2

2

ei(ϑ10+2ϑ20)v′1v
′
2 (5.20)

Taking for granted that these commutation relations are obeyed, we will construct a modified
form of PVBS in the next chapter.
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6 Blocked PVBS

Investigating the case of two particle types, we learned in section 5.2 that the system showed
unstable behavior under blocking. This is not surprising since in the case n = 2, T 2 (Eq. (5.9))
consists of four terms as there are four possibilities on two blocked sites: a particle of type 1, a
particle of type 2, two particles of both type 1 and type 2, or no particle at all. Due to this, we
aim to extend the model of PVBS such that there are four levels per site: |0〉, |1〉, |2〉, |(12)〉, where
(12) denotes the new possibility of both particle types occurring on the same site. Moreover,
v′(12) is closely related to the product of v′1 and v′2 (cf. Eq. (5.20)) since, depending on how the
sites are blocked, two neighboring particles can be on the same site or on two different sites after
blocking (see Fig. 6.1). Nevertheless, both possibilities appear in the same superposition state
as they did before the blocking, what we have already seen in Eq. (4.27).

1 2

21

Figure 6.1: The upper image shows two adjacent particles being on the same site after blocking.
In contrast, in the lower image, they become located at different but adjacent sites.

Since blocking the sites does not lead to the same structure of the transfer matrix and the
commutation relations, we establish a modified form of PVBS, called blocked PVBS, and inves-
tigate their properties. The commutation relations that follow from blocking are now assumed
as given:

v′jv
′
0 = eiϑ

′
j0λ′jv

′
0v
′
j , j = 1, 2 (6.1)

v′(12)v
′
0 = e

iϑ′
(12)0λ′(12)v

′
0v
′
(12), where λ′(12) = λ′1λ

′
2 (6.2)

v′1v
′
2 = eiϑ

′
12λ′1λ

′
2
−1
v′2v
′
1 (6.3)

v′(12)v
′
0 = λ′2µ

′ei(ϑ10+2ϑ20)v′1v
′
2 where µ′ =

√
λ′1 + λ′2√

1 + λ′1
√

1 + λ′2
(6.4)

v′jv
′
j = 0, j = 1, 2, (12) (6.5)

v′jv
′
(12) = v′(12)v

′
j = 0, j = 1, 2 (6.6)
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6.1 Renormalization Group Transformation

In this section, we check on whether blocked PVBS can be blocked again and still satisfy the new
commutation relations, i.e. whether the modified model is stable. Blocking the blocked PVBS
and applying the commutation relations (6.1) through (6.6), we obtain the transfer matrix

T ′
2

=
(
v′0 ⊗ v̄′0 + v′1 ⊗ v̄′1 + v′2 ⊗ v̄′2 + v′(12) ⊗ v̄

′
(12)

)2

= v′0
2 ⊗ v̄′02 +

(
1 + λ′1

2
)
v′0v
′
1 ⊗ v̄′0v̄′1 +

(
1 + λ′2

2
)
v′0v
′
2 ⊗ v̄′0v̄′2

+

(
1 + λ′1

−2
λ′2

2
+
λ′2

2(λ′1 + λ′2)(1 + λ′1
2λ′2

2)

(1 + λ′1)(1 + λ′2)

)
v′1v
′
2 ⊗ v̄′1v̄′2.

As the transfer matrix can be written as a sum of four summands, the structure is retained.
Defining new v′′i s as

v′′0 = v′0
2, v′′1 =

√
1 + λ′1

2 v′0v
′
1

v′′2 =
√

1 + λ′2
2 v′0v

′
2, v′′(12) =

√
1 + λ′1

−2λ′2
2 +

λ′2
2(λ′1 + λ′2)(1 + λ′1

2λ′2
2)

