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Abstract

German Research School for Simulation Sciences

Masters in Simulation Sciences

Semionic Resonating Valence Bond states on the kagome lattice

by Mohsin Iqbal

The Heisenberg model is an effective Hamiltonian to describe the behavior of Quantum

spin systems. Depending on the lattice geometries, the ground states of the system can

carry different phases and can be differentiated qualitatively. Recent numerical studies

using DMRG have shown a strong evidence that the ground states of the Heisenberg

Hamiltonian on frustrated lattices exists as a Z2 spin liquid with topological order. Res-

onating valence bond (RVB) states have been proposed as an ansatz to study the spin

liquid phase of Heisenberg Hamiltonian. RVB state exists in the same phase as Kiteav’s

toric (simplest model for a Z2 spin liquid). But, the numerical results for physical quan-

tities such energy splitting in case of DMRG studies of Heisenberg Hamiltonian and

Resonating valence bond states contradict each other. In this thesis, we propose a differ-

ent ansatz state to explain the ground state properties of Heisenberg anti-ferromagnetic

Hamiltonian on the kagome lattice, namely Semionic RVB state. Semionic RVB state

maps to a Z2 spin liquid (Double Semion Model) with semionic excitations. We study

the numerical properties and topological order in Semionic RVB state. The main tool

for numerical simulations is Projected Entangled Pair States (PEPS) which provide

an efficient description of Semionic RVB states and allow for high-precision numerical

calculations of its physical properties.

http://www.rwth-aachen.de
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Chapter 1

Motivation and Overview

Finding out the solution of Heisenberg model to describe the behavior of Quantum Spin

systems is one of the most complicated problems in condensed matter physics. It is also

one the problems that can be stated very simply: Given a system of N particles with

spin operators Si for each particle at site i, Hamiltonian of the system has the form:

H =
∑
〈i,j〉

JijSi · Sj (1.1)

where i, j represent the sites on the lattice and Jij are exchange interaction strengths.

The problem is to find the ground state (GS) wavefunction and to qualitatively charac-

terize its phase in the thermodynamic limit as N →∞, depending on the value of Jij and

lattice geometry. Among the many different possibilities, some possible configurations

are following [1]:

• Néel phase: All spins in this phase are parallel (ferromagnet) or anti-parallel

(anti-ferromagnet) to each other and the expectation value 〈Szi 〉 6= 0 for each i.

Any state in this phase has a broken symmetry with a long range order.

• Valence bond solid (VBS): Adjacent lattice sites in this phase pair up to form

singlets (valence bonds). The whole state is defined as the tensor product of all

singlets. VBS also represents a symmetry broken phase with short range entan-

glements.

• Quantum Spin Liquid (QSL): It is a disordered state of spin system. This phase

has no broken symmetries but carry exotic topological order with fractionalized

excitations.

1



Chapter 1. Motivation and Overview 2

Among the different phases mentioned above, QSL phase posses many counter-intuitive

properties and opens up the possibility to implement fault tolerant quantum computing

[2]. Numerical studies of H on frustrated lattices, such as the kagome lattice using

Density Matrix Renormalization Group (DMRG) method give a strong evidence that

the GS wavefunction of H is a disordered spin state and realizes a Z2 spin liquid.

Resonating Valence Bond states (RVB) have been considered as an ansatz to study the

GS wave function of H in spin liquid phase [3]. Results of numerical interpolation have

shown that RVB state is in the same phase as Quantum Dimer state. Quantum Dimer

state is equivalent to the Toric Code state and both can be transformed into each other

using local unitaries. And Toric code state is a Z2 spin liquid [4, 5]. So, RVB states are

also in the spin liquid phase. But the scaling of physical quantities in case of RVB state

is different from the one observed in the DMRG studies.

Semionic Resonating valence bond states make a different anstaz to study the ground

state wavefunction of H on frustrated lattices. Semionic RVB state realizes a different

kind of Z2 spin liquid with semionic excitations. The main goal of this thesis is to study

the physical properties of these states and to characterize their topological order using

the formalism of Projected Entangled Pair States (PEPS).

The structure of the thesis is as follows:

• In Chapter 2 we introduce some background topics that are needed for successive

studies. We explain the idea of Tensor Network States (TNS) and for 2d systems,

Projected Entangled Pair States (PEPS).

• In Chapter 3 we introduce some basic definitions and explain the idea of arrow

representation for dimer coverings. Using arrow representation we describe a dif-

ferent way to interpret RVB states and extend that idea to introduce Semionic

RVB states. We introduce PEPS representation of Normal/Semionic Resonating

Valence Bond states and Dimer models.

• In Chapter 4 we describe the basic setup for numerical studies of Semionic RVB

states. Given the exponential nature of many body Hilbert space, even with PEPS

formalism numerical studies of Semionic RVB states are hard. We introduced some

optimization in section 4.2 that allows us to scale up the lattice size for numerical

analysis. In section 4.3 we give a description of code design and implementation.

• In Chapter 5 we show the results of numerical studies with detailed discussions

on symmetries in PEPS description of Semionic RVB states, topological sectors of

Semionic RVB wavefunctions and connections between Semionic RVB state and

Double Semion model.
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• In Chapter 6 we summarize all the results from different numerical calculations.

• In Appendix A we give a brief overview of Toric code state and Double Semion

model.





Chapter 2

Tensor Network States

Phenomena involving interacting quantum many body systems are probably the hardest

problems in quantum mechanics. Understanding of such systems is essential to get a

better control of these systems and to exploit these systems for quantum information

purposes. There has been a significant effort to understand this problem by numerous

physicists but still the mechanisms behind the phenomena like high Tc superconductivity,

fractionalization of physical quantities and topologically ordered phases of matter are

not clearly understood.

2.1 Tensor Network States

In non-relativistic settings, Schrodinger equation gives a mathematically complete de-

scription of the dynamics of many body systems. With the Schrodinger equation as

the starting point several simplified (effective) models like Heisenberg model (in case of

strongly correlated quantum spin systems) have been proposed. These models have been

conjectured to reproduce the observed behavior of such systems. However with few ex-

ceptions these models have not been solved analytically and only numerical simulations

can be used to determine the properties predicted by these models.

In the last decade ideas from quantum information like entanglement theory have been

applied to develop better numerical methods for strongly correlated many body systems.

These methods describe many body wavefunction as an interconnected network of local

tensors [6].

Density Matrix Renormalization Group (DMRG) proposed in 1992 by Steve White was

one of the first algorithms that exploited this tensor network(TN) structure. Although,

current language of tensor networks (Matrix Product States) for DMRG was established

5
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later. Recently DMRG have been extended to more general situations and new meth-

ods e.g. Time-Evolving Block Decimation (TEBD), Projected Entangled Pair States

(PEPS), and Tensor Renormalization Group (TRG) have been developed based on the

same ideas. TN methods represent the state of the art in many body simulations. And

they have been employed to study wide variety of systems.

2.1.1 Entanglement Entropy

To exploit entanglement as a tool, the first step is to define a measure that quantifies

entanglement between two systems. Entanglement entropy (EE) is one such measure.

Given a bipartite system, its state can be written as,

|ψ〉 =
∑
ij

ψij |i〉 |j〉 (2.1)

Using singular value decomposition (SVD), |ψ〉 can be re-defined by orthonormal basis

|αL〉 , |αR〉 from left and right, such that:

|ψ〉 =
∑
α

λα |αL〉 |αR〉 (2.2)

Using the sequence of singular values λα, the entanglement entropy is defined as,

S = −
∑
α

λα
2 log(λα

2) (2.3)

Expressing it through the reduced density matrix ρL,

ρL =
∑
α

λα
2 |αL〉 〈αL| (2.4)

S (ρL) = −Tr (ρLlog (ρL)) (2.5)

2.1.2 Entanglement in Quantum Many-Body Systems and Area Law

Wavefunction of an N -body quantum system is given by:

|ψ〉 =

d∑
i1i2...iN=1

ci1i2...iN |i1i2...iN 〉 (2.6)

where each site exists in d-dimensional Hilbert space, |ψ〉 is specified by dN complex

numbers, which is exponentially large in the number of particles. Not all states in the
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Hilbert space of a many body system are equal. Realistic Hamiltonians tend to be local.

Due to the locality of interactions, low energy eigenstates of gapped local Hamiltonians

satisfy Area law [7]. Area law states that the entanglement entropy of a subsystem A

with the whole system S is proportional to the size of the boundary of the subsystem A,

S (ρA) ∝ |∂A| (2.7)

where |∂A| denotes the size of the boundary of A.

For instance, consider a “valence bond solid” (VBS) state with oriented bonds (singlets)

between adjacent sites on 2d square lattice as shown in Fig. 2.1. EE for VBS is log(2)

times the number of bond cuts. So, EE for VBS is proportional to the size of region A.

A

ρA

A
S

Figure 2.1: Valence Bond Solid: Yellow lines
mark the singlet(valence bond) between adjacent
spins. Region A in dashed line. EE of the region
A is proportional to the number of number of

bond cuts.

For a random quantum state we expect entanglement to be maximal, and EE between

sub-regions will scale like volume and not as area. So entanglement properties can used to

construct an ansatz class to parametrize the ground states of gapped local Hamiltonains.

