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Abstract

In this thesis, we consider projected entangled pair state (PEPS) models as

a framework for two-dimensional strongly-correlated quantum many body sys-

tems, where the global properties of the system are concisely encoded in one

local tensor. While it was well known how to construct PEPS models with de-

sired symmetries by manifestly encoding the symmetry in the local tensor, our

goal in this work is to investigate whether this manifestly encoded symmetry

can be spontaneously broken. By defining long-range order as a good crite-

rion for symmetry breaking in a finite volume PEPS, we answer this question

in the affirmative. A particularly attractive feature of PEPS models is that

they have an exact holographic mapping, which is to say that the large system

behavior is described by the “PEPS boundary”, given by the fixed point(s) of

the so called transfer operator. We investigate the implications of long-range

order and prove that it leads to a particular symmetry breaking pattern in

the fixed point space. We find this pattern by first proving that long-range

order implies an asymptotic degeneracy in the transfer operator and then iden-

tifying the symmetry breaking mechanism as the one which, from all possible

boundary (-matrix) configurations, selects the configurations that correspond

to positive-semi-definite matrices, i.e. one-dimensional virtual quantum states.

We prove that these correspond to boundary configurations that do not mix

under arbitrary perturbations and are thus stable. We study the entanglement

properties of these virtual quantum states and show that they can be described

by local entanglement Hamiltonians, establishing that also in phases with sym-

metry breaking, gapped quantum phases have an associated local entanglement

Hamiltonian.
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Zusammenfassung

In der vorliegenden Arbeit beschäftigen wir uns mit sogenannten PEPS Mo-

dellen (PEPS, engl. “projizierte verschränkte Paarzustände”) als Werkzeug zur

Beschreibung und Analyse von stark korrelierten Quantenvielteilchensystemen.

PEPS Modelle kodieren die globalen (Verschränktheits-)Eigenschaften in einem

lokalen Tensor, insbesondere inklusive der Symmetrieeigenschaften. Ziel der vor-

liegenden Arbeit ist es, zu untersuchen, ob diese manifest kodierte Symmetrie

spontan gebrochen werden kann. Indem wir langreichweitige Ordnung als geeig-

netes Kriterium für Symmetriebrechung in einem PEPS mit endlichem Volumen

identifizieren, beantworten wir diese Frage affirmativ. Eine besonders attraktive

Eigenschaft von PEPS Modellen ist, dass sie eine exakte holographische Ab-

bildung ermöglichen, in der das zwei-dimensionale “Bulk”-System durch einen

ein-dimensionalen “PEPS Rand” beschrieben wird, der auf dem Fixpunktraum

des sogenannten Transferoperators lebt. Wir untersuchen die Implikationen von

langreichweitiger Ordnung und beweisen, dass diese zu einem eindeutigen Sym-

metriebrechungsmuster im Fixpunktraum führt. Wir finden dieses Muster expli-

zit, indem wir zunächst beweisen, dass langreichweitige Ordnung zu einer asym-

ptotischen Entartung im Transferoperator führt, um dann den Symmetriebre-

chungsmechanismus als denjenigen zu identifizieren, der aus allen möglichen

Randzuständen (Matrizen) diejeningen auswählt, die zu positiv-semi-definiten

Matrizen korrespondieren, also ein-dimensionalen virtuellen Quantenzuständen.

Wir beweisen, dass dies genau diejenigen Randkonfigurationen sind, die un-

ter beliebigen Störungen nicht mischen und somit stabil sind. Wir untersuchen

die Verschränktheitseigenschaften dieser virtuellen Quantenzustände und zei-

gen, dass diese durch lokale Verschränktheitshamiltonians beschrieben werden

können, womit wir etablieren, dass Quantenphasen auch in Phasen mit Symme-

triebrechung einen assoziierten Verschränktheitshamiltonian besitzen.
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Chapter 1

Introduction

This thesis is concerned with projected entangled pair state models as a frame-

work for quantum many body systems in two dimensions. Our key interest will

be the interplay between local and global entanglement and symmetry properties

of these systems. At low temperatures, quantum correlations, i.e. entanglement,

lead(s) to novel effects and exotic states of so-called quantum matter [61]. The

quantum mechanical description of a many body system is given by a global

wave-function that encompasses a macroscopic number of particles, which in-

teract by a local Hamiltonian. These particles mathematically live on a tensor

product space, typically arranged on some lattice structure. In order to explore

these quantum correlations, we have to find the wave-function and when trying

to do so, we are quickly faced with the very basic problem that the underlying

Hilbert space, on which the many body state lives, grows exponentially with

the number of constituents (i.e. the size of the lattice), while at the same time,

the Hamiltonian describing these systems is typically local and translation in-

variant and can be specified with very few parameters. It turns out that the

states of interest, ground states, low-lying excitations and thermal states only

occupy a small subset of the many body Hilbert space. Parametrizing this

“physical corner of Hilbert space” is the central effort of PEPS [74, 45]. The

key insight is, that the states of interest follow a very peculiar entanglement

scaling, which is known as the area law scaling. PEPS encode this global entan-

glement scaling property locally in the PEPS tensor and they have been proven

to describe the low-energy landscape of local Hamiltonians well [40]. This leads

us to taking a “bottom-up” model-building approach to PEPS: the definition

of a single local tensor allows us to effectively and compactly define an entire
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CHAPTER 1. INTRODUCTION

many body model, consisting of a Hamiltonian, the corresponding ground-state

and low-energy landscape. The question we are concerned with in this work is,

how much information about the global, emergent, properties of a system can

be locally encoded in the PEPS tensor. As we have seen above, this worked

for the area law, which for PEPS is “built-in” in the local tensor. The same

holds for symmetries: it is well known, how to locally encode symmetries in

the PEPS tensor, that lead to global symmetries in the model. The question

we are concerned with in this work is: can PEPS models host systems, where

this locally encoded symmetry is, globally, spontaneously broken? Spontaneous

symmetry breaking is a prime example of an emergent phenomenon, which in

fact can only happen in the thermodynamic limit. Remarkably, we will find that

we can indeed observe spontaneous symmetry breaking in PEPS. After showing

that long-range order is the suitable criterion to detect emergent (“hidden”)

symmetry breaking in finite systems, we will study its implications for PEPS

models. We will show how the stability of symmetry broken states leads us to a

unique symmetry breaking pattern on the entanglement degrees of freedom of

the system, which in a PEPS model are given by the fixed points of the so-called

transfer operator. We will prove this uniqueness and explicitly determine the

corresponding symmetry broken states. We will then construct prototype PEPS

models, which fulfill the requirements, we set out earlier. We extensively study

their properties numerically and successfully extract the signatures of symmetry

breaking from finite PEPS data. Thanks to an exact holographic mapping, the

entanglement degrees of freedom in a PEPS model can be described by another

quantum system living on the boundary of the two-dimensional model. Having

established the “true”, symmetry broken, nature of this boundary, we study

its entanglement structure by the use of so called entanglement Hamiltonians,

where we establish that also phases with symmetry breaking have an associated

local entanglement Hamiltonian.

In chapter 2, we will start by discussing entanglement in many body systems.

We explain what is meant by entanglement scaling and the area law. In chapter

3, we show how trying to encode entanglement locally naturally leads to PEPS.

We pave the way for PEPS models, introducing parent Hamiltonians, pertur-

bations and symmetries and give a general recipe for the construction of PEPS

models. We then show how correlations in PEPS are encoded in the transfer

operator, which renders this the central object for the study of long-range order

and symmetry breaking, thereby necessitating a number of analytical techniques

2



CHAPTER 1. INTRODUCTION

needed to tackle transfer operators and their eigenstates (fixed points), which

we are concerned with in the second half of chapter 3. We then are ready for

chapter 4, where we present long-range order (opposed to an order parame-

ter) as the suitable criterion for symmetry breaking in PEPS. We prove, that

long-range order implies an emergent degeneracy in the largest eigenvalue of the

transfer operator. Defining the notion of symmetry broken states as the ones

stable under arbitrary perturbations, we then prove that the set of symmetry

broken fixed points is uniquely defined as the ones corresponding to virtual den-

sity matrices. We manage to construct these states explicitly from the states

that defined the original (unbroken) model. We then move on to chapter 5,

in which we present the numerical techniques we need in order to be able to

study and simulate PEPS models on the computer. We put these techniques

to extensive use in chapter 6, where we use the mentioned recipe for PEPS

model building to study three prototypical PEPS models, from which we are

able to extract the signatures of symmetry breaking. We conclude with chapter

7, where we study the entanglement structure of the PEPS boundary and show

that the boundary of PEPS with spontaneous symmetry breaking is described

by a local entanglement Hamiltonian.

Publications

Parts of the ideas presented here have been published in the following two

publications:

• Manuel Rispler, Kasper Duivenvoorden and Norbert Schuch, ”Long-range

order and symmetry breaking in Projected Entangled Pair State models”

Phys. Rev. B, 92:155133 , 2015

• Manuel Rispler, Kasper Duivenvoorden and Norbert Schuch, ”ZN sym-

metry breaking in Projected Entangled Pair State models”, Journal of

Physics A: Mathematical and Theoretical 50(36):365001 , 2017

3



CHAPTER 1. INTRODUCTION

4



Chapter 2

Entanglement in quantum

many body systems

The most crucial insight from the theory of entanglement, which has shed light

on the structure of quantum many body states of local Hamiltonians, is known

as the area law [20, 5]. Let us use this chapter to describe what is meant by

that and how this motivates us to model quantum many body systems by their

entanglement degrees of freedom, eventually leading to PEPS models.

The postulates of quantum mechanics tell us, that a physical system is described

by states |ψ〉 ∈ H and observables A ∈ B(H) on a Hilbert space H [70]. The

latter are operators acting on the former. The density matrix for pure states

is given by ρ = |ψ〉 〈ψ| and the Born rule tells us, that expectation values of

observables are computed by 〈O〉 = tr(Oρ) The operation we need in order

to talk about systems built from subsystems, is the tensor product. Both the

states and by extension the operators on theses states can be furnished with a

tensor product, which is denoted by ⊗, to allow for a system with more than one

constituent: H = H1 ⊗ H2. While this is known to be plagued with problems

for infinite systems and one in principle has to resort to formulate the theory

in terms of algebras of observables and functionals on them, we will take the

pragmatic standpoint that we can always work with a large but finite system

when it is convenient and remind ourselves of these subtleties, whenever it is

due. We formulate our theory on the lattice, where the Hilbert space is large

5



2.1. ENTANGLEMENT CHAPTER 2. QMB-ENTANGLEMENT

but finite

H =

N⊗
i=1

Hi. (2.1)

Assuming, that we have a local orthonormal basis at hand, the quantum state

living on this space is parametrized by

|ψ〉 =
∑
i1...iN

ci1···iN |i1 . . . iN 〉 . (2.2)

Notice, that while the basis elements have a product structure, they are just

the tensor product of the local bases, the state itself does not necessarily have

this product property. This leads to the concept of entanglement.

2.1 Entanglement

Non-classical effects in strongly correlated quantum many body systems are

intricately related to the phenomenon of entanglement. The notion of entangle-

ment is defined as follows: We call a pure quantum state

|ψ〉 ∈ HA ⊗HB , (2.3)

(bipartite-)entangled, if it is not separable, i.e. there exist no |φA〉 ∈ HA and

|φ〉B ∈ HB , such that |ψ〉 is a product state:

|ψ〉 6= |φ〉A ⊗ |φ〉B . (2.4)

The relevance of this phenomenon was put forward by Einstein, Podolsky and

Rosen in 1935 [19], who realized that the fact that the quantum state of a com-

posite system may sometimes not be a composition of independent descriptions

of the subsystems has unexpected implications. While this led them to doubt

that quantum theory was correct, it was Schrödinger, who coined the term “en-

tanglement” and understood the fundamental change this phenomenon would

lead to [64]:

“[. . . ] I would not call that one but rather the characteristic trait of quan-

tum mechanics, the one that enforces its entire departure from classical lines

of thought. By the interaction the two representatives (or ψ-functions) have

become entangled. [. . . ]”

6
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Entanglement is at the heart of quantum theory and has profound implications

for its very foundation. Most notably, John Bell introduced a bound on the

possible outcomes of a certain measurement procedure (“the Bell inequality”),

above which a theory cannot be local-realistic and found that quantum mechan-

ics violates this bound [6]. The states that maximally violate these assumptions

as called maximally entangled states, or Bell states in the case of two-level

systems. Our representative shall be

|ψ+〉 =
1√
2

(|00〉+ |11〉), (2.5)

noting that there are three other Bell-states, which are equivalent under local

unitaries. Experiments to this day maintain that quantum theory is correct

and nature violates the Bell inequality. So called loophole-free Bell tests were

published as recent as 2015 and closed all “reasonable” loopholes [29]. Entan-

glement is rather poorly understood beyond the pure bipartite case and subject

to many ongoing debates. A review on entanglement theory can be found in

[31]. Our approach could be summarized as asking, what implications does

this “quantumness” of entanglement have for many body systems? How is this

“quantum matter” related to entanglement of many body systems and what can

we learn from entanglement theory in order to find good descriptions of these

systems?