(1 + λ′1)(1 + λ′2)︸ ︷︷ ︸
=:g(λ′1,λ

′
2)

v′1v
′
2

and using the commutation relations (6.1) through (6.6) for the v′i, the commutation relations
for the v′′i

v′′1v
′′
0 = e2iϑ′10λ′1

2v′′0v
′′
1

!
= eiϑ

′′
10λ′′1v

′′
0v
′′
1

v′′2v
′′
0 = e2iϑ′20λ′2

2v′′0v
′′
2

!
= eiϑ

′′
20λ′′2v

′′
0v
′′
2

v′′1v
′′
2 = ei(ϑ

′
10+ϑ′12−ϑ′20)λ′1

2λ′2
−2v′′2v

′′
1

!
= eiϑ

′′
12λ′′1λ

′′
2
−1v′′2v

′′
1

v′′(12)v
′′
0 = e2i(ϑ′10+ϑ′20)λ′1

2λ′2
2v′′0v

′′
(12)

!
= e

iϑ′′
(12)0λ′′(12)v

′′
0v
′′
(12)

v′′(12)v
′′
0 = ei(ϑ

′
10+2ϑ′20)λ′1λ

′
2
2 g(λ′1, λ

′
2)√

1 + λ′1
2
√

1 + λ′2
2
v′′1v
′′
2

= ei(ϑ
′
10+2ϑ′20)λ′′2

√
λ′′1 + λ′′2 + λ′′1λ

′′
2µ
′2 (1 + λ′′1λ

′′
2)√

1 + λ′′1
√

1 + λ′′2︸ ︷︷ ︸
=:µ′′

v′′1v
′′
2

v′′1v
′′
(12) = v′′(12)v

′′
1 = v′′2v

′′
(12) = v′′(12)v

′′
2 = v′′1v

′′
1 = v′′2v

′′
2 = v′′(12)v

′′
(12) = 0

can be verified under the following conditions:

ϑ′′10 = 2ϑ′10 λ′′1 = λ′1
2

ϑ′′20 = 2ϑ′20 λ′′2 = λ′2
2

ϑ′′12 = ϑ′10 + ϑ′12 − ϑ′20 λ′′1λ
′′
2
−1 = λ′1

2λ′2
−2

ϑ′′(12)0 = 2(ϑ′10 + ϑ′20) λ′′(12) = λ′1
2λ′2

2

Since the commutation relations are satisfied, the system is stable under blocking. Therefore,
we can now proceed to study the ground states.
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6.2 Investigation of the Ground States

Let us now examine what ground states are provided by the v′i, i ∈ {0, 1, 2, (12)}. Making use of
the commutation relations (6.1) through (6.6) we found by blocking the sites, the ground states
on a chain of length L = 2 can be written as follows if we require the ground states again to be
given by ψ(B):

ψ(B) =
∑

i1,i2∈{0,1,2,(12)}

Tr(Bv′i1v
′
i2)|i2i1〉 (6.7)

= Tr(Bv′0v
′
0)|00〉+ Tr(Bv′0v

′
1)
(
|10〉+ eiϑ

′
10λ′1|01〉

)
+ Tr(Bv′0v

′
2)
(
|20〉+ eiϑ

′
20λ′2|02〉

)
+ Tr(Bv′0v

′
(12))

(
|(12)0〉+ e

iϑ′
(12)0λ′1λ

′
2|0(12)〉+ µ′

−1
e−i(ϑ10+2ϑ20)e

iϑ′
(12)0λ′1|21〉

+ µ′
−1
λ′1α

−1eiϑ
′
12e−i(ϑ10+2ϑ20)e

iϑ′
(12)0 |12〉

)
(6.8)

The ground state space is four-dimensional what can be proven as follows:
Choose B = B0v

′
1v
′
2, where B0 ∈ Mat(C)4×4 has to be selected such that Tr(B0v

′
1v
′
2v
′
0v
′
0) 6= 0.