2.1.3 Tensors and tensor network notation

A tensor is a multidimensional array of complex numbers. The order of the tensor is

number of indices needed to specify the tensor. e.g. a scalar is an order-0 tensor (C), a

vector is an order-1 tensor (vi), and a matrix is an order-2 tensor (Ai,j). The number

of possible values an index can take is called the size or dimensionality of the index.

Tensor contraction is an operation that reduces the total order of a tensor by two. More

precisely, it is the sum over all the possible values of the repeated indices of a set of

tensors. Product of two matrices A and B,

Cik =

D∑
j=1

AijBjk (2.8)

is a contraction over the index j. Similarly, contractions can be defined for multi-index

tensors.
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A tensor network is a tensor defined by a set of tensors linked together in the form

of a graph. The number of indices that are not contracted defines the order of tensor

network.

a

i j

i

i j

k

scalar

vector

matrix

order-3 tensor

i j kb

c

tensor contraction

tensor  network

Figure 2.2: Tensor network
diagrams:(a)Scalar, vector,
matrix, and rank-3 tensor.
(b)Tensor contraction over
index j. (c)Tensor network.

2.2 Projected Entangled Pair States (PEPS)

Projected Entangled Pair States (PEPS) construct an ansatz class for all states in the

Hilbert space of many body systems that obey area law. Here we consider the construc-

tion of PEPS in 2d on a square lattice. The following PEPS construction is based on

steps described in [6].

2.2.1 Construction of PEPS

PEPS satisfy Area law and for any sub-region A, its entanglement with the rest of

the system is concentrated around the boundary of the region. In order to satisfy this

property for any bi-partition of the lattice, we decompose each site into four (number of

neighboring sites) virtual subsystems, and place maximally entangled state |ωD〉 between

adjacent sites,

|ωD〉 =
1√
D

D∑
i=1

|i〉 |i〉 (2.9)

The resulting state has an Area law behavior, for any partition cut between two bonds.

The next step is to apply a linear map from virtual system to real system. Map P [x,y]

P [x,y] : CD ⊗ CD ⊗ CD ⊗ CD −→ Cd

is applied at each site [x, y] to obtain the physical state on a 2d lattice of d-level systems.

|ψpeps〉 =
(
P [1,1] ⊗ P [1,2]...⊗ P [Nx,Ny ]

)
|ωD〉⊗Nx·Ny (2.10)
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d-level
systems

D-level
systems

ωD
Figure 2.3: Construction of
PEPS by applying maps P
from virtual systems to phys-

ical systems

This creates a family of states which can be enlarged by increasing the bond dimension

D. Each P [x,y] can be specified by D4 × d complex numbers. So PEPS is parametrized

by N ×D4 × d numbers, which has efficient scaling in the size of the system.

Each linear map P [x,y] can be viewed in term of a five index tensor A
[x,y]
i,αβγδ as,

P [x,y] =
∑
i,αβγδ

A
[x,y]
i,αβγδ |i〉 〈αβγδ| (2.11)

where A
[x,y]
i,αβγδ can be defined graphically as:

i,αβγδA[x,y] =
δ

α β

γ

i:

Using this graphical notation, coefficients cix1,y1,ix2,y1,... of PEPS as in [Eq. 2.6] can be

interpreted as 2d tensor network of A[x,y],

=|ψpeps

ix1,y1 ix2,y1

ix1,y2

=
Cix1,y1,ix2,y1,...ixn,yn

ix2,y1

ix1,y1

ix1,y2
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2.2.2 Calculation of Expectation values

To calculate the expectation value of local observables Ô, e.g. H =
∑
hi, we define local

expectation tensors, E and Eo:

=Ε =Εο

With E and Eo, the computation of expectation value is reduced to the contraction of

following tensor networks of the form:

ψ|ο|ψ = =
Ε Ε Ε

Ε Ε Ε

Ε ΕΕο

T
Figure 2.4: Graphical notation for the tensor network of expectation value. T is

defined as the concatenation of E’s in the vertical direction

To contract 2d tensor network shown in Fig. 2.4 for the calculation of expectation

value we need to keep intermediate tensors with number of indices that is proportional

to the min(Nx, Ny). Storing such tensors require Dc.min(Nx,Ny) complex numbers. The

problem of finding the exact expectation values in case of PEPS belongs to the complex-

ity class #P−complete[24]. #P−complete problems have no known polynomial time

algorithm. Therefore, we need to rely on approximate contraction algorithms.

2.2.3 Properties of PEPS

In the following, we give some of the properties of PEPS:

• Ground states of gapped local Hamiltonian with realistic assumptions on spectral

density can be approximated by a PEPS with

Dmax = const×
[(

N

ε

)
log

(
N

ε

)]c×log (Nε )
(2.12)

where ε := ||ψexact〉 − |ψpeps〉| [8].
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• For any translationally non-invariant PEPS, one can do a translationally invariant

PEPS construction by choosing a unit cell that is repeated over all the 2d lattice

[7].

• There exists PEPS that can handle power law decay of two point correlation

function. Polynomial decay of the correlation function is a manifestation of infinite

correlation length and scale invariance in critical systems. Hence PEPS makes a

good candidate to represent the critical states of matter [9].





Chapter 3

Normal/Semionic Resonating

Valence Bond States

Resonating valence bond (RVB) states were proposed by Anderson in 1987 as a wave-

function to explain the mechanisms behind high-Tc superconductivity. They were also

studied to give a description of disordering in Heisenberg anti-ferromagnets on frustrated

lattices [3].

Roughly, RVB involves a state that is in a superposition of different ways to pair electrons

into strongly-bonded spin singlets. One of the most interesting property of these states

is that the excitations above them are fractional. These excitations carry one of the

two key properties of electron. They could be electrically neutral spin − 1/2 fermonic

excitations spinons or they could be spin − 0 charge excitations visons. Fractionalized

excitations in RVB states are a manifestation of topological order.

3.1 The Basic Definitions and Concepts

3.1.1 Kagome lattice

Kagome is a 2d lattice with a network of corner-sharing triangles. spin-1/2 particles

are fixed at the vertices of the lattice with coupling constants (Jij > 0) and interacts

antiferromagnetically. An anti-parallel configuration could minimize the energy of each

interaction between neighboring sites. However, this condition cannot be satisfied simul-

taneously for each pairwise interaction on kagome lattice and this leads to frustration.

Frustration prevents spontaneous symmetry breaking in the underlying state on the lat-

tice and makes an important candidate to realize a spin liquid phase [10]. An oriented

kagome lattice is shown in Fig. 3-1.

13
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Figure 3.1: An oriented
kagome lattice with spin-1/2
particles at the vertices of the

lattice.

3.1.2 RVB states

A valence bond is a SU(2) singlet state |↑↓〉−|↓↑〉, and it connects two S = 1/2 spins at

sites a and b of the lattice. Given a lattice of atoms with qubits on each site with basis

states |0〉 ≡ |↑〉 and |1〉 ≡ |↓〉, a nearest neighbor valence bond configuration or singlet

covering |σ (D)〉 is a direct (tensor) product of valence bonds encompassing all the sites

of the lattice.

|σ (D)〉 =

N/2∏
i=1

(∣∣↑ai↓bi〉− ∣∣↓ai↑bi〉) (3.1)

The notation |σ (D)〉 followed here to represent a singlet covering has been adopted

from [4] and the reason for use of D will be clarified in the next section. On an N -site

lattice, a valence bond configuration |σ (D)〉 contains N/2 valence bonds. It is a spin

configuration with total spin S2
tot = Stot (Stot + 1) = 0.

Nearest Neighbor (NN) Resonating valence bond (RVB) state in the Hilbert space of

many qubits is described as an equal weight superposition of all possible singlet coverings.

|ψrvb〉 =
∑

σ(D) ∈ coverings

|σ (D)〉 (3.2)

where the sum runs over all arrangements (coverings) of how to divide the lattice into

pairs of adjacent lattice sites. Fig. 3-2. shows superposition of two possible singlet

coverings on kagome lattice.
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+ +...

Figure 3.2: Pictorial representation of RVB state build from the superposition of
singlet coverings on the kagome lattice. Yellow lines mark the singlets. Arrows on the
yellow lines shows the orientation of singlets because singlets are anti-symmetric [22].

3.1.3 Quantum Dimer Models

Quantum dimer model was introduced by Rokhsar and Kivelson [23] to better under-

stand and model the behavior of RVB states. Different singlet coverings in the RVB

state are not orthogonal, e.g.,

•1 . . . •2
↑ ↓ ≡ |σ(D1)〉 = (|↑3↓1〉 − |↓3↑1〉) (|↑2↓4〉 − |↓2↑4〉)
•3 . . . •4

(3.3)

•1 → •2
...

... ≡ |σ(D2)〉 = (|↑1↓2〉 − |↓1↑2〉) (|↑4↓3〉 − |↓4↑3〉)
•3 ← •4

(3.4)

It can be easily checked that 〈σ (D1) |σ (D2)〉 6= 0.

Quantum dimer model solves this problem by re-defining the system on the Hilbert space

spanned by all dimer coverings with each two dimer coverings orthogonal by definition.