The modern understanding of entanglement is that of a resource theory. Entan-

glement is a non-local resource, which is hard to produce in contrast to the cheap

transformations local operations and classical communication between the two

parties (“LOCC”). Entanglement is useful in order to complete non-trivial tasks

and in the process we consume it. The meaning of resource can be quite literally

that of a thing that we need in order to produce a desired other thing, which

would be for example quantum communication or teleportation, dense coding,

entanglement distillation etc. but it can also be more abstract, like the ability

of a material to allow for non-local correlations and (quasi-)particles, as would

be the case for anyonic excitations in topologically ordered condensed matter

systems for example.

In the case of bipartite pure states, entanglement is well understood, thanks to

the existence of entanglement monotones, which were defined by Vidal [77] and

7
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comprise the necessary criteria for entanglement measures. It is straightforward

to certify, whether a given state is entangled, to compare the amount of entan-

glement between two states and to decide whether one state can be converted

into the other under LOCC. The most powerful mathematical tool for bipartite

entanglement is the singular value decomposition, which in this context is called

the Schmidt decomposition:

Given a rectangular matrix M ∈ Cm × Cn, it is always possible to perform a

singular value decomposition (SVD), which is to find matrices U , S and V , such

that

M = USV †, (2.6)

where U is a unitary m × m matrix, S is a m × n rectangular matrix with

non-negative diagonal entries and V is a unitary n× n matrix. If we now take

a bipartition of a quantum state

|ψ〉 =
∑
ij

cij |ψi〉A ⊗ |ψj〉B , (2.7)

apply this to the wave-function coefficient and absorb the unitaries in the local

basis sets, we arrive at the Schmidt normal form:

|ψ〉 =
∑
k

sk |φ[A]
k 〉 |φ

[B]
k 〉 (2.8)

Note, that this normal form is unique in terms of the singular values. The

two parties A and B (agenst Alice and Bob) can apply local unitaries to their

subsystem, which is reflected in the unitary freedom to choose the local basis,

but the singular values cannot be changed by one party alone, which already

indicates, that this is a good measure of entanglement.

This has an effect on the ability to compute expectation values via the Born rule

given above. Suppose the observable we want to compute only acts on A, then

we are tracing out B. This motivates us to define the reduced density matrix,

which is given by the partial trace over system B:

ρA = trB(ρ) =
∑
k

(1A ⊗ 〈k|B)[ρ](1A ⊗ |k〉B), (2.9)

where |k〉 is some complete basis for subsystem B. From the Schmidt normal

form, we learn that the reduced state is pure, if and only if A and B are not

entangled. If they are entangled, the reduced state is a mixed state and mea-

8
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suring the amout of entanglement is equivalent to measuring the ”mixedness”

of the reduced density matrix. This is done by entropies, so we define the Rényi

entropies as

Sα(X) =
1

1− α
tr(Xα) (2.10)

There are additional natural requirements for a good measure of entanglement:

besides invariance/monotonicity under local unitaries, the measure should be

additive (under tensoring of states) and continuous in the input state [77]. It

turns out that for pure bipartite entanglement the von Neumann entropy of the

reduced state is a unique measure of entanglement:

S(ρA) = − tr(ρA log(ρA)) = −
∑
k

s2
k log(s2

k) (2.11)

2.2 Area law and PEPS

So far we have been only concerned with entanglement between two parties.

The natural question is how to take this to a many body setting. In principle,

one could go to the theory of multipartite entanglement and try to find measures

for this, however the study of multipartite entanglement is very challenging and

for the most part an open problem [3]. We will therefore focus on bipartite

entanglement, which is far better understood. This means that in order to

speak about bipartite entanglement, we group the system at hand into two

parts, ascribing one connected region of the lattice to a subsystem R, which

corresponds to A in the above setting but is now extended in space) and the

complement region to subsystem R̄, which corresponds to B. We call this an

entanglement cut, depicted in Fig. 2.1. The many body aspect will come into

play in the form of the scaling of entanglement when changing the sizes of the

two regions in this bipartition. As in the two particle case in the previous

section, the entanglement entropy is again our measure of entanglement. Given

a generic many body state, we would have a maximally mixed reduced state

and thus have an entropy which is proportional to its volume.

However, this disregards the fact that we are typically interested in very special

class of states: Ground states, low excitations and thermal states of local Hamil-

tonians. These typically have a finite correlation length. In order to get some

intuition, let us take a very näıve approach for a moment and treat entangle-

ment somewhat analogous to correlations. The entanglement entropy measures

the correlation between the two subsystems of the bipartition. Together with

9



2.2. AREA LAW AND PEPS CHAPTER 2. QMB-ENTANGLEMENT

Figure 2.1: Example of a bipartition of a many body quantum state. Nodes
depict the particles on the lattice (e.g. spins) and wiggly lines indicate correla-
tions. We partition into subsystems R and R̄ and anything on subsystem R is
described by the reduced density matrix ρR, which we compute by tracing out
system B. The entropy of this reduced state ρR is related to the entanglement
between subsystems R and R̄. When the entropy is propotional to the boundary
∂R, we say that the system follows an area law.

the finite correlation length, this implies that only things which are not further

away from the bipartition cut, than the correlation length, can contribute to

the entropy, which means that the latter is proportional to the length of the bi-

partition cut length, denoted as the boundary of the subsystem(s). It is slightly

ironic, that the area law is nowadays mostly used in lower-dimensional systems,

where it is not an area but rather a constant or a perimeter, but the name,

which was originally inspired by black hole thermodynamics, which deals with

the boundary of three-dimensional objects and thus areas in the usual sense,

has stuck.

In one dimensional systems, it has been proven that the ground states of gapped

local Hamiltonians fulfil an area law [28]. Also the relation, that exponen-

tially decaying correlations imply an area law, which we use in our vague intu-

ition building in the preceding paragraph, has been proven rigorously for one-

dimensional systems [8]. Let us take this point, to mention tensor networks and

PEPS for the first time: The one-dimensional version, known as matrix product

states (MPS), naturally have an area law built in and indeed Hastings [28] also

proved that the ground states of local gapped Hamiltonians have MPS form. In

higher dimensions, the situation is less clear and open to debate. Understanding

the area law is an important problem in the field of Hamiltonian complexity [46],

i.e. the question of how difficult it is to simulate a physical system. While the

10



CHAPTER 2. QMB-ENTANGLEMENT 2.2. AREA LAW AND PEPS

area law structure was a strong motivation to study generalizations of matrix

product states, which are then called projected entangled pair states (PEPS)

and will be the subject of this thesis, the current status can be summarized as

follows: On the one hand, there exist states in two dimensions, which have an

area law and cannot be described by tensor networks [25]. On the other hand,

it was proven in [40], that the ground state of a local gapped Hamiltonian has

a PEPS description, if one makes a moderate assumption on the scaling of the

density of states. The latter does not initially rely on an area law structure,

which suggests that we can leave the potential complications of the area law

discussion aside and take from this, that PEPS are very well suited for two-

dimensional local gapped Hamiltonians. We continue in the next chapter with

defining PEPS and showing, how we get to PEPS models .

11
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Chapter 3

Projected Entangled Pair

State models

As alluded to in the previous chapter, projected entangled pair states provide a

systematic way for the construction of many body wave functions with a desired

entanglement scaling [74, 45]. In this chapter, we will define what a PEPS is

and how we can use it to construct PEPS models and identify their relevant

properties. We will start by showing how one can introduce entanglement de-

grees of freedom in a local description of a many body system and how this

leads to the definition of the PEPS tensor. In a second step, we will reveal

the entanglement properties of the state we construct and how it automatically

leads to area law states. We show how the tensor defines an entire model with

an associated Hamiltonian, including a presentation of how to build symmetries

in these models. We then give a prescription how to construct PEPS models

from classical statistical models. We show how to analyze these models by their

transfer operator and derive an exact holographic mapping between the bulk

and the boundary state. We conclude the chapter with the most important

properties of transfer operators, largely relying on a strong link to the theory of

quantum channels.

13
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3.1 From mean field theory to PEPS

A particularly simple ansatz to solve the many body problem on the lattice

is to just assume that it is a product of independent wave-functions on every

lattice site. As we will always assume translation invariance, specifying the local

wave-function then immediately defines the global wave-function. This is quite

useful in many cases and is a good example of how to get a local description of

the many body system, where by local we mean that we only have to specify

the wave-function on one site to describe the entire system. This ansatz is

known as mean field theory [10] and works quite well in many cases, however

it completely discards the entanglement structure of wave-functions right from

the start. Our goal now will be to find a local ansatz, that nevertheless lets us

encode entanglement properties. The key idea is to take the local Hilbert space

describing one lattice site and attaching extra degrees of freedom to it, so called

fiducial states, which are entangled with the physical particle. These will in a

later step then take care of entangling the site with the rest of the system. From

a quantum information perspective, this process can be viewed as entanglement

swapping. To distinguish the two types of local degrees of freedom, the original

degree of freedom will be called physical degree of freedom and the fiducial states

will be called entanglement or virtual degrees of freedom. We will use a square

lattice for simplicity, even though the construction works for any lattice. The

new, “hybrid” local state thus lives on the Hilbert space Hphysical⊗(Hvirtual)
⊗4.

The dimension of the physical Hilbert space is dependent on the problem we

are trying to describe and is conventionally denoted dim(Hphysical) = d. The

dimensions of the virtual spaces are arbitrary, we choose them all equal and call

this dimension the bond dimension, denoted by dim(Hvirtual) = D. As we will

see in a moment, this bond dimension is directly related to the entanglement

we can capture with this construction. Let all spaces be spanned by some

orthonormal basis sets in the computational basis, then the hybrid state on the

lattice site can be expanded in that basis. We refer to the indices corresponding

to the virtual spaces as virtual indices, usually given a Greek letter index and

the one corresponding to the physical space as the physical index, usually given

a Latin letter index. We depict this tensor graphically by a five-legged object

(Fig. 3.1).

We now define the procedure how to get from this local object to the global

wave-function. This process is called contraction and works by putting one
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Figure 3.1: We model the many body wave-function by defining a local object,
which is a hybrid state consisting of one physical (red dot) and four virtual (black
dots) Hilbert spaces. Expanding this state in a basis immediately leads to the
definition of the PEPS tensor A. Its graphical representation conventionally has
the physical index (Latin letter) pointing up and the four virtual indices (Greek
letters) point lie in plane (left, front, right, back).

hybrid state on every lattice site and taking the inner product over adjacent

virtual states. Since we assumed (wlog) the virtual spaces to be spanned by

orthonormal bases, this is equivalent to putting the indices corresponding to

adjacent sites equal and summing over this index. As an example we contract

two PEPS tensors by writing out the tensors in eq. 3.1:

∑
γ

(Ai1αβγδA
i2
γµνρ) |i1i2〉 〈αβδµνρ| . (3.1)

We then perform the same operation diagrammatically by graphically repre-

senting the tensors as boxes with legs, as done in in fig. 3.2.

Figure 3.2: The fusion of two hybrid states is done by taking the inner prod-
uct on the virtual spaces belonging to neighboring sites. This is equivalent to
setting the indices in the corresponding PEPS tensor equal and summing over
them. This process is called contraction of an index and is graphically depicted
by connecting the two legs. This shows the advantage of the diagrammatic ma-
nipulations, when compared to the the formula 3.1, where it is hard to keep
track of which index goes where.
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The full wave-function is given by contracting out all the virtual indices over

the lattice, where we either close the boundary periodically or choose some

virtual boundary configuration. This leaves us with a quantum state living on

(Hphysical)
⊗N , as desired.

Figure 3.3: Contracting out the virtual indices gives the physical quantum state
after choosing an appropriate virtual boundary condition.

We have thus completed the description of a procedure how to get a global

quantum state from a local tensor in a “bottom-up” approach to wave-functions.

The presented viewpoint with fiducial states emphasizes the character of PEPS

as “mean field with entanglement”. In order to understand its entanglement

properties, we will now present the more standard PEPS construction, which

works in a somewhat reverse fashion to the above approach. For this, let us

imagine again a square lattice, however now a priori without any physical degrees

of freedom. Let the virtual degrees of freedom form maximally entangled pairs

of the form

|ω〉m,n =

D−1∑
k=0

|k〉m |k〉n , (3.2)

which are nothing but generalized Bell states. By m and n we denote lattice

sites, which are nearest neighbors. We thus have a square lattice, where on

every node there are four incident halves of a Bell state shared with every

nearest neighbor. We denote the full state by

|Ω〉 =
⊗
l∈links

|ω〉l (3.3)

In order to eventually describe one physical degree of freedom per lattice site,

we apply a linear map on every node, which is commonly referred to as the

projector P.