Since B consists of v′1 and v′2, Tr(B0v
′
1v
′
2v
′
0v
′
1) = Tr(B0v

′
1v
′
2v
′
0v
′
2) = Tr(B0v

′
1v
′
2v
′
0v
′
12) = 0 ∀B0 ∈

Mat(C)4×4 because of Eq. (6.5) and (6.6). Therefore, |00〉 is linearly independent of the other
vectors. Then there is the possibility of choosing B = B1v

′
2, where B1 ∈ Mat(C)4×4 must satisfy

Tr(B1v
′
2v
′
0v
′
1) 6= 0. Applying Eq. (6.5) and (6.6) yields Tr(B1v

′
2v
′
0v
′
2) = Tr(B1v

′
2v
′
0v
′
12) = 0. If

Tr(B1v
′
2v
′
0v
′
0) 6= 0, we can subtract |00〉 since we know that it is possible to create |00〉 linearly

independently. Hence, |10〉 + eiϑ
′
10λ′1|01〉 can also be chosen linearly independent. But B can

be taken such that B = B2v
′
1, where B2 ∈ Mat(C)4×4 and Tr(B2v

′
1v
′
0v
′
2) 6= 0. This leads to

Tr(B2v
′
1v
′
0v
′
1) = Tr(B2v

′
1v
′
0v
′
12) = 0 by using Eq. (6.5) and (6.6). Again, if Tr(B2v

′
1v
′
0v
′
0) 6= 0, |00〉

can be subtracted since |00〉 is linearly independent of the other vectors. Thus, |20〉+eiϑ
′
20λ′2|02〉

can be chosen linearly independent. So, the fourth vector is linearly independent of the other
three vectors, and the ground state space is four-dimensional.

6.3 Construction of the Parent Hamiltonian

Now, we construct the parent Hamiltonian of the ground states that we have just calculated.
The parent Hamiltonian is given by the projector onto the orthogonal complement of the ground
state space according to section 2.2:

h = Πψ⊥ = 1−Πψ(B), (6.9)

where Πψ(B) is the projector onto the ground state space. An orthonormal basis of the ground
state space which was calculated in Eq. (6.8) is given by

|ϕ1〉 := |00〉 (6.10)

|ϕ2〉 :=
1√

1 + λ′1
2

(
|10〉+ eiϑ

′
10λ′1|01〉

)
(6.11)

|ϕ3〉 :=
1√

1 + λ′2
2

(
|20〉+ eiϑ

′
20λ′2|02〉

)
(6.12)

|ϕ4〉 :=
1√

1 + λ′1
2λ′2

2 + µ′−2λ′1
2 + µ′−2λ′2

2

(
|(12)0〉+ e

iϑ′
(12)0λ′1λ

′
2|0(12)〉

+ µ′
−1
e−i(ϑ10+2ϑ20)e

iϑ′
(12)0λ′1

(
|21〉+ α−1eiϑ

′
12 |12〉

))
. (6.13)
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Therefore, the Hamiltonian can be written as

h = 1− |ϕ1〉〈ϕ1| − |ϕ2〉〈ϕ2| − |ϕ3〉〈ϕ3| − |ϕ4〉〈ϕ4| (6.14)
= |(12)1〉〈(12)1|+ |1(12)〉〈1(12)|+ |(12)2〉〈(12)2|+ |2(12)〉〈2(12)|+ |11〉〈11|+ |22〉〈22|

+ |01〉〈01|+ |10〉〈10| − 1

1 + λ′1
2

(
|10〉+ eiϑ

′
10λ′1|01〉

)(
〈10|+ e−iϑ

′
10λ′1〈10|

)
+ |02〉〈02|+ |20〉〈20| − 1

1 + λ′2
2

(
|20〉+ eiϑ

′
20λ′2|02〉

)(
〈20|+ e−iϑ

′
20λ′2〈20|

)
+ |(12)(12)〉〈(12)(12)|+ |(12)0〉〈(12)0|+ |0(12)〉〈0(12)|+ |12〉〈12|+ |21〉〈21| − |ϕ4〉〈ϕ4|

(6.15)