A dimer (ai, bi) is a state between adjacent vertices ai and bi on the lattice. A dimer

covering is a direct tensor product of dimers encompassing all the sites on the lattice.

|D〉 =

N/2∏
i=1

(ai, bi) (3.5)

where dimers (ai, bi) between two vertices can be defined in different ways but it is more

favorable to have a definition that ensures different dimer coverings D and D′ to be

locally orthogonal [4].
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A dimer state is defined as an equal weight superposition of all dimer coverings on the

lattice.

|ψdimer〉 =
∑

D ∈ coverings

|D〉 (3.6)

Quantum Dimer Models can describe following generic phases [11]:

• They realize dimer (or valence-bond) crystals with the long-range dimer-dimer

correlations between the sites on the lattice.

• For certain geometries such as triangular and kagome lattices, spin-liquids.

• Critical spin liquids.

3.1.4 Arrow representation

For a dimer covering on kagome lattice as shown in Fig. 3-2, an alternate representation

was introduced by Elser and Zeng [12]. They laid a pattern of arrows for each dimer on

the kagome lattice that transformed a dimer covering on the kagome lattice into its dual

honeycomb lattice. They placed an arrow at each vertex on the kagome lattice with a

direction towards the center of one of the two neighboring triangles. The decision for

choosing between two possible directions of arrow is governed by the Arrow rule which

can stated as follow: For each dimer (i, j) at an edge on kagome lattice the arrows at

sites i and j must points towards the center of same triangle [11].

For any dimer covering each triangle on kagome lattice can have at most one dimer.

If a triangle has one dimer, it will have one outgoing and two incoming arrows. If a

triangle has no dimer at any of its edges it will have three outgoing arrows in that case.

The Arrow rule put a constraint on the parity of incoming (outgoing) arrows to be even

(odd). Fig. 3-3 gives a schematic description of the Arrow rule.

a

b

c

Figure 3.3: (a) A triangle
without a dimer has three ar-
rows pointing out. (b) On a
triangle with a dimer, one ar-
row points out of the triangle
and away from the dimer, the
other two arrows point into
the triangle. (c) Arrow pat-
terns on kagome lattice gen-
erates a honeycomb lattice.
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3.1.5 Dimer Coverings difference and Loop Patterns

Describing the dimer covering with the arrow representation gives a dual honeycomb

lattice. Each link of the honeycomb lattice for a dimer covering has a fixed orientation

decided by the direction of arrow (Arrow rule).

We fix a reference dimer covering or its dual arrow representation and denote it by

R. For a given R, strings are defined as the edges on the honeycomb lattice where the

difference of an arbitrary covering A and R has arrows pointing in the opposite direction.

As described in [sec. 3.1.4] the parity of outgoing arrows from each vertex on the

honeycomb lattice is odd. For each vertex of the honeycomb lattice the difference of any

two coverings either gives two edges with strings or none. This is true for all vertices.

So, the difference of R and any arbitrary configuration A generates a string pattern of

closed loops. Strings generated by all possible differences on a vertex is shown pictorially

in Fig. 3-4(a). Fig. 3-4(b) gives an example of loop pattern generated by the difference

of an arbitrary dimer covering A and R.

Loop patterns from dimer or singlet coverings can also be visualized as the assignment

of color to a dual variable that exists inside each hexagon and strings can be interpreted

as difference of color between two hexagons. There is a 2-to-1 mapping between colors

assignment to hexagons and loop patterns since flipping the color in each hexagon also

describes the same loop pattern. We will make use of this idea when we will describe

the PEPS formalism in the next section.

3.1.6 Semionic Dimer and Semionic RVB states

Loop pattern description allows for an alternative interpretation of Dimer state and RVB

state. We can interpret dimer (singlet) coverings in Dimer (RVB) state in the language

of loop patterns. We define Semionic Dimer and Semionic RVB state in this language.

For a fix reference configuration R, we associate a loop pattern L to each dimer covering

D and define Semionic Dimer state as a superposition of all possible dimer coverings

with a phase factor that is determine by the parity of the number of closed strings in

the loop configuration L.

|ψsdimer〉 =
∑

D ∈ covering

(−1)n(L) |D〉 (3.7)

where n(L) is the number of closed strings in the loop configuration L associated with

dimer covering D.
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a b

Figure 3.4: (a)Vertices in the middle column represent possible dimer or arrow config-
uration. Yellow lines mark the dimers. Vertices in the left and right columns represent
the strings generated by the difference of two vertices in the middle column.(b)Yellow
arrows represent a reference dimer covering R. Black arrows show an arbitrary con-
verging A. String generated by the difference of R and A are shown by orange lines.
Blue or white color of each hexagon shows the color assignment to the dual variable of

hexagon.

In the same manner, for a fix reference configuration R, and with a map of each singlet

covering σ (D) to loop pattern L we define Semionic RVB state as a superposition of

all possible singlet coverings with a phase factor that is determine by the parity of the

number of closed strings in the singlet loop configuration L.

|ψsrvb〉 =
∑

σ(D) ∈ covering

(−1)n(L) |σ (D)〉 (3.8)

where n(L) is the number of closed strings in the loop configuration L associated with

singlet covering σ (D).

3.2 PEPS formalism

PEPS representation for RVB state was first given in [9]. Subsequently, an alternative

formalism was presented in [4] with detailed numerical studies of RVB state. Extending

on [4], in this section we introduce a different PEPS representation for RVB state defined

in terms of loop patterns. This PEPS representation can be easily altered to account

for Semionic RVB state, Dimer state and Semionic Dimer state.
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3.2.1 PEPS representation of RVB states

As introduced in previous section, a dimer configuration can also be represented by

arrow notation. Fig. 3-5 shows the arrow representation of the reference dimer covering

R. All tripods within each triangle of kagome lattice creates a honeycomb lattice with

physical sites at the center of each edge.

Figure 3.5: Arrow repre-
sentation of dimer covering
R. Yellow lines mark dimer
between physical sites with
corresponding green arrows.

The first step for the PEPS description of RVB state is the construction of virtual space.

This is done by putting 2-qutrits (3-level particles) and 2-qubits (2-level system) on each

physical site.

The next step is to insert entanglement by applying 3-qutrit state |ε〉 in the clockwise

direction at the center of each triangle on the kagome lattice or at the vertices of the

honeycomb.

|ε〉 is defined as,

|ε〉 := (|012〉 − |102〉) + (|120〉 − |021〉) + (|201〉 − |210〉) + |222〉 (3.9)

=

2∑
i,j,k=0

εijk |ijk〉+ |222〉 (3.10)

Next step is to put in |δ〉 state between all the qubits inside a hexagon. |δ〉 acts as a

multi-index Kronecker delta with its legs connected to one of the qubits at the vertices

of kagome lattice. As described in [sec. 3.1.5], given a reference dimer covering with a

arrow representation R and an arbitrary dimer covering D with arrow representation

A, we associate a loop pattern to D created by the difference of A and R. The loop
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pattern of D can be interpreted as an assignment of color with two possible values to

each hexagon. The color information indicates whether hexagon is inside a loop or not.

Each leg of |δ〉 , (i1, i2, i3, i4, i5, i6) has dimension 2 and it acts as a keeper for the color of

each hexagon and ensures one color inside each hexagon for a given loop configuration.

|δ〉 is defined as,

|δ〉 :=
1∑

i1i2...i6=0

δi1i2...i6 |i1i2...i6〉 (3.11)

|δ〉 is not necessary for the PEPS description of RVB state but there use becomes essential

in case of Semionic RVB. Fig. 3.6 shows a schematic version of |ε〉 and |δ〉.

= or

+ + +

+ + +

a

b

Figure 3.6: a)Mark two
dimer and arrow representa-
tion of |ε〉. b) shows |δ〉, with
six legs each one connected to
one of the color qubits on the

edge of each hexagon.

The net state of the virtual system is the direct tensor product of all |ε〉’s and |δ〉’s,

|Ωrvb〉 =
∏
i

|ε〉i
∏
j

|δ〉j (3.12)

where i runs over all vertices of the honeycomb lattice and j over all the hexagons.

The next step is to define a reference dimer configuration R on the kagome lattice which

is equivalent to putting an arrow pattern on the edges of the honeycomb lattice. The

resulting state of the virtual system is shown in Fig. 3-7.

Now we apply a linear map P :
(
C3
)2⊗(

C2
)2 → (

C2
)

at the center of each link of the

honeycomb lattice from virtual space to real space.

P := |0〉 [〈02| (〈��|+ 〈��|) + 〈20| (〈��|+ 〈��|)] +

|1〉 [〈12| (〈��|+ 〈��|) + 〈21| (〈��|+ 〈��|)] (3.13)

=

1∑
i=0

|i〉 [a〈i|b〈2| (〈��|+ 〈��|) +a 〈2|b〈i| (〈��|+ 〈��|)] (3.14)

where filled and empty squares represents the state of the color qubits inside hexagons

adjacent to P.
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Dimers from 
reference
config. ‘R’

|ε
|δ

Virtual site 
composed

of 2-qutrits and 
2-qubits

Arrow representation
of dimers

Figure 3.7: State of vir-
tual system with |ε〉 between
qutrits and |δ〉 between color
qubits. Map P is applied at
the center of each link on the
honeycomb lattice. Map P is
indicated at only one site to
make the figure look less clut-

tered.