As shown in figure 3.4, the linear map has four states as input and one state

as output. This map in specified by an array with five indices and we arrive at
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Figure 3.4: PEPS construction from maximally entangled virtual states. The
linear map P takes as input one part of the two-party maximally entangled
states |ω〉 and has the physical Hilbert space as its target space.

the definition of the PEPS tensor, which is completely equivalent to our above

construction that resulted in eq. 3.1:

P : (Hvirtual)
⊗4 → Hphysical (3.4)

P =
∑
iαβγδ

Aiαβγδ |i〉 〈αβγδ| . (3.5)

We thus interpret the virtual states as an input and the physical state as an

output of a linear map. As we constructed the state from applying a projec-

tor (actually a linear map) on (maximally) entangled pair states, this explains

the name projected entangled pair state. This interpretation is very insightful,

because we know the amount of entanglement in the virtual links, their entan-

glement is simply given by S(trB |ω〉 〈ω|) = logD, i.e. by tracing out one side of

the maximally entangled state, as defined in eq. 2.9. The quantum state is then

given by applying the linear map on every node of the network of maximally

entangled virtual states:

|ψ〉 = (P ⊗ · · · ⊗ P)(|Ω〉). (3.6)

If we now make an entanglement cut on this quantum state, i.e. bipartition it

into two regions (cf. fig. 2.1), the above equation immediately gives us an upper

bound on the entanglement, this bipartition can have. The key insight is that

the linear map acts locally and as was alluded to in chapter 1, the entanglement

entropy is non-increasing under local operations. The entanglement entropy is

thus upper bounded by the entanglement entropy of the virtual state. Com-

puting the entanglement entropy of the virtual state is almost trivial. The cut

will bipartition, which means it cuts through the virtual maximally entangled

pairs along the boundary of the region. Only these states that are cut in half,
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contribute to the entanglement and the entropy is simply given by

S(trR̄ |ψ〉 〈ψ|) ≤ S(trR̄ |Ω〉 〈Ω|) = L log(D), (3.7)

where L denotes the length of the boundary, which is equal to the number of

bonds we cut. We thus learn, that PEPS have an area law structure built into

the way we construct them. By varying the bond dimension, we can increase the

amount of entanglement that can be captured by the PEPS wave-function. Let

us mention as a side-remark, that this class is also complete, any quantum state

can be written as a PEPS, albeit one has to allow for arbitrary bond dimensions,

which makes this rather useless in practice. However it has turned out that

already at very small bond dimensions PEPS states can host very intriguing

phenomena and provide a fruitful analytical and numerical framework [75].

3.2 PEPS models: Hamiltonians and symme-

tries

PEPS and tensor networks in general are state-centered, i.e. they construct the

quantum state directly. To emphasize the model-building character of PEPS,

and to ensure that we are actually dealing with a physical model, let us (a)

relate this state to a Hamiltonian and (b) show how to encode symmetries in

the tensor. For the first part, let us construct a Hamiltonian from the PEPS

tensor, which is designed such that the PEPS wave-function is the ground-state

of this Hamiltonian. We again view the tensor as a linear map from virtual

spaces to physical space A : (CD)⊗4 → Cd. Similarly, we define AR as the

linear map from the virtual boundary of a region R to the physical bulk space

of R by taking |R| copies of A and contracting the inner indices. The parent

Hamiltonian [50] is given by

H =
∑
R

hR, (3.8)

where hR is the projector onto the orthogonal complement of the image of

(AR). Depending on the particular PEPS tensor, we might have to define big-

ger patches R before this becomes a non-trivial operator, however the area law

property gives a counting argument that this will happen, since the image space

grows with the volume and the domain only with the size of the boundary. We
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see, that hR are defined purely by the tensor, thus its spectral properties will be

determined by the properties of the tensor. At this point, a few remarks about

the main results on parent Hamiltonians are in order: If we view the local tensor

as a linear map from virtual to physical space, we see from simple dimension

counting, that it will be typically a mapping from many to fewer degrees of

freedom. This implies that the mapping cannot be injective. However, we can

block several sites together and again owing to the area law structure, the size

of the image of this map will grow faster than the preimage, which means that

after a finite number of blocking steps, we can expect that the linear map will

generically be injective. By “generic” we mean, that almost all maps are injec-

tive, which can be seen by the fact that a map is injective if it has full rank

and the set of rank-deficit matrices is a very special set with constraints and

thus lives on a lower-dimensional subspace of the space of all matrices. Given a

rank-deficit matrix, a small perturbation will always steer it away and render it

full-rank. Thus, if we for example draw random PEPS according to some prob-

abilistic process, we will draw an injective PEPS with probability one. In the

case of MPS, injectivity has very strong implications. An injective MPS always

describes the unique ground state of its parent Hamiltonian, which additionally

has a gap above [65]. In the two-dimensional PEPS case, this is not true any-

more in this generality. It has been proven [24], that an injective PEPS is the

unique ground-state. However the the one-to-one relation between injectivity

and “gappedness” is lost, such that the parent Hamiltonian might be gapless

(thermodynamic limit) or there might be a non-injective PEPS with a gapped

parent Hamiltonian. While this is a weaker result, it allows for richer physics:

It implies that PEPS could (and in fact can) host second order phase-transitions.

We thus learn that the PEPS tensor defines a Hamiltonian and its ground

state and the low-energy theory above it. If we now make the PEPS tensor

parameter-dependent, this defines not only one state but an entire family of

states and parent Hamiltonians:

A→ A(θ)

H → H(θ)

|ψ〉 → |ψ(θ)〉 .

(3.9)

The last property missing to have a PEPS model are symmetries, which we will

incorporate in the following. This can be achieved by a local encoding of the
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symmetry in the tensor. The goal is to build (N -body) wave-functions, that are

invariant under the action of some unitary group representation with elements

ug, labeled by group elements g ∈ G, i.e.

(ug)
⊗N |ψ〉 = |ψ〉 . (3.10)

In the PEPS picture, this has the ug acting on the physical index of every lattice

site. We can achieve the desired invariance of the wave-function, if acting on

the physical index with ug is equivalent to acting with a (potentially different)

unitary representation Vg in a conjugating fashion, see fig. 3.5. Acting on the

virtual indices in a conjugate way, such that the physical state is the same is

called a gauge transformation.

Figure 3.5: Constructing tensors A, such that the depicted relation holds, leads
to PEPS tensors (models) with symmetry, as the symmetry is absorbed in a
gauge transformation the virtual legs, where it cancels out in the contraction
process.

The parent Hamiltonian directly inherits this symmetry and we thus arrived at

symmetric PEPS models.

3.3 Perturbations of PEPS

We can probe the neighborhood of a PEPS tensor by applying perturbations

on the local tensor. This notion of perturbation will be very useful later, as

symmetry breaking is closely related to stability under perturbations. The most

general perturbation one could think of would be

A(ε) = A+ εC |C| = 1. (3.11)

However, this turns out to be too general since it can lead to discontinuities in

the parent Hamiltonian. The perturbations corresponding to perturbations of

the parent Hamiltonian are given by purely perturbing the physical index of the

PEPS tensor [15].
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Ai → (1+ εΛ)ijA
j =

Figure 3.6: Perturbations are given by so called deformations of the physical
index. These correspond to smooth deformations of the parent Hamiltonian

3.4 Examples: Ising and “RK-PEPS”

In the spirit of our model building approach to PEPS, we define a parameter-

dependent local tensor with a symmetry. Remarkably, there is a general recipe

how to construct such model tensors, which is inspired by Rokhsar-Kivelson

wave-functions [59]. The simplest example is the so called “Ising-PEPS”, which

we define as

A0 = |0〉 〈θ|⊗4
A1 = |1〉 〈θ̄|⊗4

, (3.12)

where |θ〉 = cos(θ) |0〉+ sin(θ) |1〉 and |θ̄〉 = X |θ〉 = sin(θ) |0〉+ cos(θ) |1〉 .

Let us compare this to the partition function of the classical Ising Hamiltonian

H = −
∑
〈i,j〉 σiσj , which is given by

Z = tr e−βH =
∑
{σ}

e
∑

〈i,j〉 βσiσj =
∑
{σ}

∏
〈i,j〉

eβσiσj , (3.13)

with the Ising variable σi ∈ {+1,−1}. For every configuration {σ}, across any

“bond”, the weight in the partition function only depends on the relative sign

of the two variables and is given by eβσiσj = e±β . If we now in comparison

evaluate 〈ψ|ψ〉 for the Ising PEPS, this will be a big superposition over all

possible lattice configurations analogous to {σ}. Notice, that the edges coming

out of any vertex are either all |θ〉 or all |θ̄〉 on both ket and bra layer and

hence the overlap with a neighboring site is either 〈θ|θ̄〉2 = sin2(2θ) or 1. We

can therefore identify sin(2θ) = e−β . Furthermore, all σz−correlation functions

in the Ising PEPS are in one-to-one correspondence with thermal correlation

functions in the classical square lattice Ising model. In particular, we know the

exact value of the critical temperature, due to the self-duality of the Ising model,

which was found by Kramers and Wannier [36] to be βc = log(1 +
√

2)/2, which
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we can directly translate to the (quantum) critical point of the Ising PEPS:

θc =
1

2
arcsin(e−βc) =

1

2
arcsin(

1√
1 +
√

2
) ≈ 0.3496 (3.14)

As mentioned above, the construction of the Ising PEPS is a particular example

of a general recipe known as RK-wave-functions. Rokhsar and Kivelson [59]

invented a way to construct quantum states from a classical model (classical

Hamiltonian):

|ψ〉 =
∑

σ1...σN

e−βHcl(σ1,...,σN )/2 |σ1, . . . , σN 〉 (3.15)

An expectation value of an arbitrary (potentially extended) operator over this

quantum state reads

〈O〉 =
∑

σ1...σN ,σ′
1...σ

′
N

〈σ1, . . . , σN | e−βHcl(σ1,...,σN )/2Oe−βHcl(σ
′
1,...,σ

′
N )/2 |σ′1, . . . , σ′N 〉 ,

(3.16)

which tells that in the case of [O,Hcl.] = 0 we get the corresponding thermal

expectation value of the classical model:

〈ψ|O |ψ〉 = tr
(
Oe−βHcl

)
(3.17)

This construction is very useful for building toy-models for PEPS quantum

phases [75]: We can just take a classical Hamiltonian, which we know to have

certain desired properties, in particular a (thermal) phase transition and encode

its partition function in the virtual bonds of the PEPS. This then gets mapped

to a quantum phase transition in the RK construction, which means that in

order to study a certain transition type, it is sufficient to know a corresponding

classical model.

3.5 Matrix Product States: correlations, trans-

fer operator, symmetry

We started this chapter by motivating and defining the PEPS tensor, the central

object of this thesis and how this leads to the study of PEPS models. In order to

develop methods to tackle these systems, let us now take one step back and see

what we can learn from the one-dimensional case, which is far better understood

22



CHAPTER 3. PEPS MODELS 3.5.

[22, 63, 65, 13, 50]. In one dimension, we only have to deal with two virtual

indices per site. With the contraction rule from above, this will immediately

lead to products over matrices and the states being nothing but the well known

matrix product states. We use the tensors Aiαβ and put them on a chain and

contract the adjacent indices. This applies to every bond and we eventually

arrive at the well known MPS form

|ψ〉 =
∑

tr
(
Ai1Ai2 . . . AiN

)
|i1 . . . iN 〉 , (3.18)

depicted in fig. 3.7.

Figure 3.7: The matrix product state representation (shown with periodic
boundary)

We thus showed, that the PEPS construction in one dimension naturally leads

to an MPS like structure. The wave-functions we get from tensor network meth-

ods are always unnormalized. Let us demonstrate how to compute the norm

of an MPS, which naturally leads to the concept of transfer operators (transfer

matrices). For this we have to take two copies of the wave-function where one

copy is a bra and one is a ket vector, which leads to the terminology of bra-

and ket-layer in the MPS and later the PEPS diagrammatics. We evaluate the

correlator in a diagram in fig. 3.8. This diagram gives a very crucial insight

into the structure of MPS and PEPS. If we would have to first construct the en-

tire wave-function from the tensor, this would result in an intermediate tensor,

whose size grows with the number of sites. The tensor A has size dD2 and thus

the tensor describing a chain of length L would have dLD2 entries, i.e. growing

exponentially with the length. The lesson to learn is that we can avoid this

by first contracting ket- and bra-layer for one site, which gives a matrix of size

D2 × D2. We then only have to perform matrix multiplication on objects of

fixed size, independent of the length of the chain. This object is very crucial in

the analytical (and numerical) study of MPS and is called the transfer operator

T. From its definition given in figs. 3.8, 3.9, it follows, that the norm is given

by 〈ψ|ψ〉 = tr(TN ).
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Figure 3.8: Computing the norm of an MPS wave-function. We define the
transfer operator by contracting the physical index on one site, which gives the
tensor in the red box (see below, fig. 3.9). The norm is then just given by the
trace over a matrix product.