= |(12)1〉〈(12)1|+ |1(12)〉〈1(12)|+ |(12)2〉〈(12)2|+ |2(12)〉〈2(12)|+ |11〉〈11|+ |22〉〈22|

+
1

1 + λ′1
2

(
|01〉 − e−iϑ′10λ′1|10〉

)(
〈01| − eiϑ′10λ′1〈10|

)
+

1

1 + λ′2
2

(
|02〉 − e−iϑ′20λ′2|20〉

)(
〈02| − eiϑ′20λ′2〈20|

)
+ |(12)(12)〉〈(12)(12)|

+ |(12)0〉〈(12)0|+ |0(12)〉〈0(12)|+ |12〉〈12|+ |21〉〈21| − |ϕ4〉〈ϕ4|︸ ︷︷ ︸
=:A

(6.16)

Since |(12)0〉〈(12)0|+|0(12)〉〈0(12)|+|12〉〈12|+|21〉〈21| is the unity operator on the subspace S :=
span{ |12〉, |21〉, |(12)0〉, |0(12)〉}, A defined in Eq. (6.16) is the projector onto the orthogonal
complement of |ϕ4〉. We search for a way to write A in in the form A = |ϕ(1)

⊥ 〉〈ϕ
(1)
⊥ |+|ϕ

(2)
⊥ 〉〈ϕ

(2)
⊥ |+

|ϕ(3)
⊥ 〉〈ϕ

(3)
⊥ | where {|ϕ

(i)
⊥ 〉, i = 1, 2, 3} is a orthonormal basis of the orthogonal complement of |ϕ4〉.

For that, we have to find an orthonormal set of three vectors
(
|ϕ(1)
⊥ 〉, |ϕ

(2)
⊥ 〉, and |ϕ

(3)
⊥ 〉
)
lying in

the subspace S that are required to be perpendicular to |ϕ4〉. For that, they have to satisfy the
conditions

〈ϕ4|ϕ(1)
⊥ 〉 = 0, (6.17)

〈ϕ4|ϕ(2)
⊥ 〉 = 0, (6.18)

〈ϕ4|ϕ(3)
⊥ 〉 = 0, (6.19)

〈ϕ(1)
⊥ |ϕ

(2)
⊥ 〉 = 0, (6.20)

〈ϕ(1)
⊥ |ϕ

(3)
⊥ 〉 = 0, (6.21)

〈ϕ(2)
⊥ |ϕ

(3)
⊥ 〉 = 0. (6.22)

As |ϕ(i)
⊥ 〉 for i ∈ {1, 2, 3} should be of the form

|ϕ(i)
⊥ 〉 = βi|(12)0〉+ κi|0(12)〉+ ηi|12〉+ ζi|21〉,

where βi, κi, ηi, ζi ∈ C, there are 12 independent constants but only 9 conditions (6 from Eq.
(6.17) through (6.22) + 3 for normalizations of |ϕ(i)

⊥ 〉). Therefore, we have 3 independent con-
stants free, and we choose ζ1 = η1 = κ2 = 0. Conditions (6.17) through (6.19) yield for
i ∈ {1, 2, 3}

βi + e
−iϑ′

(12)0λ′1λ
′
2κi + ei(ϑ10+2ϑ20)e

−iϑ′
(12)0λ′1µ

′−1
ζi + e−iϑ

′
12ei(ϑ10+2ϑ20)e

−iϑ′
(12)0λ′2µ

′−1
ηi = 0

(6.23)

⇒ βi = −e−iϑ
′
(12)0

(
λ′1λ

′
2κi + ei(ϑ10+2ϑ20)µ′

−1
λ′1ζi + e−iϑ

′
12ei(ϑ10+2ϑ20)µ′

−1
λ′2ηi

)
. (6.24)

Applying ζ1 = η1 = 0, we obtain

β1 = −e−iϑ
′
(12)0λ′1λ

′
2κ1 (6.25)
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and therefore

|ϕ(1)
⊥ 〉 = κ1

(
|0(12)〉 − e−iϑ

′
(12)0λ′1λ

′
2|(12)0〉

)
, (6.26)

where κ1 is used for normalization. Conditions (6.20) through (6.22) lead to

β̄iβj + κ̄iκj + ζ̄iζj + η̄iηj
!