P is symmetric with respect to the exchange of color indices (qubits) but asymmetric

with respect to the exchange of indices associated with qutrits. So, qutrits a and b are

labeled such that a always comes in the direction of arrow of the reference configuration

R. Therefore, whenever the arrows of an arbitrary configuration A and R points in the

opposite direction the difference of A and R forms a loop and P projects only those

configurations in virtual system which have opposite color on each side of the loop.

The PEPS description of RVB state is given by,

|ψrvb〉 = (P)⊗N |Ωrvb〉 (3.15)

where N is the number of sites on the kagome lattice.

3.2.2 PEPS representation of Semionic RVB states

To get the right amplitude for each configuration we first introduced for each vertex on

the honeycomb lattice 3-qubits, 1 for each neighboring hexagon. We next put in the

state |T 〉 between these qubits. The state |T 〉 on each vertex of lattice looks at the color

of neighboring hexagons and produces valid weighting factor by counting the number of

left and right turns around any closed loop. |T 〉 is defined as follows [13],

|T 〉 :=

3∑
k=1

i
(
|1〉k|00〉/k − |0〉k|11〉/k

)
+ |000〉+ |111〉 (3.16)

|T 〉 is shown schematically in Fig. 3-8. On going around any closed loop, product of all

|T 〉’s give a factor of -1.



Chapter 3. Normal/Semionic Resonating Valence Bond States 22

} -i

} i

} 1 Figure 3.8: Action of T for
different color configurations

of neighboring hexagons.

In case of Semionic RVB state, we keep the same state |ε〉 between the qutrits at each link

of the honeycomb and the state |δ〉 between color qubits at each edge of the honeycomb

lattice.

The resulting virtual state |Ωsrvb〉 is then given by the direct tensor product of all |ε〉’s,
|δ〉’s, and |T 〉’s.

|Ωsrvb〉 =
∏
i,j,k

cj |ε〉i|δ〉j |T 〉k (3.17)

where index i and k for |ε〉’s and |T 〉’s runs over all the vertices of the honeycomb lattice

and the index j of |δ〉’s runs over all the hexagons. Coefficients cj enforce an additional

constraint and is defined as:

cj := δj1,j2,...j12 (3.18)

where j1, j2, ...j12 represents the color qubits at each vertex and edge of the hexagon. cj

sync up (fix) the color of each of the 12 color qubits. |Ωsrvb〉 is shown schematically in

Fig. 3-9.

By applying the same map P as in case of RVB state to |Ωsrvb〉 gives a PEPS description

of Semionic RVB state.

|ψsrvb〉 = (P)⊗N |Ωsrvb〉 (3.19)
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= |ε|T= = |δ
Virtual site 
composed
of 2-qutrits 
and 2-qubits

Figure 3.9: State of virtual system |Ωsrvb〉 in case of Semionic RVB state, with |ε〉
between qutrits and |δ〉 between color qubits. State |T 〉 is applied to color qubits at
each vertex of the honeycomb. Map P is applied at the center of each link on the
honeycomb lattice. Map P is indicated at only one site to make the figure look less

cluttered.

3.2.3 PEPS representation of Dimer state and Semionic Dimer state

In [4], PEPS representation of orthogonal dimer state was presented by modifying di-

mensions of the physical sites from 2 to 9. Here we extend on the same work and

re-define the map P⊥ :
(
C3
)2⊗(

C2
)2 → (

C3
)2

, such that

P⊥ = |02〉 [〈02| (〈��|+ 〈��|)] + |20〉 [〈20| (〈��|+ 〈��|)] +

|12〉 [〈12| (〈��|+ 〈��|)] + |21〉 [〈21| (〈��|+ 〈��|)] (3.20)

=

1∑
i=0

|i2〉 [a〈i|b〈2| (〈��|+ 〈��|)] + |2i〉 [a〈2|b〈i| (〈��|+ 〈��|)] (3.21)

where filled and empty squares represents the state of the color qubits inside hexagons

adjacent to P⊥.
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Although, each site has a 9 dimensional Hilbert space, P⊥ uses only 4 dimensions. By

exploiting, this fact we can reduce it, P⊥ :
(
C3
)2⊗(

C2
)2 → (C)4

P⊥ =
1∑
i=0

(|i〉+ |i+ 2〉) [〈i2| (〈��|+ 〈��|)] + (|i〉 − |i+ 2〉) [〈2i| (〈��|+ 〈��|)]

(3.22)

This simplification is paramount in reducing the computation time when doing numerical

interpolation between RVB and Dimer state.

By applying P⊥ on virtual states |Ωrvb〉 and |Ωsrvb〉, we get PEPS description for or-

thogonal dimmer version of RVB state called Dimer state and for Semionic RVB state

called Semionic Dimer state.

|ψdimer〉 = (P⊥)⊗N |Ωrvb〉 (3.23)

|ψsdimer〉 = (P⊥)⊗N |Ωsrvb〉 (3.24)

Appendix A gives a brief overview of Toric code and Double Semion model. In [4], it has

been shown rigorously that orthogonal Dimer state is equivalent to Toric code state and

both can be transformed into each other using local unitaries. Using the same line of

argument one show the equivalence of Semionic Dimer state and Double Semion model.

Results of numerical interpolation between dimer state and RVB state shows that both

of these states are in the same phase. Similar calculations for Semionic RVB state and

Semionic dimer model has been performed in this thesis (see sec. 5.3).
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Implementation

4.1 Tensor Network Formalism of Semionic RVB state

An alternative description of Semionic RVB state can be given in terms of a tensor

network composed of local tensors. Tensor network (TN) description is more convenient

for the numerical analysis of problem. States |ε〉, |δ〉, and |T 〉 that were used for the

PEPS description of Semionic RVB can be formulated as multi-index tensors, such that,

|ε〉 :=

2∑
α,β,γ,=0

Eαβγ |αβγ〉 (4.1)

where Eαβγ is an order-3 tensor and each index has a dimension of 2. Eαβγ is anti-

symmetric with respect to the exchange of indices.

State |T 〉 is given by [13],

|T 〉 :=

1∑
j,k,l=0

Tjkl |jkl〉 (4.2)

where,

Tjkl =


1 if j + k + l = 0, 3

i if j + k + l = 1

−i if j + k + l = 2

(4.3)

with j, k, l = 0, 1.

|δ〉 can be viewed as 12-index tensor δi1i2...i6j1j2...j6 each leg has dimension 2.

25
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Projector P is defined by,

P :=
∑

i,j,k={0,1},η,ϑ={0,1,2}

P iηϑ,jk |i〉 〈ηϑ| 〈jk| , (4.4)

where,

P iηϑ,jk =


1 if (i = η = 0, 1 ∧ ϑ = 2) ∧ j = k

1 if (i = ϑ = 0, 1 ∧ η = 2) ∧ j 6= k

0 otherwise

(4.5)

η, ϑ, j, and k represents inner legs and have dimensions of 3, 3, 2 and 2. i represents an

outer leg and has a dimension of 2.

=Tijk
i

j
k

=i
j

k
Eijk

=δi1i2..i6j1j2..j6

i1 j1

νη,jk
i=i

j

k

ν

η

P

Figure 4.1: Tensor network of Semionic RVB state on honeycomb with cylindrical
topology

Semionic RVB wavefunction can be defined as a summation over all the virtual indices

on the shared links in the tensor network shown in Fig. 4-1.

|ψsrvb〉 =

1∑
i1,i2,...=0

tT r

(
⊗
i
Ti⊗

j
δj⊗

k
Ek⊗

l
Pl

)
|i1, i2, ...〉 (4.6)

where tTr (tensor trace) is defined as in [13] by doing the sum over all the open indices

in the virtual layer of the tensor network.

Semionic RVB wavefunction has by definition a non-local description. Closed strings

in a given loop pattern are large objects and can extend up to the size of the system.

Finding the parity of the number of closed strings seems like a global operation. But,

tensor network formulation still enables us to give a description of Semionic RVB state

in terms of local tensors [13].
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4.2 Block decomposition and abstractions

Tensor network of Semionic RVB state roughly forms a honeycomb lattice. Also imple-

mented in [4], from implementation perspective it is very useful to block 3-spins moments

together with 2-E, 2-T and 3-δ tensors as shown in Fig. 4.2(a,b). By doing this, we

convert honeycomb TN into square TN.

b

a

a

Te

= Sa

= Sb

c

a

b

E
T
P

δ

3

2

2

a

3

2

b

2

b

Sa Sb

Ea=Sa

d

=Sb Eb

E

Figure 4.2: (a) Tensor network of Semionic RVB state. Squares labeled a. and b.
marks two blocks of 3-physical sites with different arrows of reference configuration
R.(b) Blocks a. and b. with internal structure. (c) Blocks a. and b. defined as Sa and
Sb. Sa and Sb converts honeycomb into square TN. (d) Sandwiching Sa and Sb with

their conjugates Sa
† and Sb

† gives Ea and Eb. (e) Tensor network of 〈ψsrvb|ψsrvb〉

For a random reference singlet (dimer in case Semionic Dimer model) covering or loop

configuration R, the square TN of Semionic RVB state is not translationally invariant.

In order to get a TN description that is translationally invariant we need to choose a

reference configuration R that must be translationally invariant with a block (unit cell) of

certain size. For a reference configuration to be translationally invariant it can be shown

by exhaustive search that the minimum block S must contain atleast six physical sites

on the honeycomb lattice. For getting better performance during numerical calculations

we divide the S into two sub-blocks Sa and Sb each containing 3-physical sites.