Figure 3.9: Definition of the MPS transfer operator. It is a matrix from virtual
ket and bra layer to virtual ket and bra layer. We use a bar to indicate complex
conjugation.

We now show, how a symmetry of the tensor leads to a symmetry in the transfer

operator, which will be crucial in the rest of this work. The key insight is that

the representations, with which we require the tensor to transform, are unitary

and thus the physical symmetry operation cancels out. The transfer operator

is thus invariant under a symmetry operation of the form depicted in fig. 3.10.

Figure 3.10: The symmetry of the tensor leads to a symmetry in the transfer
operator.

Applying the symmetry on both sides of the equation in fig. 3.10, we learn that
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the symmetry commutes with the transfer operator:

(Vg ⊗ V̄g)T = T(Vg ⊗ V̄g) (3.19)

[T, (Vg ⊗ V̄g)] = 0. (3.20)

We will generally assume that the transfer operator is diagonalizable, note that

a priori it is not Hermitian and we thus have left and right eigenvectors and

complex eigenvalues λk ∈ C. The above commutation with the symmetry (eq.

3.20) allows us to label the eigenvectors by that symmetry (splitting up a simple

counting label into a symmetry label k and a degeneracy label ν)

T =
∑
k,ν

λk,ν |rk,ν)(lk,ν |. (3.21)

The eigenvectors corresponding to the largest magnitude eigenvalues are called

left and right fixed points of T. We can (wlog) re-scale the eigenvalues by the

largest eigenvalue, such that all eigenvalues lie within the complex unit disc.

The fixed point space of T is then described by the operator

T∞ = lim
n→∞

Tn =
∑
k,ν

|rk,ν)(lk,ν |. (3.22)

This property of the transfer operator allows us to do a particularly interesting

entanglement cut (cf. fig. 2.1). We can go to very large (infinite) system size

and describe the reduced density matrix on a finite patch of the chain simply

by the MPS tensor on the patch with the boundary condition being the fixed

point space of the transfer operator.

Let us take a closer look at the two point correlation function 〈O[i]O[j]〉. This

will be given by

〈O[i]O[j]〉 =
〈ψ|O[i]O[j] |ψ〉
〈ψ|ψ〉

. (3.23)

Note that the MPS wave-function is in principle unnormalized, which is why we

have to carry 〈ψ|ψ〉, given by trTL. The numerator can be evaluated almost

in the same fashion, except for the sites i and j, where the observables sit. For

these, we define a dressed transfer operator
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Figure 3.11: The “environment” of a finite patch of an MPS is given by the
fixed points of the transfer operator, which serve as boundary conditions to the
MPS. In case of degenerate fixed points we would get linear combinations of
fixed points as the environment.

=
∑
i

OijA
i ⊗ Āj . (3.24)

Now, the correlator is given by

〈O[i]O[j]〉 =
tr
{
TOT|i−j|TOTL−|i−j|−2

}
tr {TL}

. (3.25)

Let us assume for a moment, that the largest eigenvalue is unique, i.e. T =∑
k λk|rk)(lk|, where |λ0| > |λ1| ≥ ..., then TL → λL0 |r0)(l0| and the above

expression simplifies to

〈O[i]O[j]〉 =
∑
k

(
λk
λ0

)|i−j|−2

(l0|TO|rk)(lk|TO|r0). (3.26)

This shows that correlations decay exponentially and the correlation length ξ is

determined by the eigenvalues of the transfer operator.

ξ = − 1

log(|λ1/λ0|)
. (3.27)

In the case of exact degeneracy, the MPS has long-range correlations. In order to

incorporate algebraically decaying correlations, we would have to let the bond-
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dimension grow with system size, which is not viable for large (thermodynamic

limit) systems. An MPS with fixed bond dimension cannot describe critical

systems.

3.6 PEPS transfer operator, fixed points and

symmetry

As we have seen above, the transfer operator encodes the correlations of the

system. We therefore generalize the definition to two-dimensional PEPS. To

that end, we put the two-dimensional system on a cylinder (torus) of sizeNv×Nh
and then treat the vertical one dimension of it as a (now size-dependent) “quasi-

MPS”, which we denote by Bi, see fig. 3.12, where i ≡ (i1, . . . , iNv
) is a multi-

index along the vertical slice of the cylinder.

a) |ψ〉 = b) Bi =

Figure 3.12: We put the system on a cylindrical geometry, which is most
convenient for the thermodynamic limit and lets us define a transfer operator
in terms of the “quasi-MPS” Bi

Bi =

Figure 3.13: One slice of the quantum state can be viewed as a “quasi-MPS”
with hybrid indices running over the vertical direction of the lattice, i.e. the
dimensions of the MPS grow with Nv.

This compactification allows us to define a transfer operator for PEPS, in the

spirit of the transfer operator for MPS. It will now be an extended object in
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the vertical direction and act on an entire column “slice” of the cylinder. It is

a mapping from bra and ket-layer to another bra- and ket layer:

T : H⊗Nv ⊗H⊗Nv → H⊗Nv ⊗H⊗Nv (3.28)

T =
∑
i

Bi ⊗ B̄i. (3.29)

Figure 3.14: Construction of the PEPS transfer operator and its fixed points
from (a) the local tensor. (b) Locally contracting bra- and ket-layer gives the
“double-tensor” E (c) contracting one column gives the transfer operator. (d)
Its eigenvectors (incl. the fixed points) are extended along the vertical direction
and define the PEPS environment analogous to fig. 3.11.

Correspondingly, its eigenvectors are now extended in the vertical direction on

Nv sites. While it is in principle an extension of (and thus a different object)

than the MPS transfer operator, we still use the same symbol, since we will only

be concerned with the PEPS transfer operator and most properties we laid out

earlier, carry over to the new transfer operator. Correlations in the horizontal

direction are mediated by T in complete analogy with the MPS case. Most im-

portantly, the fixed points of this PEPS transfer operator now define the PEPS

environment, exactly as in fig. 3.11. The fact, that the transfer operator itself

has a substructure, which most importantly depends on the vertical dimension,

leads to new features. On the one hand, taking the thermodynamic limit is

non-trivial, unlike the MPS case. On the other hand, this will allow the PEPS

to describe critical systems with finite bond dimension, as for example in the

models presented in section 3.4.

The symmetry property (fig. 3.5) leads to a commutation of the transfer opera-

tor with the virtual symmetry operation applied on both layers simultaneously,
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shown in fig. 3.15, which is expressed by

[T, (Vg ⊗ V̄g)⊗Nv ] = 0. (3.30)

Analogous to eq. 3.21, we can label the eigenpairs by the symmetry, with

the only difference that the symmetry operation and the eigenvectors are now

extended along Nv:

T =
∑
k,ν

λk,ν |rk,ν)(lk,ν |. (3.31)

Figure 3.15: By inheriting the local symmetry of the tensor (left equation), the
transfer operator commutes with the symmetry by construction. (We identify
Vg with g for readability of the diagram.)

3.7 Perturbations in the transfer operator

We now define the notion of a dressed transfer operator in analogy to eq. 3.24,

which is the usual transfer operator with an additional operator Λ acting on

one physical index at site [k]:

(3.32)

This lets us expand the transfer operator of a perturbed model in terms of the

unperturbed model as

T(1+εΛ) = T + ε

Nv∑
k=1

T[k]
Λ +O(ε2). (3.33)

As we derive in detail in the appendix (see A.1), one can use an approach very

similar to (degenerate) Rayleigh-Schrödinger perturbation theory to expand the
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eigenstates of the perturbed transfer operator in terms of the non-perturbed one.

The correction to the eigenvalues is given by evaluating the perturbation TΛ in

the fixed points (“ground state”) of T,

λ
(1)
k = (l

(0)
k |TΛ|r(0)

k ), (3.34)

where we denote the order of the expansion by round brackets (n). In case

of degeneracy, we have to diagonalize the corresponding matrix, which tells

us whether the degeneracy is lifted. The correction to the eigenstates (fixed

points) is given by the matrix elements of TΛ between all excited states and the

ground-states (ground-state subspace S)

|r(1)
k,α) =

∑
m/∈S

1

λ
(0)
k − λ

(0)
m

|r(0)
m )(l(0)

m |TΛ|r(0)
k,α). (3.35)

These expressions will be useful later to test the stability of the fixed points of

the transfer operator.

3.8 Isomorphism: Transfer operator and quan-

tum channels

A key tool for us will be to use results from quantum channel theory, one of the

cornerstones of quantum information theory. Many key properties of channels

are described in [79]. The relation might seem a bit surprising at first sight, so

we spend some time to develop it. A quantum channel E is the most general

operation possible on a quantum state. Since it is an operation on the quantum

state, which is itself an operator, it goes under the name of superoperator and

is a mapping of the form

E : B(H)→ B(H). (3.36)

Assuming that the input is a quantum state in the first place, i.e. ρ ∈ B(H)

with ρ† = ρ and ρ ≥ 0. The question then is, what kind of E can we operate

with on ρ within the realm of quantum mechanics. Foremost, the operation has

to be linear, E(A + B) = E(A) + E(B). A first, rather obvious limitation is,

that E(ρ) ≥ 0, otherwise we are not left with a quantum state anymore. This

restricts it to be what is called a positive map. The last requirement is called

complete positivity, which is the requirement that when we are given a system
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in a state ρ and only act with a channel on some part of a system while leaving

the other part of the system unchanged, the resulting global state must also be

a quantum state (a density matrix). This condition is written as

(1k ⊗ E)(ρ) ≥ 0 ∀ k, (3.37)

where 1k acts on degrees of freedom the channel E does not act on, which can be

of arbitrary size. Operators, which also fulfill this additional requirement, are

called completely positive and thus the study of quantum operations is called

the study of completely positive maps. We like to point out here, that this is

a subject of great interest and intricately related to the study of entanglement.

For example, a great problem in quantum information science is to find ways

to decide whether a given quantum state is entangled or not. The famous

Peres-Horodecki criterion says, that the transpose operation is a positive but

not completely positive map, if it is acting on entangled states [49]. We allow

ourselves to use ancillary degrees of freedom which we are free to discard again

in the end. This is called Naimark extension (sometimes with reference to the

broader Stinespring dilation theorem, see [42]), or as coined by John Smolin,

“going to the church of the larger Hilbert space.” This extension point of view

has several useful consequences. First, the concept of purification, which tells

us that given a mixed state ρA of a system at hand, it is always possible, to

find a (in fact classes of states, due to unitary equivalence) pure state |ψ〉,“the

purification”, on a larger system, which describes exactly the same state, if we

trace out the additional degrees of freedom with a partial trace.

ρA =
∑
k

pk |k〉A 〈k| = trB {|ψ〉 〈ψ|} (3.38)

with |ψ〉 =
∑
a

√
pa |a〉A |a〉B (3.39)

We know from the Schrödinger equation, that pure state evolution is unitary.

Hence the quantum operation is a unitary on the bigger system:

E(ρ) = trB
[
U(ρ⊗ |0〉B 〈0|)U

†] . (3.40)
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We evaluate this equation by carrying out the partial trace and choosing or-

thonormal bases (ρ is positive, Hermitian and thus diagonalizable).

=
∑
ijkl

|i〉 〈i| ⊗ 〈j|U |k0〉 pk 〈k0|U† |l〉 〈l| ⊗ |j〉 (3.41)

=
∑
ijkl

|i〉 〈l| 〈ij|U |k0〉 pk 〈k0|U† |ij〉 . (3.42)

We now arrange the numbers 〈ij|U |k0〉 =: Ajik into matrices A, called Kraus

operators, with indices i, k and the superscript j. We arrive at the operator

sum representation of quantum channels [42]:

E(ρ) =
∑
j

AjρAj
†
. (3.43)

(Note that this not the PEPS tensor. When talking about channels, A will

denote the Kraus operators, as this is the convention in this field. We will

see that it is equivalent to the MPS tensor and it will always be clear from

the context, which object we are talking about.) Due to unitarity of U and

completeness of the basis set |k〉, it can be seen that∑
j

Aj
†
Aj = 1, (3.44)

which is a property called trace preservation, as by this condition, the trace is

unchanged:

tr(E(ρ)) = tr(
∑
j

AjρAj
†
) = tr(1ρ) = tr ρ. (3.45)

Trace-preservation is more easily handled by introducing the concept of dual

channels. For any channel E(ρ), there is a channel E∗(ρ) called its dual, which

is defined implicitly via the Hilbert-Schmidt inner product

tr(XE(Y )) = tr(E∗(X)Y ) (3.46)

and can be seen as the Hermitian conjugate under the inner product. By virtue

of this definition, a channel is trace-preserving if and only if its dual has the

property E∗(1) = 1, which is a property called unitality. If we allow for ar-

bitrary Ai, i.e.
∑
iA

i†Ai 6= 1, the channel is no longer trace-preserving. We

can interpret a decrease in the trace as a “lossy” channel, which discards cer-
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tain states. The interpretation of opposite case of increasing trace is not as

straightforward.