= 0 ∀i 6= j ∈ {1, 2, 3} (6.27)

and then substituting Eq. (6.24) and κ2 = 0 into Eq. (6.27) for i = 1 and j = 2 leads to

λ′1
2λ′2κ̄1e

i(ϑ10+2ϑ20)µ′
−1
(
ζ2 + e−iϑ

′
12α−1η2

)
= 0 (6.28)

⇒ ζ2 = −e−iϑ′12α−1η2 (6.29)
⇒ β2 = 0 (6.30)

⇒ |ϕ(2)
⊥ 〉 = η2

(
|12〉 − e−iϑ′12α−1|21〉

)
, (6.31)

where η2 is used for normalization. From condition (6.21) follows

κ3 = e
iϑ′

(12)0λ′1λ
′
2β3 (6.32)

and condition (6.22) gives

η3 = eiϑ
′
12α−1ζ3. (6.33)

Inserting Eq. (6.32) and (6.33) into Eq. (6.24) yields

β3 = −e−iϑ
′
(12)0

(
e
iϑ′

(12)0λ′1
2λ′2

2β3 + ei(ϑ10+2ϑ20)µ′
−1
λ′1ζ3

(
1 + α−2

))
(6.34)

⇒ β3 =
−ei(ϑ10+2ϑ20)e

−iϑ′
(12)0µ′−1λ′1

(
1 + α−2

)
1 + λ′1

2λ′2
2

ζ3 (6.35)

⇒|ϕ(3)
⊥ 〉= ζ3

(
−ei(ϑ10+2ϑ20)e

−iϑ′
(12)0λ′1

(
1+α−2

)
(1 + λ′1

2λ′2
2)µ′

(
|(12)0〉+ e

iϑ′
(12)0λ′1λ

′
2|0(12)〉

)
+ |21〉+eiϑ′12α−1|12〉

)
(6.36)

where ζ3 is used for normalization.
Substituting A with |ϕ(1)

⊥ 〉〈ϕ
(1)
⊥ |+ |ϕ

(2)
⊥ 〉〈ϕ

(2)
⊥ |+ |ϕ

(3)
⊥ 〉〈ϕ

(3)
⊥ | in Eq. (6.16) leads to the Hamil-

tonian

h = |ϕ(1)
⊥ 〉〈ϕ

(1)
⊥ |+ |ϕ

(2)
⊥ 〉〈ϕ

(2)
⊥ |+ |ϕ

(3)
⊥ 〉〈ϕ

(3)
⊥ |+ |11〉〈11|+ |22〉〈22|

+
1

1 + λ′1
2

(
|01〉 − e−iϑ′10λ′1|10〉

)(
〈01| − eiϑ′10λ′1〈10|

)
+

1

1 + λ′2
2

(
|02〉 − e−iϑ′20λ′2|20〉

)(
〈02| − eiϑ′20λ′2〈20|

)
+ |(12)1〉〈(12)1|+ |1(12)〉〈1(12)|+ |(12)2〉〈(12)2|+ |2(12)〉〈2(12)|+ |(12)(12)〉〈(12)(12)|.