TN of Semionic RVB state is composed by repeating two blocks (tensors) Sa and Sb

either horizontally or vertically. For remaining discussion, we will consider the vertical

case. TN for the calculation of wavefunction normalization is shown in Fig. 4.2(e).
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Vertical stack of Sa and Sb tensors is shown in (Fig. 4.3 ). By using δ tensors labeled as

(1) , (2) , (3) and (4) Sa and Sb blocks ensure one color inside each hexagon. One of the

constraint implemented by doing contraction on the leg labeled “d” is redundant and

can be removed. This redundancy can be shown by the following relation:(
δ(4)δ(1)

)
︸ ︷︷ ︸

a

(
δ(1)δ(2)

)
︸ ︷︷ ︸

b

(
δ(2)δ(3)

)
︸ ︷︷ ︸

c

(
δ(3)δ(4)

)
︸ ︷︷ ︸

d

=
(
δ(4)δ(1)

)
︸ ︷︷ ︸

a

(
δ(1)δ(2)

)
︸ ︷︷ ︸

b

(
δ(2)δ(3)

)
︸ ︷︷ ︸

c

(4.7)

Removal of legs marked by “×” in (Fig. 4.3 ) reduces storage requirements of Sa and Sb

by the factor of 4.

3

2

2

a Sa

3

2

b

2

Sb

a Sa

E
T
P

δ

(1)

(2)

(3)

(4)

“b”

“a”

“c”

“d”

Figure 4.3: Black lines
mark the legs of δ tensor. In-
verted ’U’ arrow shows how
information is propagated, so
lines marked with × can be

removed.

4.3 Optimization

For the tensor network description of the block given in previous section, it requires

(3× 2)2 ×
(
3× 22

)2 × 23 ≈ 105 complex numbers to store Sa or Sb. This huge memory

requirement just to store these local tensors creates a bottleneck even if we want to

scale up to four blocks. In this section we will describe following two ways to resolve the

scalability problem to some extent.



Chapter 4. Implementation 29

• An efficient tensor network description of Sa or Sb blocks.

• Applying isommetries to E.

4.3.1 Efficient description of Sa or Sb Tensors

For a reference configuration R, δ tensor within each hexagon of honeycomb fixes its

color and

• it ensures that given the color of the neighboring hexagons, P at shared edges

projects into right subspace.

• it is used as a sensor by T tensors to get the right amplitude for the configuration.

If the color of one of the hexagon is fixed by δ, P and reference configuration R also

freeze up the color of all neighboring hexagons, and this effect is propagated via E

tensors (which have the information of loop strings) from first neighboring hexagons to

the second neighboring hexagons and so on. This propagation of information from one

end of the lattice to the other is ensured if all the δ tensors within each hexagon of

honeycomb lattice are sufficiently connected.

Given the tensor network shown in Fig. 4.3, in the horizontal direction only one line of

δ tensor legs in Sb blocks is sufficient. From the remaining of Sa and Sb tensors outgoing

δ tensor legs in the horizontal direction can be removed without any impact.

The same optimization can also be applied in vertical direction but here the removal

of one of the δ legs from the top right corner and bottom right corner would affect the

function of T tensor.

Given a reference configuration R, for any arbitrary configuration A, T tensors at each

vertex of the honeycomb lattice look at the color of neighboring hexagons to generate

the right phase factor for A. The removal of δ tensor legs makes the color information

inaccessible. This problem can be circumvented by putting in a COPY tensor (three leg

delta each of size three) on the outgoing leg of top E tensor and CNOT tensor as shown

in Fig. 4.4. Copy tensor gives the direction of arrow of A on the link of honeycomb.

CNOT is defined depending on the direction of arrow of R on the same link. CNOT

uses input from COPY tensor as a control line and do a controlled flip. T tensors uses

the information from CNOT and generate the right phase factor.

COPY tensor is defined as:

COPY = δijk (4.8)
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3

a Sa

3

2

b Sb

a Sa

3

2

E
T
P

δ

CNOT

CNOT

COPY

Figure 4.4: Springs act as
control lines of CNOT tensor.
Legs of δ that are marked by
× are redundant and should
be removed. δ tensor legs
that are marked by α in Sb
block are also removed in the
all rows of Sb blocks except in

one row.

CNOT is a three leg tensor with two legs of dimension two and one leg of dimension

three. CNOT is symmetric to the exchange of 2 dimensional legs. It is defined depending

on the direction of reference configuration R arrow. On the line where copy tensor is

applied, if the arrow is going away from copy tensor then,

CNOT iα,β :=


1 if (i = 0, 1) ∧ (α = β)

1 if (i = 2) ∧ (α 6= β)

0 otherwise

(4.9)

otherwise,

CNOT iα,β :=


1 if (i = 0, 1) ∧ (α 6= β)

1 if (i = 2) ∧ (α = β)

0 otherwise

(4.10)

Now removing one of the legs of δ tensor from top/bottom of Sa and Sb blocks gives

tensor network description of Sa and Sb shown in Fig. 4.4.

Applying these two optimization gives an overall reduction in memory requirements by

the factor of 16 for each Sa and Sb block.
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4.3.2 Applying Isometries to E

Given the tensor network composed of local tensors Eαβγδ, to do the exact calculation for

expectation values of local observables we need to store intermediate tensors with number

of indices that are proportional to the number of E blocks along the circumference of

cylinder. However, Eαβγδ are not full rank tensors for indices α, β in case of Semionic

RVB state and there are alternative ways for describing same TN.

Eαβγδ ←→ Xαα′Yββ′Eα′β′γ′δ′X
−1

γγ′Y
−1

δδ′ (4.11)

E
δ

α

β

γ

Y

E
Y

X X-1

-1

αα’

β

β’

γ γ’

δ

δ’

Isometries X and Y are calculated by using Singular Value Decomposition (SVD). By

applying SVD on Eαβγδ with indices α and (β, γ, δ),

Eα;βγδ =
∑
λ,µ

(Ux)α,λSλ,µ

(
V †x

)
µ,(βγδ)

(4.12)

where λ runs from 1 to the rank of index α and k from 1 to (size(β) · size(γ) · size(δ)),
and Ux is an isometry, ∑

α

(Ux)α,λ

(
U †x

)
α,µ

= δλµ (4.13)

Similarly, by applying SVD on indices β and (α, γ, δ), we get

Eβ;αγδ =
∑
λ,µ

(Uy)β,λSλ,µ

(
V †y

)
µ,(αγδ)

(4.14)

with isometry, ∑
β

(Uy)β,λ

(
U †y

)
β,µ

= δλµ (4.15)
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Using, TN notation both SVD’s can be shown figuratively as:

E E UX VXSx= =

E E= =

Uy

Vy

Sy

Applying theses isometries leads to reduced size for different contractions. Special care

is needed to apply these isometries across sites on the tensor network where local op-

erators act. Fig. 4.5(a,b,c) gives one example where local operator are sandwiched in

diagonally adjacent blocks. For the case of Semionic RVB state application of isometries

significantly reduces the size of indices both in the horizontal and vertical direction and

allows for doing calculations upto 4 E blocks.
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Figure 4.5: (a) Tensor net-
work for the calculation of
expectation values with lo-
cal operators in diagonally
adjacent blocks. Numbers
as labels on the indices rep-
resent their sizes.(b) Isome-
tries denoted by circles are
inserted between the blocks.
(c) Isometries are absorbed
and indices have reduced di-
mensions. Numbers as labels
on the indices represent their

reduced sizes.
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4.4 Description of Basic Procedures

Implementation for doing numerics with Semionic RVB states has been done in Matlab.

Matrix-matrix and matrix-vector multiplication are the two main operations during

tensor network contractions and consumes a major chunk of all processor cycles. So

no significant reduction in the whole computation time can be achieved by doing im-

plementation in high performance programming languages like C or Fortran. Parallel

programming using MPI can be used to implement matrix-matrix and matrix-vector

multiplication operations on a distributed computing environment (cluster). But given

the large sizes of tensors, communication overhead would diminish any performance

gains.

The whole execution cycle follows through by multiple execution of some basic proce-

dures as it leads to the end results. In this section we will show the code snippets of

basic these procedure and discuss their implementation.