“Bra-to-ket” isomorphism

We now get to the point, why we are interested in quantum channels and their

properties. The Kraus representation of the channel takes as input a (square)

matrix

ρ =

D−1∑
a,b=0

ρab |a〉 〈b| . (3.47)

Now for every ρ, we make the identification |a〉 〈b| → |a〉 |b〉, which is nothing

but vectorizing the matrix ρ→ |ρ〉. The action of the channel

ρ→
∑
i

AiρAi
†

(3.48)

translates to

|ρ〉 →
∑
i

Ai ⊗Ai†
T
|ρ〉 , (3.49)

where the transpose arises due to the right action being translated into a left

action under the above introduced “Bra-flipping” (also known as column (row)

stacking). We observe, that this is exactly equation (3.9):

T =
∑
i

Ai ⊗ Āi, (3.50)

from which we conclude that we can identify the Kraus operators with the

MPS matrices and there is a one-to-one mapping between quantum channels

and transfer operators. We may use the concepts transfer operator and quan-

tum channel interchangeably. In cases where we distinguish, T will denote the

operator acting on vectors and T the superoperator acting on matrices.

3.9 Spectral decomposition of channels

As we will work on large systems, we have to deal with high powers of transfer

operators, which makes it desirable to find a spectral decomposition of T. Note,

that Hermitian conjugation on the matrix level T† =
∑
iA

i†⊗ Āi† of a channel

gives rise to the dual channel. Hence, unless we have the special case of a self-

dual channel with Ai
†

= Ai, we learn that the transfer operator T is not a
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Hermitian operator, which makes its analysis more demanding than the study

of Hermitian operators. We have to deal with complex eigenvalues as well as

left and right eigenvectors and could moreover, in principle, end up with Jordan

blocks:

T = X

(
K⊕
k=1

Jk(λk)

)
X−1 Jk(λk) =


λk 1 0 . . .

0
. . .

. . . 0

λk 1

0 . . . λk

 (3.51)

In the case of no Jordan blocks, the diagonal form would look like

T =
∑
k

λk|rk)(lk|, (3.52)

where we use round bracket notation for the eigenvectors to remind ourselves,

that these vectors live on the “doubled” space H ⊗H of bra and ket together.

While we can still find a bi-orthonormal Eigendecomposition with (li|rj) = δij ,

we lose normalization of the eigenvectors themselves.

For the evaluation of any physical quantity, i.e. expectation value, we always

deal with normalized expressions (cf. eq. 3.23). From this, we take the freedom

to normalize the spectrum of the transfer operator, which appears both in the

numerator and the denominator of these expressions and choose to divide by

the eigenvalue with the largest magnitude, which forces all eigenvalues inside

the unit circle, |λk| ≤ 1. Eigenvalues, which have |λk| = 1 are called peripheral.

Using the arguments of [79], we will show that the peripheral spectrum has no

Jordan blocks for unital CP maps. Based on the observation, that tr(ATn(B))

is finite and independent of n, we can show a contradiction with the existence

of Jordan blocks on the peripheral spectrum. On the one hand, the Hölder

inequality tells us, that

||ATn(B)||1 ≤ ||A||∞||Tn(B)||1 ≤ ||A||∞||B||∞||1||1 = ||A||∞||B||∞d, (3.53)

which is bounded for bounded operators and has no dependency on the power

n. On the other hand, just assuming a single Jordan block gives

Jk(λ) =

(
λ 1

0 λ

)
⇒ (Jk)n =

(
λn nλn−1

0 λn

)
(3.54)
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and thus a term growing unboundedly with n, which is the desired contradiction.

We conclude, that there are no Jordan blocks on the peripheral spectrum of a

unital transfer operator.

3.10 Fixed points of quantum channels

A key theorem about (component-wise) positive matrices, which is pivotal for

the study of stochastic matrices and is due to Oscar Perron and Georg Frobe-

nius, states that the spectral radius of a entry-wise positive matrix is attained

by an eigenvector, which is moreover itself entry-wise positive [30]. This the-

orem has been carried over to positive maps by Evans and Høegh-Krohn [21].

It is fundamental to the study of transfer operators and has been dubbed the

Quantum Perron-Frobenius theorem. We define the notion of irreducibility: a

(completely positive) map T : Md(C) → Md(C) is called irreducible, iff there

is no Hermitian projector P /∈ {0,1}, such that T (PMdP ) ⊂ PT (Md)P .

For an irreducible positive map T , the spectral radius r(T ) is attained by

a non-degenerate eigenvalue with a corresponding positive definite eigenstate:

T (X) = rX, with X > 0

While the original proof [21] is quite a tour de force, we cite the much more

straightforward proof by Wolf [79]: First, we establish, that irreducibility is

equivalent to

(1+ T )d−1(X) > 0, (3.55)

for all X ≥ 0 and d the dimension of the space. This can be seen from the

positivity property, since this implies that T cannot decrease the rank of (1 +

T )(X) and thus ker((1 + T )(X)) ⊆ ker(X). Furthermore, irreducibility in the

original formulation was defined as T having no proper invariant subspace, which

implies that the map 1 + T has to be rank increasing. Since a positive-semi-

definite matrix has to have at least rank one, it follows that after at most d− 1

applications, the resulting matrix must be full rank and hence strictly positive.

We now look at the following expression:

(1+ T )d−1(T − λ1)(X) = (T − λ1)(X)(1+ T )d−1. (3.56)

Let us now specifically choose λ = r and X as the largest eigenpair, then by
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commuting the two terms and using the above relation, we learn that X must

be strictly positive for the largest eigenvalue. Note, that as described in section

3.9, we can wlog assume r = 1.

Fixed points of unital channels

As stated above, unitality and trace preservation are dual concepts. Unitality

is algebraically much easier to deal with. Let us prove the following two state-

ments:

• The fixed point set of a unital channel forms an algebra, if the dual map

has a full rank fixed point

• All fixed points of a unital channel can then be chosen positive semi-

definite

A channel T (ρ) =
∑
k AkρA

†
k is unital, if it preserves the identity element:

T (1) = 1. (3.57)

Let us assume that the dual channel admits a full rank fixed point [38]:

∃ σ > 0⇒ T ∗(σ) = σ (3.58)

Note, that we can always meet this assumption by projecting onto the maximal

support of the dual fixed point space. From this we can show, that the fixed

point space forms an algebra. This goes as follows: If X is a fixed point of T ,

then let us show that for unital channels this implies that X†X is also a fixed

point (trivially, X† is also a fixed point, which is true for any channel). This

can be seen by the following expression:

tr(σ[T (XX†)−XX†]) = tr(T ∗(σ)XX† − σXX†) = 0 (3.59)

The Schwarz inequality holds for any CP map, i.e. T (XX†)−XX† ≥ 0 (for a

proof see 3.10). This means that we have a trace over a positive definite matrix

multiplied with a positive semi-definite matrix. This can only be zero, if the

latter matrix is the zero matrix. We thus proved, that

T (XX†) = XX†, (3.60)
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which means XX† is a fixed point. This is crucial for the next step. Observe

that∑
i

[Ai, X][Ai, X]† = T (XX†)− T (X)X† −XT (X†) +XT (1)X†. (3.61)

Now, owing to the unitality property T (1) = 1, and thanks to XX†, X† and X

all being fixed points, the right hand side of eq. 3.61 is identically zero. The left

hand side is positive semi-definite, which implies it must be the zero operator

[4]. This can be the case, if and only if

[X,Ai] = 0 ∀ X,Ai (3.62)

This result is called generalized Lüders theorem (cf. [9], who prove it for self-

dual channels and [62], where the unitality condition was neglected): For a

unital completely positive map, all fixed points must commute with the Kraus

operators. Now the algebra property follows almost trivially. Given two fixed

points X and Y , we have [X,Ai] = [Y,Ai] = 0. This directly implies [XY,Ai] =

0, which means XY is a fixed point, since commuting with the Kraus operators

is sufficient. Hence,

T (XY ) = T (X)T (Y ) = XY, (3.63)

i.e. the fixed point space of a unital CP map, whose dual admits a full rank

fixed point, is an algebra.

Schwarz inequality for CP maps

Every CP map satisfies an operator type Schwarz inequality [14]. To see this,

note that any CP map can be written with an isometry V as (called Stinepring

dilation) [79]

T (X) = V (X ⊗ 1)V † (3.64)

Hence,

T (X†)T (X) = V (X ⊗ 1)V †V (X ⊗ 1)V † (3.65)

Now V †V = Π is an orthogonal projector, since the V ‘s are isometries. We can

thus write

T (X†)T (X) = V (X⊗1)1(X⊗1)V †−V (X⊗1)(1−Π)(X⊗1)V † = T (X†X)−M†M,

(3.66)
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where M = (1−Π)(X ⊗ 1)V †. Regrouping, we thus have

T (X†X) ≥ T (X†)T (X) (3.67)

Fixed points of unital channel can all be chosen positive

A channel is a linear map on a finite dimensional vector space. Brouwer’s fixed

point theorem tells us it has at least one fixed point T (X) = X. From the

Kraus representation of the channel, we know that this implies T (X†) = X†.

Note that we can then write the fixed point as

X =
1

2
[X +X†]− i

2
[i(X −X†)] = Y1 + iY2, (3.68)

which is a (complex) linear combination of Hermitian objects, which are all fixed

points. We can further decompose a Hermitian matrix Y as

Y =
1

2
[(
√
Y 2 + Y )− (

√
Y 2 − Y )]. (3.69)

Since Y was Hermitian, Y 2 is positive and thus has a unique positive square

root. However, this decomposition is only useful, if the new objects are also

fixed points. Y was already a fixed point, but what about
√
Y 2? To verify that

this is also a fixed point, we take again the Lüders property: a fixed point of a

unital channel must commute with all Kraus operators. Thus

[Y,Ai] = 0⇒ [Y 2, Ai] = 0 (3.70)

⇒ [
√
Y 2
√
Y 2, Ai] =

√
Y 2[
√
Y 2, Ai] + [

√
Y 2, Ai]

√
Y 2 = 0 (3.71)

Now we take the (complete!) eigenbasis of
√
Y 2 =

∑
i λi |i〉 〈i|. Note, that

crucially this was the (unique) positive root, i.e. λi ≥ 0

〈i|
√
Y 2[
√
Y 2, Ai] + [

√
Y 2, Ai]

√
Y 2 |j〉 = (λi + λj) 〈i| [

√
Y 2, Ai] |j〉 = 0 (3.72)

The first term can only be zero if λi = λj = 0 simultaneously, which however

implies 〈i| [
√
Y 2, Ai] |j〉 = 0. For any other λi, λj , the commutator must vanish

for the equation to hold. We thus showed that any matrix element has to vanish,

which means that [
√
Y 2, Ai] = 0 and by virtue of this

√
Y 2 is again a fixed

point. We thus proved, that any fixed point of a unital channel, whose dual has

a full rank fixed point, can be decomposed into a complex linear combination

38



CHAPTER 3. PEPS MODELS 3.10.

of positive semi-definite fixed points [62].

Fixed point set of trace preserving transfer operators

While in the above we characterized unital channels, let us now state properties

of the fixed point space of the dual map, i.e. a trace preserving channel. The

following theorem characterizes the fixed point space of a trace preserving com-

pletely positive map. Let T :Md(C)→Md(C), be a trace-preserving CP map.

Then there is a unitary U and a set of positive semi-definite density matrices

Rk ∈Mmk
(C) such that the fixed point set is given by

FT = U

(
K⊕
k=1

Mdk ⊗Rk

)
U†. (3.73)

Mdk stands for the full algebra of complex matrices and the dimensionalities

of the spaces being tensored together match the dimensionality of the fixed

point space: mk · dk = d. This theorem will be of great utility to us, since the

characterization of the fixed point set is crucial in understanding the mechanism

of symmetry breaking in PEPS. It is due to [38, 7, 79].
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Chapter 4

Long-range order and

symmetry breaking

Spontaneous symmetry breaking is the prime example of global order emerging

from local interactions in quantum systems at zero temperature. In a general

sense, we speak of spontaneous symmetry breaking when the ground states

of a system “lose” the symmetry of the underlying Hamiltonian in the ther-

modynamic limit [71]. In this chapter, we will develop the description of an

analogous mechanism in the PEPS framework. The analogy will be on the one

hand between the PEPS transfer operator and the Hamiltonian, which are both

formulated in a manifestly symmetric fashion, and on the other hand between

the ground states (of the Hamiltonian) and the fixed points (of the transfer

operator), which, as it will turn out, both can lose the symmetry of their un-

derlying theory spontaneously. In both cases, the symmetry broken states are

“physical” in a specific sense. Finding the correct description of these symmetry

broken states is challenging, because on a finite system, the symmetry breaking

is “obscured” by quantum fluctuations, which restore the symmetry [32, 35]

and we have to develop techniques to capture the correct behavior and find a

description of the physical, symmetry broken states in a finite system.