(6.37)

The desired ground states (6.10) through (6.13) are ground states of this Hamiltonian by con-
struction. These are also the only ground states since {|ϕ(1)

⊥ 〉, |ϕ
(2)
⊥ 〉, |ϕ

(3)
⊥ 〉, |ϕ4〉} =: B is a

orthonormal basis of span{|0(12)〉, |(12)0〉, |12〉, |21〉} =: B by construction, and B (and thus B)
is mapped onto the subspace span{|ϕ(1)

⊥ 〉, |ϕ
(2)
⊥ 〉, |ϕ

(3)
⊥ 〉}. Therefore, the image of h restricted to

B is three-dimensional and the kernel has dimension one. Restricted to the two-dimensional
subspaces span{|10〉, |01〉} and span{|20〉, |02〉}, respectively, the dimension of the kernel of h is
one in each case. In the remaining subspace, h is diagonal and it is obvious that |00〉 is the only
eigenvector corresponding to eigenvalue zero.
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6.4 Limits λ′i → 0

Having determined a basis of ground states, we now take the limits of strong bindings λ′1 → 0,
λ′2 → 0 where α = const. of Eq. (6.8) to study the behavior of the gap in this new model. Taking
the limits yields the possible ground states

ψλ′1,λ′2=0(B) = Tr(Bv′0v
′
0)|00〉+ Tr(Bv′0v

′
1)|10〉+ Tr(Bv′0v

′
2)|20〉+ Tr(Bv′0v

′
12)|(12)0〉. (6.38)

These states look reasonable since two particles of different types can be placed on a blocked site,
and if both of them want to be as far left as possible, they should be located at the outermost
left site.

Finally, taking the limit λ′1 → 0, λ′2 → 0 where α = const. of the Hamiltonian in Eq. (6.37)
and using that λ′1µ′−1 → 0 for λ′1 → 0, λ′2 → 0 results in

lim
λ′1→0
λ′2→0

,α=const

h = |0(12)〉〈0(12)|+ 1

1 + α−2

(
|12〉 − e−iϑ′12α−1|21〉

)(
〈12| − eiϑ′12α−1〈21|

)

+
1

1 + α−2

(
|21〉+ eiϑ

′
12α−1|12〉

)(
〈21|+ e−iϑ

′
12α−1〈12|

)
+ |11〉〈11|+ |22〉〈22|

+ |01〉〈01|+ |02〉〈02|+ |(12)1〉〈(12)1|+ |1(12)〉〈1(12)|
+ |(12)2〉〈(12)2|+ |2(12)〉〈2(12)|+ |(12)(12)〉〈(12)(12)|
= 1⊗ |1〉〈1|+ 1⊗ |2〉〈2|+ 1⊗ |(12)〉〈(12)|.

This is consistent with the ground states we obtained from ψ(B) (Eq. (6.38)) since these ground
states are the only ones of this Hamiltonian. So the Hamiltonian acting on a chain where L > 2
is given by

H =
L∑
i=2

(|1〉〈1|i + |2〉〈2|i + |(12)〉〈(12)|i) .

This Hamiltonian does not contain two-particle interactions anymore, and turning on a pertur-
bation on the first site, acting on both particle types individually as well as on the combined
state (12),

Y := (|1〉〈1|+ |2〉〈2|+ |(12)〉〈(12)|)⊗ 1L−1 (6.39)

to the Hamiltonian yields

H ′ := H + Y =

L∑
i=1

(|1〉〈1|i + |2〉〈2|i + |(12)〉〈(12)|i) . (6.40)

The only corresponding ground state is obviously |0 . . . 0〉. Hence, by extending the model with
an effective new state, we were able to eventually make it stable under blocking. Moreover, we
have found a translation invariant Hamiltonian for the problematic case of two particle types,
only by modifying the boundary. So, unlike before, there is no need anymore for a perturbation
that removes two-particle interactions by manipulating the entire chain.

Even the modified model of PVBS yields, in the case of a vanishing gap, a change in the
ground state degeneracy at the boundary whereas the bulk of the system behaves continuously.
Thus, this discontinuity at the edge cannot be called phase transition.
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7 Conclusion

In this thesis, we have studied the role of boundaries in the classification of one-dimensional
quantum phases and transitions between them. A quantum phase transition is usually referred
to as a discontinuous behavior in a physical system as a whole at zero temperature due to a
change in some external parameter. A common means to test for quantum phase transitions is
to examine the behavior of the gap between the system’s ground state energy and the energy
of the first excited state. This classification via gap yielded for one-dimensional gapped phases
with periodic boundary conditions that there exists only one phase[2, 3]. For open boundary
conditions, in contrast, there is a need for finer classifications[4]. Our aim was to test whether
the disappearance of a gap implies a discontinuous behavior in the system and thus a phase
transition in the case of open boundary conditions. For that, we investigated a specific model,
called the PVBS-model.