Definition of primary tensors that are then composed to from tensor network of Semionic

RVB states is described in the following code snippet:

1 function eps = epsilon

2 % epsilon tensor

3 eps = zeros (3,3,3); % antisym + |222>

4 eps(1,2,3)= 1; eps(2,3,1)= 1; eps(3,1,2)= 1;

5 eps(3,2,1)=-1; eps(2,1,3)=-1; eps(1,3,2)=-1;

6 eps(3,3,3)= 1;

7 end

8 function T=tripod

9 % T tensor

10 T = ones (2,2,2);

11 T(1,1,2)=1i; T(1,2,1)=1i; T(2,1,1)=1i;

12 T(1,2,2)=-1i; T(2,1,2)=-1i; T(2,2,1)=-1i;

13 end

14 function P=projector

15 % indices 1 and 2 are the singlet bonds , indices 3 and 4 the plaquette

16 % colors. 3!=4, then the physical index (=5) equals the 1-singlet ,

17 % otherwise (if 3==4) the 2-singlet

18 P=zeros (3,3,2,2,2);

19 % 3!=4: pick the first index

20 P(1,3,1,2,1) = 1; P(2,3,1,2,2) = 1; P(1,3,2,1,1) = 1; P(2,3,2,1,2) = 1;

21 % 3==4: pick the second index

22 P(3,1,1,1,1) = 1; P(3,2,1,1,2) = 1; P(3,1,2,2,1) = 1; P(3,2,2,2,2) = 1;

23 end

24 function del = delta(N,dim)

25 % N of legs in the delta tensor

26 % dimension of each leg

27 del=zeros(zeros(1,N)+dim);

28 for i=1:dim

29 currdim=num2cell(zeros(1,N)+i);

30 del(currdim {:}) =1;

31 end
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32 end

33 function CN = cnot

34 % middle index acts as control qtrit ,

35 % 1st index act as input qubit , 3rd index as output qubit

36 cpop=ones(2,3,2);

37 cpop(1,1,2)=0; cpop (2,1,1)=0; cpop(1,2,2)=0; cpop (2,2,1)=0;

38 cpop(1,3,1)=0; cpop (2,3,2)=0;

39 CN = cpop;

40 end

Listing 4.1: Definitions of basic tensors that are use to define Semionic RVB state

Primary tensors are then blocked to construct Sa and Sb tensors with different reference

arrows. Sa and Sb are composed with/without δ tensor legs in the horizontal direction.

Listing 4.2 shows one such construction.

1 SRVBTensor1Bot=scon({eps ,eps ,P,P,P,T,T,...

2 delta (5,2),delta (5,2),delta (6,2),delta (2,2),delta (3,3),cnot}, ...

3 {[4 9 11] ,[14 -5 17], ... % epsilons

4 [[-7 4] 3 6 -9], [[14 9] 13 7 -10],[[11 -1] 1 12 -11], ... % the P’s

5 [2 5 10] ,[16 8 15], ... % the T’s

6 [-8 -2 1 2 3],[-6 6 5 7 8],[-4 12 10 13 15 19] ,[16 20] ,[17 -3 18], ... %deltas

7 [19 18 20]}) ... % cnot

Listing 4.2: Blocking of basic tensors to form a block Sb with outgoing δ tensor legs

in horizontal direction

scon function takes as an input a list of tensors, list of tensor indices to be contracted

and the order list for doing indices contractions as an optional parameter. Legs to be

contracted are labeled by positive integers and legs of the resulting tensor are labeled

by negative integers.

Sa and Sb tensors are then contracted with identity or local operators sandwiched in the

ket and bra layer to construct Ea and Eb using scon function.

1 function SRVBE=rvb_lambda_split(SRVBTensor ,ops)

2 indx=size(SRVBTensor).*size(SRVBTensor);

3 SRVBE=permute(reshape(

4 scon({ SRVBTensor ,conj(SRVBTensor) ,... % bra and ket SRVB tensor

5 ops{1},ops{2},ops {3}} ,... % ops

6 {[-1 -3 -5 -7 1 2 3],[-2 -4 -6 -8 4 5 6],[1 4],[2 5],[3 6]}) ,...

7 [indx (1) indx (2) indx (1) indx (2)]) ,[1 3 2 4]);

8 end

Listing 4.3: Contraction of Sa and Sb in the ket and bra layer to form Ea or Eb

Ea are Eb contracted to form E blocks as shown in Fig. 4.2(e). E forms a TN as shown

in Fig. 4.5(a).
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Isometries are calculated for the E tensors to do compression on the tensor network.

1 function [Isometry , IsomRank] = calculate_isometry(tensor , whichIndices)

2 % whichIndices: specify the index for which isometry has to be calculated

3 % tensor: input tensor

4 tenSize=size(tensor);

5 permutList =[ whichIndices setdiff (1: length(tenSize),whichIndices)];

6 tensor = reshape(permute(tensor ,permutList),[prod(tenSize(whichIndices))

numel(tensor)/prod(tenSize(whichIndices))]);

7

8 [Isometry ,D]=eig(tensor*tensor ’);

9 [~,I]=sort(abs(diag(D)),’descend ’);

10 IsomRank = rank(D);

11 Isometry=Isometry(:,I(1: IsomRank));

12 end

Listing 4.4: Calculates an insometry of tensor for indices specfied as input

Horizontal and vertical isometries are then applied to the E tensors that leads to the

compressed local tensors. Given the compressed E, the eigenvalues and eigenvectors of

the transfer operator T (shown in Fig. 4.2(e)) are calculated using Lanczos algorithm.

Lanczos algorithm is an iterative method and an adaptation of power algorithm to

calculate the eigenvalues and eigenvectors of a square matrix.

During each Lanczos iteration, T is applied to a vector followed by other steps. With

large Nv (number of E blocks along the circumference of cylinder), T and vector mul-

tiplication is a very expensive operation both in terms memory and computation time.

To get better trade offs between cost (memory requirements) and performance (com-

putation time), top and bottom legs of the transfer operator are traced over in a for

loop. And during T and vector multiplication two legs of every local tensor E in T are

contracted simultaneously. Fig. 4.6 shows the schematic of steps followed in vector

multiplication with T. Contraction of two indices of E simultaneously is efficient both in

terms of memory and computation time as compared to two separate contractions that

require the storage of intermediate tensor with larger size.
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Figure 4.6: Steps followed in vector multiplication with T during each iteration of
Lanczos algorithm. In the TN before the first small arrow, the thin vertical bar rep-
resents the vector and column of E tensors represents transfer operator T. At each
step indicated by small arrow, two legs of E marked by thick red lines are contracted
simultaneously with the corresponding indices of vector. Index of E with the label “it”
is traced over in a for loop and it ends in cycles that are equal to the size of that index.
The whole cycle of steps followed by the small arrows is repeated until the for loop

terminates.

Left and right eigenvectors of T are then used for calculation of expectation values and

for further numerical analysis.
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Numerical Results and

Discussions

5.1 Z4 Symmetries of Semionic RVB state Tensor Network

Symmetry properties of PEPS can be used to describe its topological order [14]. A

PEPS can be defined as invariant under the action of the symmetry group G if for every

g ∈ G, and for the local tensor S used to describe PEPS, S remains invariant under the

action of g on all its virtual indices. G-invariance of S can be shown as:

g

g

g

g-1

-1

S S
=

In case of RVB state topological order is accompanied by the invariance of tensor S

under Z2 = {Z, I} [4]. S also shows invariance in the case of Semionic RVB state but

under the cyclic group Z4 = {ζ, ζ2, ζ3, ζ4} = {ζ, Z, ζ̄, I}. Generator ζ of Z4 is given by

the following representation:

ζ :=


1 0 0

0 1 0

0 0 i


︸ ︷︷ ︸

η

⊗

(
0 1

1 0

)
︸ ︷︷ ︸

flip

(5.1)

where η acts on the legs of E tensor and flip on δ tensor legs.

37
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It can be shown analytically [15] that S remains invariant under the action of ζ on the

outer legs of S which belong to the E and δ tensors.

S

�ip

η

�ip

�ip

η

S= 

�ip

η

�ip

�ip

η

η �ip�ip

�ip �ipη

where black lines mark δ tensor legs and orange lines represent the legs of E.

In the following we give a sketch of the proof for Z4 invariance of the S tensors of

Semionic RVB state.

Given the way we fix the boundary conditions (BC) called charges (as in the lattice

gauge theory), we restrict possible lattice coverings or loop configurations between the

two ends of the cylinder. All loop patterns with odd number of strings between the two

ends of the cylinder and with color (δ) indices fixed by |0〉 ± |1〉 maps to ±i eigenspace

of ζ. Similarly, all loop patterns with even strings and with color (δ) indices fixed by

|0〉 ± |1〉 maps to ±1 eigenspace of ζ. Action of ζ on these sub-spaces is shown below:

BC are �xed by:
odd number of strings between 

two ends

color indices : +0 1-

ζ =
odd number of strings between 

two ends

color indices : +0 1-

i-+

even number of strings between 
two ends

color indices : +0 1-

ζ =
even number of strings between 

two ends

color indices : +0 1-

1-+

Each of the four sub-spaces are invariant the action of ζ and each one can be identified

with one of the eigenvalues of ζ. Assuming these sub-spaces spans the space of all lattice

coverings, it can be shown that ζ commutes with S. Using the same line of argument one

can concludes that ζ commutes with S in the vertical direction. Thus, S is Z4 invariant.

Tensor E is also Z4 invariant since it is composed of Z4 invariant S tensors in the ket

and bra layer. G-invariance property is stable under the concatenation of G-invariant

tensors [14]. So, T is also Z4 invariant. Z4 symmetry of T translates into following
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commutation relations.

[T, 1⊗ ζ] = 0 (5.2)

[T, ζ ⊗ 1] = 0 (5.3)

The commutation relations of T has also been varified numerically using following rela-

tion: ∥∥∥(ζi)⊗Nv |v〉 − λ |v〉∥∥∥
2
−→ 0 (5.4)

where |v〉 are the eigenvectors of T.