This chapter will be outlined as follows: We will start by showing how long-

range order, unlike an order parameter, is a good criterion for the presence of

symmetry breaking in finite systems. We will then prove, that long-range order

leads to an asymptotic degeneracy in the PEPS transfer operator. We show how
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in the presence of this degeneracy, a stability requirement leads to symmetry

breaking. We prove that the symmetry breaking pattern is uniquely specified,

allowing us to construct the symmetry broken states directly from the model

defining ones. We will be concerned with finite abelian symmetry ZN through-

out this chapter.

4.1 Long-range order

Let us start by demonstrating why order parameters are a problematic way

to describe symmetry breaking in finite systems. Given a (finite) lattice Ω of

size |Ω| and a Hamiltonian HΩ =
∑
k Ek |ψk〉 〈ψk|, which is invariant under

some unitary symmetry operation u, i.e. [HΩ, u] = 0, we would like to detect

symmetry breaking with some order parameter Ô. We require from an order

parameter that it does not commute with the symmetry, i.e. [Ô, u] 6= 0. If

we are in a situation, where this Hamiltonian is asymptotically degenerate, the

order parameter on any finite system cannot detect symmetry breaking. This

follows from the fact that due to the degeneracy only being asymptotic, the

eigenstates of the Hamiltonian on a finite system all transform trivially under

the (unitary) symmetry:

u |ψk〉 = eiφk |ψk〉 . (4.1)

Assuming, that the order parameter takes a non-zero expectation value on any

of these finite-volume states then immediately leads to a contradiction,

〈ψk| Ô |ψk〉 = 〈ψk|u†Ôu |ψk〉 6= 〈ψk|u†uÔ |ψk〉 = 〈ψk| Ô |ψk〉 , (4.2)

from which we conclude that it cannot acquire a non-zero expectation value

and is thus unable to detect symmetry breaking. The standard way to resolve

this, is to add a perturbation to the Hamiltonian that couples to the order

parameter, e.g. HΩ(B) = HΩ + B
∑
i∈ΩOi. This will select the eigenstates

that diagonalize the perturbation, i.e. the symmetry broken states. Let 〈 · 〉B,Ω
denote the expectation value in the ground state of this perturbed Hamiltonian.

Then the usual order parameter (e.g. the spontaneous magnetization) is defined

as:

m := lim
B→0

lim
|Ω|→∞

1

|Ω|
〈O〉Ω. (4.3)

Using this procedure will not tells us anything about symmetric PEPS, since
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the PEPS of the perturbed model will be non-symmetric and finding out how it

could be related to the symmetric PEPS on a finite system seems an impossible

task. What turns out to be a much more viable and insightful procedure on

a finite system is to use long-range order instead, which is measured by the

two-point correlator

σ := lim
|Ω|→∞

1

|Ω|

√
〈O†O〉0,Ω , (4.4)

for some suitably chosen magnetization operator O =
∑
i∈Ω Zi (with local op-

erators Zi). It has been shown in a number of cases that m ≥ σ, i.e., long-range

order implies a non-zero spontaneous magnetization [32, 35]. Note that long-

range order does not suffer from the same problem as the order parameter above,

since it is an even function. This implies that a symmetric PEPS wave-function

built from a symmetric local tensor can acquire long-range order. It is for this

reason that we consider PEPS wave-functions with long-range order (which we

will use interchangably with symmetry breaking in the following); our goal will

be on the one hand to understand the conditions under which long-range or-

der occurs, and on the other hand to identify the wave-functions describing the

corresponding symmetry broken states (i.e., those obtained as ground states

of HΩ(B) in the limit B → 0). Specifically, in the case of a ZN symmetry

considered here, long-range order will denote a non-zero σ for some Z obeying

u†Zu = ωαZ , (4.5)

for some α = 0 . . . N−1 and again ω = exp( 2πi
N ). The α = 1 case we will refer to

as full symmetry breaking since Z does not commute with any symmetry oper-

ation un. In that case, the above condition could for example be fulfilled by the

so called clock matrices Z =
∑
k ω

k |k〉 〈k|. On the other hand, if gcd(α,N) > 1,

then the symmetry is only partially broken since Z commutes with uN/gcd(α,N).

Evaluating σ can be done using a symmetric PEPS: we will do so on a closed

manifold (periodic boundary conditions) such that the full state is symmetric.

Let us now turn towards the study of PEPS. For a PEPS |Ψ〉, we have that

σ2 = limNh,Nv→∞ σ2
Nv,Nh

where

σ2
Nv,Nh

=
1

N2
hN

2
v

∑
ij

〈Ψ|ZiZ†j |Ψ〉
〈Ψ|Ψ〉

. (4.6)
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Figure 4.1: The transfer operator T[i,j]

Z,Z̄† dressed on two physical sites, where

the full operator is given by all permutations

In what follows, we will normalize Zi such that its operator norm ‖Zi‖op ≤ 1.

We will decompose the above sum over i and j into two parts: either iy 6= jy or

iy = jy. For the first part, define TZ := 1
Nv

∑Nv

k=1 T
[k]
Z and for the second part

define TZ,Z† := 1
N2

v

∑Nv

i,j=1 T
[i,j]

Z,Z† where T[i,j]

Z,Z̄† is the transfer operator obtained

by inserting an operator Z and Z† at sites i and j respectively, see Fig. 4.1.

Define C1 and C2 as

C1 =

Nh−2∑
p=0

tr
[
TZ†TpTZTNh−p−2

]
, (4.7)

C2 = tr
[
TZ,Z†TNh−1

]
. (4.8)

This allows us to write σ2
Nv,Nh

= 1
Nh

C1+C2

tr[TNh ]
. The factors of Nv are taken care

of by the definition of TZ,Z† and TZ and a factor of Nh is taken care of by

using translation invariance in the horizontal direction. The contribution of C2

converges to zero in the large Nh limit. It corresponds to taking the sum over

N2
vNh expectation values and dividing by N2

vN
2
h . The term of interest is C1.

From the scaling of C1

Nh tr[TNh ]
∝ O(1) we aim to show that the gap between

|λα| and the largest eigenvalue λ0 decreases with increasing Nh. A first step in

the proof is that for large Nh, TNh → |r0)(l0|, where r0 is the eigenvector of T
corresponding to the eigenvalue λ0 and l0 the corresponding left eigenvector (ie.

eigenvector of T∗). We use round brackets to emphasize that, although r0 and

l0 are eigenvectors, they are also operators. The dressed transfer operator TZ
maps r0 into the symmetry sector α = 1 due to

UTZ(r0)U† = Tu†Zu(Ur0U
†)

= ωTZ(r0) . (4.9)

More explicitly, if UlU† = ωβl, then tr
[
l†TZ(r0)

]
6= 0 only if β = α. The

main idea is that the factor Tp will give rise to an exponential suppression, the
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leading term being proportional to |λα|p. So |λα| < 1 will result in zero long-

range order. However, as Nv increases, the dimension of the space on which

T acts also increases exponentially as D2Nv , where D is the bond dimension

of the PEPS tensor A. Without any other assumptions, large Jordan blocks

could prevent exponential suppression. As an example, consider a map T in

Jordan form with a single Jordan block of size D and corresponding eigenvalue

λ < 1. Then for v = (0, . . . , 0, 1)T , ‖Tpv‖2 =
∑min(p,D)
q=0 λ2(p−q)(p

q

)2
. For large

p this sum scales as λ2pp2D, which for constant D is eventually exponentially

suppressed but only at a length scale p ∝ D. Hence, due to the exponentially

increasing dimension of T, correlations are only suppressed only over a length

D2Nv leading to a scaling of the long range order as σ2 ∝ 1
Nh
D2Nh , even in

the case that |λα| < 1. It is for this reason that we need more assumptions on

T. We will assume for the rest of the section that the transfer operator T is

normal, TT∗ = T∗T. This is in particular the case if T is Hermitian, which for

example can follow from Hermiticity of its Kraus operators (Bi)† = Bi which

physically is related to a combination of time reversal (complex conjugation)

and reflection along the y-axis (transposition) symmetry.

Let us now return to Eq. (4.7). If the largest eigenvalue λ0 = 1 of T is non

degenerate, then for any bounded operator O the following holds:

lim
Nh→∞

Nh−2∑
p=0

tr
[
TO†TpTOTNh−p−2

]
tr [TNh ]

=

2

∞∑
p=0

tr [TO†TpTO|r0)(l0|] . (4.10)

(The proof is quite technical, which is why we move it to the appendix.) The

factor of two arises from first splitting the sum into two parts, one for which

p > Nh/2 and one for which p < Nh/2. Both sums are identical (if Nh is odd)

up to the position of the dagger, which can be swapped using ket-bra-hermiticity

which exchanges TO ↔ T†O, while leaving the other terms unchanged, and thus
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∑Nh−2
p=0 → 2

∑Nh/2−1
p=0 . Using Eq. (4.10), we now have that

lim
Nh→∞

Nhσ
2
Nv,Nh

=

∞∑
p=0

tr [TZ†TpTZ |r0)(l0|]

=

∞∑
p=0

(l0|TZ†(PαTPα)pTZ |r0)

(a)
= (l0|TZ†(1− PαTPα)−1TZ |r0)

(b)

≤ ‖(l0|TZ†‖2‖(1−PαTPα)−1‖op‖TZ |r0)‖2

≤ 1

1− |λα|
,

where Pα is the projector onto the irrep sector α. It is in (a) and (b) that we

have used normality of T, which implies that ‖PαTPα‖op < 1 such that the

Neumann series converges, and ‖TZ |r0)‖22 = (r0|TZTZ |r0) ≤ 1, as ‖Zi‖op ≤ 1

and the left and right eigenvectors coincide. We now have

σ2 = lim
Nh,Nv→∞

σ2
Nv,Nh

≤ lim
Nv→∞

1

Nv
lim

Nh→∞
Nhσ

2
Nv,Nh

, (4.11)

where the inequality can be shown by coupling the l.h.s. limit such that Nh

grows sufficiently faster than Nv, based on the formal definition of the limit (see

appendix). It thus follows that if σ2 > 0, for sufficiently large Nv it must hold

that

0 <
1

Nv

1

1− |λα|
. (4.12)

Thus non zero long range order of an order parameter Z obeying Eq. (4.5) for

some α implies that

|λα| ≥ 1−O(1/Nv). (4.13)

At this point we have not said anything about the phase of λα. It is known that

peripheral spectrum (eigenvalues of modulus 1) consists of roots of unity [22,

Proposition 3.3] and that any eigenvalue of the form e2πi/p corresponds to a p

periodic state. The degeneracy of the fixed point would then relate to a breaking

of translation symmetry, as well as the global symmetry s. An example is the

antiferomagnetic phase. We can remove such a phase by blocking p sites, i.e.

consider T p, yielding that λα ≥ 1−O(1/Nv).
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4.2 Stability of fixed points in the presence of

degeneracy

Symmetry breaking can be understood as a situation where it is preferable for

the system to collapse into states with less symmetry, when these states are fa-

vorable for some reasons or even the only ones allowed. We learned above that

long-range order implies a degeneracy in the fixed point space, i.e. there exists

more than one fixed point. The question we ask now is what the presence of

more than one fixed point implies, when we perturb the bulk with arbitrary per-

turbations. We will now prove, that fixed points, that correspond to orthogonal

positive-semi-definite matrices, are stable under arbitrary perturbations. While

this is remarkable in itself, we will also learn in a moment, that this positivity

requirement completely specifies the fixed point basis, which implies that the

symmetry broken fixed points are given by positive-semi-definite fixed points.

Let us assume a perturbation on an arbitrary (finite) patch of the lattice. Ob-

serve, that everything outside this patch is given by the left and right fixed

points. We compress the finite patch into one composite index and a big matrix

Λ. The mixing is then given by fig. (4.2).

Figure 4.2: A perturbation in the bulk is represented by Λ, note that it can
act on a patch of arbitrary (finite) size, indicated by dashed lines. If the fixed
points are positive, we can take a unique positive square root.