The PVBS-model is a spin chain consisting of L sites which can be occupied by d − 1 particle
types or the vacuum, and it is based on open boundary conditions. The ground state degeneracy
is given by 2n and n is the number of particles appearing in the ground state space. A special
property of these PVBS is that particles bind to the edges. For that, the total Hamiltonian
depends on positive parameters λi 6= 1 which describe how strong a particle of type i binds to
the boundaries. Specifically, this means that a value less than one denotes a particle binding to
the left edge, and a value greater than one corresponds to the right edge.

The examination of PVBS regarding the boundaries and possible phase transitions yielded that
in this particular model, the definitions of phase transitions are not totally equivalent. We ob-
served the gap closing which resulted in a change in the ground state degeneracy, but this only
led to discontinuities at the boundary. The bulk of the system still behaved continuously; it even
remained unchanged.

For the cases of both one and two particle types (corresponding to d = 2 and d = 3, re-
spectively), we examined the behavior of the system in the limit of strongest binding to the
left edge, i.e. λi → 0. In this way, we were able to simplify both the Hamiltonian and the
ground states. This allowed us to find a simple path for the Hamiltonian on which the gap
vanished. In particular, the gap’s vanishing was induced by considering various perturbations
that might correspond to e.g. an external magnetic field. Although each only acted on the left
boundary of the system, they were capable of decreasing the ground state degeneracy and thus
representing a type of discontinuous behavior. However, since all ground states only differed in
their occupancies at the boundary, states leaving the ground state space did not cause the bulk of
the system to undergo any changes. Hence, it should by definition not be termed phase transition.

An interesting effect that occurred in the case of one particle type was that, for the right scale
of perturbation strength, the Hamiltonian became translation invariant and thus was of the
same form as the one with periodic boundary conditions. This convenient property could not
be achieved for two particle types owing to certain two-particle interactions in the Hamiltonian.
Therefore, we initially tried to eliminate those by a corresponding perturbation. Unfortunately,
albeit not causing a phase transition, this perturbation had to act on the entire chain.
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Another point of study was to gain knowledge of the long-distance description of PVBS, so we
examined a Renormalization Group transformation and the system’s behavior under blocking.
In this context, blocking means grouping adjacent sites to effective new sites. For one particle
type, the system proved stable under blocking, and the long-distance information contained only
whether a particle binds to the left or to the right edge, disregarding information on the binding
strength. In contrast, the two-particle system turned out to be unstable under blocking insofar
as grouping two sites produced four possible states for the new site instead of three, which would
have been the stable behavior. Therefore, we developed a new form of PVBS. Here, a site could
be occupied by particle type 1, particle type 2, both types, or the vacuum; thus yielding four
possibilities. For that system, similar investigations have been done and led to the same result
of the need for an extended definition of phase transitions.

Besides, this new form of PVBS was also capable of solving the above mentioned problem in
the case of two particle types. So it achieved the desired translational invariance by only taking
influence on the boundary and not on the chain as a whole.

So, all in all we can conclude that, for open boundary conditions, the definitions of phase transi-
tions in one dimension are not equivalent. Depending on which definition one refers to, one may
say a phase transition of the system has been observed or not. In order to avoid that problem of
ambiguity, further positional information should become an essential part of the definition, i.e.
whether only the boundary was affected or the bulk of the system changed discontinuously.

For further investigation, it would be an interesting task to analyze the role of boundaries in
gapped phases in higher dimensions where boundaries are much more complex.
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