Given these commutation relations it can be inferred that T has a block diagonal form

with 16 blocks. Each block of T corresponds to one of the irreducible representations

of Z4 ⊗ Z4 or to one of the eigenvalues of ζ⊗Nv for both the bra and ket layer of the

transfer operator T. If we include the flux lines (details given in the next section) then

total transfer operator is made of 256 blocks in total.

T = ⊕
φ,φ′

{
⊕
c,c′

Tφ
′,c′

φ,c

}
(5.5)

where c, c′ ε {1,−1, i,−i} and φ, φ′ ε
{
ζ, Z, ζ, I

}
.

For a given PEPS one can define a parent Hamiltonian whose ground state subspace

is spanned by the PEPS [14]. Given that the transfer operator T of PEPS has a block

diagonal form, a lot of information about the parent Hamiltonian of the underlying

PEPS can be read from the structure of these blocks. For instance, the number of

blocks of T determines the degeneracy of the parent Hamiltonian [16].

5.2 Topological Sectors and Fixed Points of transfer oper-

ator T

The manifold of Semionic RVB States contains all lattice coverings on the kagome lattice

or loop patterns on its dual honeycomb. This space of possible configurations can be

divided into different disconnected topological sectors. These sectors are topological

since any local operator acting on a loop pattern preserves the sector and one can go

from one sector to another only by nonlocal operations.

By fixing the charge c ∈ {1,−1, i,−i} at the boundaries we choose one of the topological

sectors Sc. But Sc can be further divided into four sectors because ζ commutes with

Semionic RVB state tensor S in the vertical direction also. For a given charge c, by

inserting four different flux (as defined in lattice gauge theory) operators Fi, we can
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create four different Semionic RVB states
∣∣χ(ζi,c)

〉
for charge c. Flux operators Fi are

defined as:

Fi :=
∏

x ∈ Cx

(
ζi
)
x

(5.6)

where i ∈ {1, 2, 3, 4} and ζ2 = Z, ζ3 = ζ and ζ4 = I. Cx represents the sites where a

string of ζi is inserted between the two ends of the cylinder as shown in Fig. 5.1.

Nv

Nh

Sa

Sb

S

Sa

Sb

Sbot =

=

ζi ζi ζi ζi ζi ζi ζi ζi ζi ζi ζi ζi

Figure 5.1: Tensor network of Semionic RVB state with flux ζi denoted by blue
circles. Nv is equal to the number of E blocks along the circumference.

Depending on the value of i, flux operator Fi acts on each of the four sectors of Sc
differently and generates corresponding phase factors. Phase factors generated by flux

operators Fi for the four sectors of Sc is a topological property of the system since it is

not effected by the location where the flux string is placed between the two ends of the

cylinder.

We calculated largest eigenvalues γφ
′,c′

φ,c of T for different flux lines φ, φ′ and charges c, c′

both in the ket and bra layer of T as shown in Fig. 5.2. Eigenvectors corresponding

to the largest eigenvalues γφ
′,c′

φ,c are the fixed points of T where topological sectors in

the ket and bra layer are specified by the charges c and c′ and superposition with in a

topological sectors is given by fluxes φ and φ′.

On fixing the flux, Tφ
′

φ has 16 blocks corresponding to different charges in ket and bra.

Maximum eigenvalue γφ
′,c′

φ,c for the block is evaluated by doing projection P c
′
c after vector-

T multiplication in each Lanczos iteration. P c
′
c is a projector on the topological sectors

c and c′ in the ket and bra layer and is defined as:

P c
′
c :=

4∑
i,j=1

(
c ·
(
ζ⊗Nv

))i ⊗ (c′ · (ζ⊗Nv))j (5.7)

There are 256 possible combinations of flux and charge. Due to reflection symmetry

between ket and bra of T, 136 combinations are sufficient to determine the eigenvalues

for all possible combinations. Only certain combinations of (φ, φ′, c, c′) are compatible

and the eigenvalues (fixed points) for the rest of the combinations are zero.
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Figure 5.2: Largest eigenvalues (fixed points) of T for possible flux and charge com-
binations in the ket and bra layer, all values have been normalized by dividing by the

largest eigenvalue.
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5.3 Interpolation between Semionic RVB state and Double

Semion model

Tensor network formalism allows us to do interpolation between two PEPS. One can

determine whether the state these PEPS describe are in the same phase or not. The

interpolation between two PEPS is in fact interpolation between linear maps P, of

respective PEPS by continuously deforming one map into another. We have studied the

interpolation between Semionic RVB state and Semionic Dimer state (Double Semion

model) by parametrizing P(θ), such that

Pθ =

1∑
i=0

|i〉 [〈i2| (〈��|+ 〈��|) + 〈i2| (〈��|+ 〈��|)]+

θ
1∑
i=0

|i+ 2〉 [〈i2| (〈��|+ 〈��|)− 〈i2| (〈��|+ 〈��|)]. (5.8)

It can be easily verified that,

Psrvb ≡ Pθ=0 =
1∑
i=0

|i〉 [〈i2| (〈��|+ 〈��|) + 〈i2| (〈��|+ 〈��|)] (5.9)

and

Pdsem ≡ Pθ=1 =

1∑
i=0

(|i〉+ |i+ 2〉) [〈i2| (〈��|+ 〈��|)] + (|i〉 − |i+ 2〉) [〈2i| (〈��|+ 〈��|)]

(5.10)

Varying θ between 0 to 1 is actually a way of making non-orthogonal dimer configurations

in Semionic model to orthogonal configurations in the Double Semion model [4]. The

results of interpolation for largest eigenvalues γφ
′,c′

φ,c of T for different flux lines φ, φ′ and

charges c, c′ both in the ket and bra layer of T are shown in Fig. 5.3.

Double semion model is equivalent to the Semionic Dimer state and it has four topo-

logical states as its ground state subspace. Only 12 distinct combinations of (φ, φ′, c, c′)

remains non-zero at the Semionic Dimer state end of the interpolation and maps to its

four topological states. All the remaining combinations decay to 0. These 12 distinct

combinations is used in next section to construct Semionic RVB wavefunctions on the

cylinder.
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Figure 5.3: Interpolation between Semionic RVB state and Double Semion model for
the largest eigenvalues of non-zero blocks of T corresponding to different flux-charge

combinations in the ket and bra layer

5.4 Semionic RVB wavefunctions on the cylinder

From the numerical data of interpolation there are 12 distinct combinations for which

the eigenvalues of T remains non-zero at Semionic Dimer state end of interpolation.

These combinations are summarized below:

γΖ, 1

Ζ, 1
γΖ, 1

Ι,−1
γΙ,−1

Ι,−1

   γΖ,−1

Ζ,−1
γΖ,−1

Ι,1
γΙ, 1

Ι, 1

   γζ, i

ζ, i
γζ,−i

ζ,−i i
γζ,−i

,
γ i

i
γ ,−i

,−i
γ
ζ, i

,−iζ

ζ
ζ ζ,

ζ ,

ζ

All combinations within one line generate same eigenvalue for the T. State
∣∣χ(I,1)

〉
in

the bra layer when paired with itself or with the state
∣∣χ(Z,−1)

〉
in the ket layer gives

the same eigenvalue for T. Largest eigenvalues γφ
′,c′

φ,c of the transfer operator T for the

combination (φ, φ′, c, c′) gives a measure of the overlap between the states
∣∣χ(φ,c)

〉
and∣∣χ(φ′,c′)

〉
. Since Cauchy–Schwarz inequality holds strictly equal for γZ,−1

I,1 ,γI,1I,1 , and γZ,−1
Z,−1 ,

it suggests
∣∣χ(I,1)

〉
and

∣∣χ(Z,−1)

〉
are two equivalent ways for describing the same state.

Following the same line of reasoning, one can identify four different states with alternate
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representations. ∣∣χ(ζ,i)

〉
↔
∣∣∣χ(ζ̄,−i)

〉∣∣∣χ(ζ̄,i)

〉
↔
∣∣χ(ζ,−i)

〉∣∣χ(Z,1)

〉
↔
∣∣χ(I,−1)

〉∣∣χ(I,1)

〉
↔
∣∣χ(Z,−1)

〉


4 topologically

degenerate states
(5.11)

These states corresponds to different charges (topological sectors) at the boundaries and

type of flux strings between the two ends of cylinder.

5.5 Energy Density of Semionic RVB Wavefunctions and

Topological order

Using fixed points corresponding to different topological sectors (charges) and fluxes,

we computed energy density at the center of the cylinder in the limit Nh → ∞. For a

translationally invariant reference configuration R there are 12 distinct nearest neighbor

interactions (couplings) between 6 sites in the tensor block S. Energy per site (density)

is evaluated by doing the sum over all possible distinct couplings and dividing by number

of sites. For different combinations of flux and charge in the ket and bra layer energy

per site can be defined as:

Eφ
′,c′

φ,c =
1

6

12∑
i=1

〈
χ(φ′,c′)|h∞,i|χ(φ,c)

〉〈
χ(φ′,c′)|χ(φ,c)

〉 (5.12)

where h∞.i is the local term of Heisenberg Hamiltonian at the center of infinite cylinder.

Energy per site for different combinations are shown in Fig. 5.4. From the analysis of

data in Fig. 5.4 different blocks of T corresponding to the states in [Eq. 5.11] can be

ordered in the following way:
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Ι, 1

Ι, 1
E

Ζ, 1

Ζ, 1
E

Ι,−1

Ι,−1
E

EI,1I,1 and EZ,−1
Z,−1 denotes energy per site for the states

∣∣χ(I,1)

〉
and

∣∣χ(Z,−1)

〉
respectively.