We then measure the norm of the vector corresponding to the ket-layer of this

diagram, see fig. 4.3. As always, the norm is computed by copying the state and

contracting it from the top. We then learn, that this is equal to the (Hilbert-

Schmidt) inner-product between different fixed points, which we assumed to

be zero. We thus find that positive, orthogonal fixed points are stable under

arbitrary perturbations. Now positivity of the fixed points implies, that we can

take unique positive square roots, as explained in the diagram above.
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Figure 4.3: Positive fixed points are stable: There exists no perturbation acting
on any finite patch of the bulk, that mixes different positive fixed points, which
is shown by deriving that such a state would have zero norm.

4.3 Construction of symmetry broken states

As was discussed in chapter 3, the transfer matrix is manifestly symmetric for

a symmetric PEPS tensor, which is reflected in the fact that the symmetry

operation commutes with the transfer matrix always. Let us abbreviate the

symmetry operation by defining S := (Vg ⊗ V̄g)⊗Nv . We now repeat eq. 3.30

here for readability:

[T, S] = 0. (4.14)

The vanishing commutator tells us that the eigenvectors of the transfer ma-

trix transform under some irrep of the symmetry, which in our case are all

one-dimensional, since we study finite Abelian symmetries ZN . We make the

assumption, that per symmetry sector, the largest eigenvalue of T is unique, also

in the thermodynamic limit. We would like to characterize the fixed point space

in this situation and thus uniqueness implies that we can drop the counting label

on the eigenvectors, only keeping the symmetry label. For a ZN -symmetry the

eigenvectors of the transfer matrix are given by

SrkS
† = ωkrk (4.15)

SlkS
† = ωklk (4.16)

where k = 0..(N − 1), ω = e2πi/N (4.17)

Note, that the zero-sector fixed point is positive, which can be seen by consider-

ing T∞, which was defined in equation 3.22. Its fixed points obey Eqs. 4.15 and
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4.17. We then have that T (∞)(1) ≥ 0 due to the CP property of the transfer

operator, and 1 is invariant under the symmetry and thus in the zero sector.

Hence T (∞)(1) = r0 is positive as well as l0 by analogy.

Our goal now is the following: Given the above described fixed-point set, does

there exist a set of stable fixed points in the precise sense of fig. 4.2? As elab-

orated in eq. 3.10, the fixed point set of a trace preserving transfer operator

(quantum channel) can be spanned by a set of positive semi-definite opera-

tors. The fore-mentioned transfer operator however is not necessarily trace-

preserving. We will now be concerned with resolving this seeming incompatibil-

ity. Let us assume for a moment that the left fixed point in the zero-sector has

full rank l0 > 0, which implies that it has an inverse. This allows us to define a

modified channel T̃ (“isometric gauge”):

T̃ (X) =
∑
i

(√
l0Ai

1√
l0

)
X

(
1√
l0
A†i
√
l0

)
(4.18)

This channel then is trace-preserving, which is seen by noting that the dual map

T̃∗, defined via tr(T̃∗(A)B) = tr(AT̃(B)) is unital (i.e. T̃∗(1) = 1) by the virtue

of T ∗(l0) = l0 . We now extend this to the case, where l0 is not full rank, by

defining l−1
0 as the inverse on the support S of l0, i.e. the matrix satisfying

l−1
0 l0 = l0l

−1
0 = 1S , the identity on S. T̃ (X) then is trace preserving channel

on S.

To make sure that the above modification of the channel, which involves a

projection onto the support of l0, does not change the fixed point set, let us

show, that the support of any fixed point is contained in the support of l0.

Assume some Hermitian X, then 1 ± εX is clearly positive definite for some

ε > 0. T ∗(1 ± εX) = l0 ± εT ∗(X) has to be positive by definition of CP (dual

maps are obviously also CP), but the r.h.s. fails to be positive as soon as T ∗(X)

has support outside l0, hence supp(li) ⊆ supp(l0). Since the fixed point space is

preserved under Hermitian conjugation (l†i ∝ lN−i) we also have that the image

of li is restricted to the support l0 or in other words PSliPS = li where PS is

the projector on the support space S of l0. This implies, that with respect to

the original channel T , the modified trace preserving channel T̃ has fixed points

l̃i =

√
l−1
0 li

√
l−1
0 , r̃i =

√
l0ri
√
l0, (4.19)
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which is not hard to verify. We start with the left fixed point, where we

simply have T̃ ∗(l̃i) =
√
l−1
0 T ∗(PSliPS)

√
l−1
0 =

√
l−1
0 T ∗(li)

√
l−1
0 = l̃i, where

we used the fact that all left fixed points are contained in the support of l0

as shown above. For the right fixed points we similarly evaluate T̃ (r̃i) =
√
l0T (PSriPS)

√
l0, expressing the channel as T (X) =

∑
k rk tr(l†kX), we see

that T (ΠSXΠS) = T (X), from which we conclude that T̃ (r̃i) = r̃i, as claimed.

Now for a trace-preserving channel, there exists a set of mutually orthogonal

positive-semi-definite fixed points, which span the entire fixed point space. We

thus arrive at the following key insight:

The fixed point set of a ZN -symmetric transfer-operator with long-range order

is spanned by mutually orthogonal positive-semi-definite fixed points.

T∞ =
∑
k

|R̃k)(L̃k|, (4.20)

where L̃k, R̃k ≥ 0 and tr(L̃†kR̃j) ∝ δij .

In the remainder of this section we will be tasked with first finding the basis

transformation that gives these positive fixed points R̃k from the irreps rk (and

the dual fixed points correspondingly) and secondly prove, that this basis does

not mix under arbitrary perturbations and is thus the basis of symmetry broken

states.

Hermitian Z2-symmetry breaking transfer operator

We start with the simplest case, which requires the least technical tools. Having

a Hermitian Z2-symmetric transfer operator means that left and right fixed

points coincide (which also lets us have them self-normalized) and that in our

setting we have two-sectors in the transfer operator, both of which contribute

with one fixed point, such that the transfer operator has the form

T = |r+)(r+|+ |r−)(r−|+ . . . , (4.21)

where we omit all the other terms, which we assume to lie below some gap in

the thermodynamic limit. We might naively characterize the fixed point space

of this operator simply as the linear span of the two fixed points, written as
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operators:

R(γ) =
1√

1 + γ2
(r+ + γr−) (4.22)

However, this cannot be true in general, since the resulting linear combination

has to be a positive (semi-)definite matrix (operator), which first of all requires

γ ∈ R for Hermitianity. Moreover, r− in itself, cannot be a positive operator,

since it lives in a non-trivial symmetry sector. It is invariant under the unitary

conjugation with the symmetry action

Sr−S
† = −r−, (4.23)

which implies that its spectrum is invariant under sign flip and thus as soon as

it has a positive eigenvalue, this is accompanied by a negative partner, which

renders it a non-positive matrix. This is the first indication towards the mecha-

nism of symmetry breaking in PEPS: It is an essential ingredient for symmetry

breaking, that eigenvectors, which transform non-trivially under the symmetry

action, asymptotically become part of the fixed point space and positivity re-

quirements restrict the possible states of the system. We now characterize the

possible R(γ) of equation 4.22. These are characterized by choosing γ, such

that R(γ) ≥ 0. Again, note that conjugation does not change the spectrum,

SR(γ)S† = R(−γ) ≥ 0. (4.24)

Let us now derive a useful inequality, which we will exploit repeatedly later.

Given two positive operators, the trace over their product is also positive:

A,B ≥ 0⇒ tr(AB) = tr(A
∑
j

λj |j〉 〈j| =
∑
j

λj︸︷︷︸
≥0

〈j|B |j〉︸ ︷︷ ︸
≥0

≥ 0. (4.25)

Combined with 4.24, this inequality leads to the constraint

tr(R(γ)R(−γ)) =
1− γ2

1 + γ2
≥ 0 (4.26)

γ ≤ 1 (4.27)

Now let us assume there exist some perturbation on the transfer operator, which

leads to the symmetry breaking (i.e. a splitting of the degeneracy). This per-

turbation then selects one state in the fixed point space. If this perturbation

preserves Hermiticity, we know that the eigenbasis is orthogonal. Furthermore,
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if we invert the splitting, the basis in which the perturbed transfer operator

splits, will remain the same but the other state will be selected and thus also

has to be positive semi-definite. The state orthogonal to R(γ) is given by

R∗(γ) =
1√

1 + (1/γ)2
(r+ −

1

γ
r−). (4.28)

Now R∗(γ) ≥ 0 implies

γ ≥ 1 (4.29)

by the same reasoning as above. In total, we find that

γ = 1, (4.30)

which reduces the allowed states to

R =
1√
2

(r+ + r−) (4.31)

R∗ =
1√
2

(r+ − r−) (4.32)

Non-Hermitian transfer operators with ZN symmetry

Starting from T∞ =
∑
i |r̃i)(l̃i|, we want to find the |R̃i), as defined in equation

4.20. Observe, that the |r̃i) are mutually orthogonal, because they reside in dif-

ferent sectors of the symmetry. We are free to normalize, such that (r̃i|r̃j) = δij .

Similarly, the |R̃i) are orthogonal and if we assume them to be normalized, this

already implies that the transformation must be unitary, i.e. |R̃i) =
∑
ij Uij |r̃j).

The R̃i are furthermore positive and given A,B ≥ 0, we have tr(AB) ≥ 0, as

given in eq. 4.25. We will make us of this by deriving, that

tr(R̃iS
mR̃j(S

m)†) = (R̃i|(S ⊗ S̄)m|R̃j) ≥ 0 (4.33)

which we reformulate as

(r̃k|U†ki(ω
m)lUjl|r̃l) = (UWmU†)ji =: G

[m]
ji ≥ 0, (4.34)

where we used orthonormality of |r̃i) and defined the diagonal matrix W =

diag
(

1 ω ω2 · · · ωN−1
)
.We note, thatG[m] areN entry-wise non-negative

matrices. Now, it can been seen that G[m]−1
= G[N−m], so the inverse of such
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a matrix is also non-negative. To proceed, let us prove that

Gij ≥ 0 and G−1
ij ≥ 0 ⇔ G = D · P, (4.35)

(G is then called monomial), with D (non-negative) diagonal and P a permuta-

tion matrix (i.e. exactly one 1 per row and column). To see this, take GG−1 = 1

and observe, that this means orthonormality of rows and columns, additionally

G must have full rank thanks to the existence of the inverse. This implies, that

each column of G−1 must be orthogonal to N − 1 rows of G, and thus has

N −1 zeros lest it has negative entries, prohibited by entry-wise non-negativity.

If we push the value of this one non-zero entry into a separate matrix D, we

arrive at a permutation matrix P and we are done. Note, that W−1 = W †,

which implies G is unitary and thereby restricts it to a pure permutation ma-

trix, which has to be an N−cycle, due to the fact it has all roots of unity in its

spectrum. Since the label of the R̃i is arbitrary (we cannot distinguish them in

principle), there is a relabeling freedom which lets us write G as a shift operator

G =
∑
|x+ 1〉 〈x|, which we can interpret as a translation operator on a discrete

position eigenbasis. G is translation invariant and thus will be diagonalized by

a Fourier transformation

F = N−1/2
∑
px

ωpx |p〉 〈x| (4.36)

as

FGF † =
∑
p

ωp |p〉 〈p| . (4.37)

The unitary transformation we are trying to find, is therefore pinned down to

U = F ·C, where C is the remaining phase freedom. The latter can be fixed by

a consistency condition: We so far have, that R̃i =
∑
j Uij r̃j , where we require

the R̃i to be positive (semi-)definite. Upon inversion, we thus have in particular

r̃0 =
∑
j c̄jR̃j with the R̃j having orthogonal support. On the other hand r̃0

must also be positive, because it is the leading eigenvector on any finite system

and thus positive on its own, which forces us to choose ci = +1. We thus proved,

that the basis transformation to symmetry broken states is given by the Fourier

transformation U = F =
∑
ij ω

ij |i〉 〈j|:

R̃i =
∑
j

Fij r̃j ≥ 0. (4.38)
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For the left fixed points, the reasoning applies in complete analogy and they

transform in the same fashion

L̃i =
∑
j

Fij l̃j ≥ 0. (4.39)

4.4 Algebraic derivation of symmetry breaking

states

Since the above proof is quite involved, we would like to offer a second point

of view, which is given by looking at the dual channel. It is more abstract

and exploits properties about unital channels. We already showed, that it is

sufficient to look at unital channels. We thus assume a unital channel with one

fixed point per symmetry sector. The fixed points are given by

{rk}|N−1
k=0 UrkU

† = ωkrk, (4.40)

and in particular r0 = 1. Now, the fixed point space of a unital channel is an

algebra (for proof see section 3.10). This means

rirj = c(i, j)ri+j [addition mod N ] (4.41)

We assume uniqueness per symmetry sector, together with a normalization this

means

r†krk = 1 (4.42)

and furthermore

rNk = 1 (4.43)

The first equation means the rk are unitaries. Unitaries are diagonalizable and

have full rank. We denote the matrix diagonalizing rk by V(k). We perform the

diagonalization on the second equation:

rNk = (V(k) diag [λ0 . . . λN−1]
N
V †(k)) = 1. (4.44)

This implies, that all eigenvalues of the rk are N -th roots of unity.
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Let us now have a closer look at the composition law

rirj = c(i, j)ri+j (4.45)

Uniqueness tells us, that rirj ∝ rjri, so we can write rjri = βrirj for some

β ∈ C\{0}. This is nothing but

ri = r†j(βri)rj , (4.46)

hence we learn that βri must have the same spectrum as ri, which means β can

only be a root of unity. We furthermore know, that

0 = rirj − β̄rjri = [c(i, j)− β̄c(j, i)]ri+j , (4.47)

which can only hold if

c(i, j) = β̄c(j, i). (4.48)

Evaluating this on any diagonal element leads to a contradiction for any root of

unity unless β = 1. We thus have shown, that

[ri, rj ] = 0 (4.49)

The fixed points are thus all diagonal in the same basis, or expressed in the

notation above, we have V(i) = V(j) ∀ i, j and can thus drop the subscript. We

know (proof see section 3.10), that for a unital channel, we can always write

any fixed point as a (complex) linear combination of positive fixed points. Let

us call the positive fixed points Ri. There can at most be N positive matrices

Ri. We are looking for the transformation

Ri =
∑
j

Mijrj (4.50)

Now we can diagonalize both sides simultaneously:

V RiV
† =

∑
j

MijV rjV
†. (4.51)

We can find at least N distinct Ri this way, since rj has at least N distinct

eigenvectors. However, there can also at most be N linear independent Ri. Ri

are thus the rank-1 projectors, we construct from the rj which is accomplished
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by a Fourier transform: Mij = ωij . We thus arrive at the same result on a more

abstract level of reasoning.