The results for energy density in case of RVB state and Semionic RVB state shows

that RVB states gives lower energy density and makes a better ansatz for the ground

state of anti-ferromagnetic Heisenberg Hamiltonian on kagome lattice as compared to

the Semionic RVB states.
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Figure 5.4: Energy per site calculated at the center of cylinder in the limit Nh →∞
for different fixed points determined by flux and charge combinations in the ket and

bra layer T.
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Eigenvalues of transfer operator T for the four state in [Eq. 5.9] converge exponentially

to the same value in the thermodynamic limit as Nh, Nv →∞ and this is shown in Fig.5-

5(a). Splitting between the maximum and minimum eigenvalue exponentially decay to

zero Fig.5-5(b).

a b
Decay of eigenvalue splittings Convergence of eigenvalues of transfer operator 

 

 

2 3 4 
Nv(circumference of cylinder)

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

γ| |φ’,c’

φ, c

γI,1
I, 1| |

z, 1
z,1| |γ

ζ ,i
ζ ,i| |γ ,i

,i| |γ,
∼ b.e-c.Nv1-ζ

ζ

2 3 4 
Nv(circumference of cylinder)

−11

−10

−9

−8

−7

−6

−5

−4

Eigenvalues 
splittings: 

 γ   max (  γ   min

(

+ 

 γ   max (  γ   min

(

- log[ ]
slope=-2.746

Figure 5.5: (a)Convergence of eigenvalues of T for the four states in [Eq. 5.9] in limit
Nh, Nv →∞. Data points have been fitted with 1− be−cNv . For blue line b=2.404 and
c=2.79, for green line b=4.683 and c=2.785, for green line b=0. and c=0.(b) Decay of

eigenvalue splittings: log
(

(γmax−γmin)
(γmax+γmin)

)
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Calculations of energy per site for the four states at the center of infinite cylinder as

Nv →∞ also shows a similar behavior. Energies of the four states exponentially converge

Fig.5-6(a) and the splittings between the energies exponentially decays to zero Fig.5-

6(b).
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Convergence of the eigenvalues and energies gives a strong evidence that the four Semionic

RVb states [Eq. 5.9] are topologically degenerate since each state looks locally the same.
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Measurement of any local order parameter cannot distinguish between any of the four

degenerate states.

5.6 Reference Configurations

Each block S in the tensor network of Semionic RVB state contains 6 physical sites.

For each physical site their are two possibilities, depending on whether or not it is a

dimer site. So, there are 26 = 64 possibilities. Out of 64 only 8 can be valid reference

configurations, the rest of them violates the parity constraints enforce by the Arrow

rule. 8 possible reference configurations are shown in the Fig. 5-7. The two reference

configurations in each column are related to each other by translation.

S

S

S S

S

S

S

a b

S

Figure 5.7: All possible reference configurations. Red dots represent the physical site
and yellow lines mark dimers. All dimers that extend to the outside of the box are not

shown.

All the calculations for the fixed points of transfer operator, interpolation between

Semionic RVB state and Semionic Dimer state, and energy per site as shown on the

previous pages has been done for top left reference configuration in box.a of Fig. 5-7.

Given a flux-charge combination in the ket and bra layer of T, for all reference configu-

rations within box a. of Fig. 5-7. the calculations of fixed points (eigenvalues) of T give

same results. The aforementioned statement also holds true for reference configurations

within box b. of Fig. 5-7. But the results for reference configuration within box a.



Chapter 5. Numerical Results and Discussions 48

and box b. differ from each other. The reason for this discrepancy is still not clearly

understood.



Chapter 6

Summary

In this thesis we presented a PEPS and Tensor Network formalism of Semionic RVB

state by extending on the arrow interpretation of Normal RVB states. Given the time

and space complexity of the tensor network for Semionic RVB state we introduced two

optimizations in [sec. 4.3] these optimizations allowed us to do numerics for these states

with upto four blocks along the circumference of the cylinder.

We tried to asses whether Semionic RVB states can appear ground states of Heisenberg

Hamiltonian on kagome lattice. In [sec. 5.1] we analyzed symmetries in tensor network of

Semionic RVB state and showed that it is Z4 invariant. In [sec. 5.2] we parametrized four

topologically degenerate Semionic RVB states and study their topological order. The

comparisons of results for energy density in case of RVB state and Semionic RVB state

shows that RVB states makes a better ansatz for the ground state of anti ferromagnetic

Heisenberg Hamiltonian on kagome lattice. The results of interpolation in [sec. 5.3]

between Semionic RVB state and Semionic Dimer state show that Semionic RVB state

is in the same phase as Double Semion Model and realizes a Z2 spin liquid state. The

question of dependency of results on different reference configuration still remained to

be answered.
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Appendix A

Toric Code state and Double

Semion Model

This appendix gives a brief overview of Toric code state and Double Semion Model. It

does not attempt to prove any new result and mostly based on the work of Levin and

Wen in [13, 17]. Toric code model and Double Semion model are simplest examples of

string-net condensed state. They are the ground states of exactly soluble Hamiltonains

of the form [17]:

H = −
∑
v

Qv −
∑
p

Bp (A.1)

where v runs over all the vertices and p runs over all the plaquettes (hexagons) of the

honeycomb lattice. Local terms Qv and Bp are called the electric charge and magnetic

flux operators.

These Hamiltonians provide an explicit realization of topological phases.

A.1 Toric code Model

Given a system of spin-1/2 at the links of honeycomb lattice, acts the Hamiltonian:

Htc = −
∑
v

 ∏
i ∈ vertex(v)

σzi

−∑
p

 ∏
j ∈ plaquette(p)

σxj

 (A.2)

where σx,z are Pauli matrices. The first term (electric charge) acts on three legs of vertex

v, the second term magnetic energy acts on the six edges of p with an operator σx.

The ground state of this model is exactly known. The ground state of Htc can be un-

derstood in the language of string nets. We define strings as the links of the honeycomb
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lattice where physical sites has σz = −1, sites with σz = 1 are treated as empty. The

first term in the Htc is minimized by an even number of down spins around a vertex. The

second terms flip all the spins in the plaquette. So, ground state |ψtc〉 of Htc can be inter-

preted as an equal weight superposition of all possible closed string loop configurations

[13].

|ψtc〉 =
∑

L ∈ closed

|L〉 (A.3)

Manifold of all possible closed string configurations can be divided into four disconnected

topological sectors. Each sector is characterized by winding number parity Px and Py:

Px/y =
∏

i ∈ Cx/y

σzi (A.4)

where Cx/y represents links along the blue line as shown in Fig. A.1.

Toric code is a simplest model of Z2 lattice gauge theory. |ψtc〉 contains topological order

which breaks no symmetry. It has quasi-particle excitations with non-trivial statistics,

and non-zero entanglement entropy.

v

p

σz

σx

σx

σx

σx

σx

σx

σzf( )

σzf( )

σzf( )

σzf( )
σzf( )

σzf( )

σz

σz

σz = −1

σz = −1

σz = −1
σz =1

σz σz σz σz σz σz

σz

σz

σz

σz

Px

Py

Figure A.1: Honeycomb lattice with physical sites marked by red dots. Legs of vertex
v are denoted by light blue lines that are acted on by σz. Plaquette p is acted at the
edges with σx. Legs of p are operated on by f (σz) which is I in case of Toric code
model and i(1−σ

z)/2 in the case of Double Semion model. Dark blue lines with string
of σz’s represent winding number parity operators Px/y. Loop marked by orange lines

represent strings on physical sites with σz = −1 [22].
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A.2 Double Semion Model

Double Semion Model was introduced by Levin and Wen in [17]. It is the ground state

of the Hamiltonian:

Hdsem = −
∑
v

 ∏
i ∈ vertex(v)

σzi

+
∑
p

 ∏
j ∈ plaquette(p)

σxj

 ∏
j ∈ legs(p)

i(1−σzj )/2


(A.5)

Similar to the Toric code, first term (electric charge) acts on three legs of vertex v, the

second term magnetic energy acts on the six edges of p with an operator σx and on

six legs of p with an operator i(1−σzj )/2 (see Fig. A-1 ). The ground state of Double

semion model also know exactly and can be interpreted in the string language. Ground

state of Hdsem is a superposition of all possible string configurations with different phase

factors that are determined by the parity of the number of closed strings in the loop

configurations configurations [13].

|ψdsem〉 =
∑

L ∈ closed

(−1)n(L) |L〉 (A.6)

where n (L) is the number of closed strings in the loop configuration.

Double semion state contains topological order that is characterized by quasi-particle

excitations with semionic statistics and long range entanglements.

Although, Toric code state and Double Semion state are made of long range objects

(string configurations) that extend up to the size of the system, and n (L) is a global

property which cannot by determined locally, both of them have efficient Tensor Network

description in terms of local tensors [13]. Hidden within these states are Quantum Dimer

models which are defined by loop patterns made by the overlap of dimer coverings with

any arbitrary dimer configuration. Toric code and Double Semion model present a dual

picture of Dimer state and Semionic dimer state respectively.
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