The fixed point space of a ZN symmetry breaking transfer operator is given by

the Fourier transform of the irrep fixed points.

{Ri} = F({ri}) (4.52)
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Numerical methods

It is in general not possible to compute the spectrum of the transfer operator for

a given model analytically, let alone the corresponding eigenstates. In order to

extract the signatures of symmetry breaking from PEPS models, we therefore

need numerical methods. We devote this chapter to review the most important

algorithms we will work with [26].

5.1 Contractions of tensor networks

As layed out in the PEPS chapter 3, our approach is to start with the definition

of the local tensor and study the global properties, that follow from it, which

are usually expectation values or fixed points. As explained in chapter 3, the

contraction of a matrix product state is simple: We just construct the transfer

matrix and find its eigenstates, which allows us to compute any property of

the MPS. In the case of two-dimensional PEPS, the situation is quite differ-

ent, because there is no local tensor like the MPS transfer matrix, which just

repeats itself but instead we have an object growing with the system size (the

PEPS transfer matrix), it is hence non-trivial to extrapolate the large system

behavior of this. There has been extensive work on the computational hardness

of doing such a contraction in general (in theory [68]) and on finding efficient

(approximative) algorithms to do it in numerical practice [66].
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5.2 The power method and the Arnoldi algo-

rithm

In the above mentioned algorithm, the bottleneck is the memory we need for

storing T , which is a matrix of size D2Nv×D2Nv , i.e. its size grows exponentially

with the system size. We can save memory by only storing vectors from the

domain and image of T , which are of size D2Nv “only”. Let us show how to

apply the transfer operator iteratively on some vector in its domain. To do

this, we can exploit the modular structure of PEPS by contracting one tensor

on one site only, then storing this new vector and then iterate by applying the

tensor consecutively on the next (neighboring) index. We use the NCON library

[52] (i.e. MATLAB), where one can conveniently define contraction schemes.

We show the contraction scheme diagrammatically in fig. 5.1. Counting the

maximum number of open indices during the iteration, we see that we “only”

have to store an object of size D2Nv+4.

Figure 5.1: By contracting the double-tensor E locally and iteratively, we gain
a memory advantage of ∼ D2Nv .

Our principal interest is to find the dominant eigenvector of T . The naive

method would be to iteratively apply T to a (random) initial vector

T |v〉 , T (T |v〉), T (T (T |v〉)), . . . T∞(|v〉). (5.1)

It is clear that the resulting vector is part of the eigenspace corresponding to the

largest eigenvalue, since any contribution with lower eigenvalue is projected out

in the process, provided that the initial (e.g. random) vector has some overlap

with that space. This method is more efficient in terms of memory cost and

is known as the power method eigensolver. Based on this naive ansatz is the

best known method to approximate the largest eigenvalues and corresponding
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eigenvectors of a matrix, which is called the Arnoldi method. (We have noticed,

that it is sometimes colloquially attributed as Lanczos method, which is incor-

rect since the latter only works for the case of Hermitian matrices, which is not

the case for transfer operators.) The computation is the same, we again build

powers of T exactly as in eq. (5.1), however now we store the n vectors. These

vectors span the so called Krylov subspace

Kr(T, |v〉) =
{
|v〉 , T |v〉 , T 2 |v〉 , . . . T r−1 |v〉

}
=: {|v1〉 , |v2〉 , . . . |vr〉} . (5.2)

Let us denote the change-of-basis matrix by Q = {|q1〉 , . . . |qr〉}. It maps the

raw power method vectors to an orthonormal basis. This Q is algorithmically

found by a Gram-Schmidt process, which iteratively constructs the orthonormal

basis by choosing one vector and then recursively constructing the next vector

by subtracting the overlap with the previous vectors from the respective candi-

date of the non-orthonormal basis we started with. This implies that Q is by

construction upper triangular, since the first vector is orthogonal to r − 1 (all

other) vectors, the second one is orthogonal to r − 2 vectors and so on. Since

Q constructs an orthonormal basis, we also know that

Qij = 0 ∀ i > j (5.3)

Q†Q = 1r (5.4)

Q†TQ = H. (5.5)

In this basis, the projection of T is Hessenberg (upper triangular plus the first

lower diagonal), which is due to the fact that in the Gram-Schmidt procedure

the |qk〉 vectors are linear combinations only of the first k vectors of the Krylov

space. Let us now show, how we arrive at the Hessenberg property. (In the

following, the coefficients cl are not relevant for the argument, but of course

they eventually give the entries of the Hessenberg matrix)

|qk〉 =

k∑
l=1

cl |vl〉 (5.6)

T |qk〉 =

k∑
l=1

cl |vl+1〉 =

k∑
l=1

cl

l+1∑
m=1

c̃m |qm〉 (5.7)
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〈qj |T |qk〉 =

k∑
l=1

cl

l+1∑
m=1

c̃mδmj =

hqk0 j > k + 1
, (5.8)

which concludes the proof that it is of Hessenberg form. It is computationally

cheap to find the eigenvalues of H, e.g. by a QR decomposition. The key point is

that the eigenvalues of H approximate the extreme eigenvalues of T , already for

moderate sizes of the Krylov subspace. To the knowledge of the author, this has

not been understood rigorously and is still an open problem. There are however

heuristic arguments, why this is what happens. In order to make statements

about the quality of an approximation, we need to have an expression on the

error we make. Let us denote the complete eigen-decomposition of T as

T =
∑
i

λi |xi〉 〈xi| (5.9)

Assuming that the operator is diagonalisable implies that this is a complete

basis. We can therefore also expand the starting vector in that basis as

|v〉 =
∑
i

αi |xi〉 . (5.10)

We now measure the difference between the true eigenvector and the best eigen-

vector approximation possible in the Krylov subspace (taken from [60, 34]).

The following quantity then measures, how much of an exact eigenvector |xi〉
lies outside the Krylov subspace:

δ(Qk, xi) = || |xi〉 −QkQ†k |xi〉 || = ||(1−QkQ
†
k) |xi〉 ||. (5.11)

It is identically zero if |xi〉 ∈ Kk, since this implies that |xi〉 = Q |z〉 for some |z〉.
If this is not the case, we expect δ to be small for good approximations to |xi〉.
Any element of the Krylov subspace, and in particular the approximation to

|xi〉, which we are seeking here, can be written as a polynomial in the operator

T applied to the starting vector |v〉, where the degree of the polynomial is given

by the size of the Krylov subspace:

QkQ
†
k |xi〉 = p(T ) |v〉 p ∈ Pk−1 (5.12)
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Finding the best approximation in the Krylov subspace then amounts to finding

the optimal polynomial q of a given degree. We now want to bound the error δ

we make in this approximation to see what we can learn about the convergence

behaviour of the Arnoldi process. To that end, let us look at

||(1−QkQ†k)αi |xi〉 || = min
q
||αi |xi〉 − q(T ) |v〉 ||

= min
q
||αi |xi〉 −

∑
j

αjq(λj) |xj〉 ||.
(5.13)

where we used the expansion of the starting vector |v〉 in the eigenbasis of T

(eq. 5.10). Instead of minimising over all q(λj) we fix one of them to q(λi) = 1,

which might slightly degrade the upper bound but lets us continue with finding

a useful expression for the error. This leads to

eq.(5.13) = min
q
||αi |xi〉 −

∑
j

αjq(λj) |xj〉 || ≤ min
q

q(λi)=1

|
∑
j 6=i

q(λj)αj |xj〉 |

≤ min
q

q(λi)=1

∑
j 6=i

|αj ||q(λj)| ≤

∑
j 6=i

|αj |

 min
q

q(λi)=1

max
j 6=i

(q(λj))

(5.14)

The upper bound on δ(Qk, xi) (eq. 5.11) is given by dividing everything by the

factor |αi|:

δ(Qk, xi) ≤ ξiε(k)
i :=

∑
j 6=i

|αj |
|αi|

 min
q

q(λi)=1

max
j 6=i

(q(λj)) (5.15)

The quantity ξi measures the dependency of the convergence on the starting

vector and the quantity ε
(k)
i measures the dependency of the convergence on the

eigenvalues of T . For the former, it is straightforward to see that a large overlap

of the starting vector with |xi〉 will lead to a small error and hence a faster

convergence. The eigenvalue dependency is less straightforward and we give the

following instructive example of [34]: Suppose we can find a disc in the complex

plane, such that all eigenvalues except for λ1 lie within that disc. Let C(ρ, c)

denote that disc with radius ρ and center c ∈ C, such that λi ∈ C(ρ, c) ∀i ≥ 2,
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then (for a proof, see [34])

ε
(k)
1 ≤

(
ρ

|λ1 − c|

)k−1

, (5.16)

which shows that if there is an isolated eigenvalue, separate from the rest of

the spectrum, then the Arnoldi method converges this eigenvalue very quickly

(exponentially fast in the size k of the Krylov subspace).

5.3 The infinite matrix product state (iMPS) al-

gorithm

The following algorithm allows us to find an MPS representation of the fixed

point of a MPS or PEPS directly in the thermodynamic limit [76, 44]. Owing

to the gauge degree of freedom in a matrix product state, it is always possible

to transform an MPS F into its so called left or right canonical form, where

F iαβ =
∑
γ

(QR)iαγRγβ (5.17)

F iαβ =
∑
γ

Lαγ(QL)iγβ (5.18)

with
∑
iα(QR)iαγ(Q̄R)iαµ = δγµ and

∑
iα(QL)iαγ(Q̄L)iβγ = δαβ . Computation-

ally, this is known as the QR decomposition, where Q†Q = 1 holds and R is an

upper triangular matrix.

Figure 5.2: Given an MPS F , we can find matrices R (and L), such that com-
muting them through F brings the tensor into left (or right) canonical form

If we want to repeat this decomposition on the adjacent (in this case right)

side again, the left index has another matrix sitting on it, which means the QR
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Figure 5.3: QR is in the left canonical gauge: The contraction over the left
virtual and the physical index results in a delta tensor, i.e. the delta-tensor is
invariant under the transfer matrix when coming from the left. QL similarly is in
right canonical gauge. R and L can be found by a recursive QR-decomposition.

decomposition is changed towards∑
γ

RαγF
i
γβ =

∑
γ

Q̃iαγR̃γβ (5.19)

with new Q and R matrices. The key observation is the following: This iteration

has a fixed point, which is that as soon as Q and R do not change anymore

upon the above transformation, we have found the fixed point behavior of the

state. We will implement this simply by repeated QR decomposition. So far, we

described how to find the canonical form of an MPS, which is a one-dimensional

setup. However, we will now adapt it to the two-dimensional problem we face

throughout this thesis. Suppose, we are given a local tensor Aiαβγδ, which defines

the model we want to study. We thus would like to compute the fixed point

of this two-dimensional model. We will make the assumption that the fixed

point has some MPS description. To find this MPS, we start with some initial

ansatz MPS, call it F . This MPS has two virtual indices (which take care of

the entanglement in the fixed point) with some arbitrary bond dimension χ and

one physical index, which in this case is a double index of size D2 describing

the vertical (virtual) direction of the PEPS transfer operator. We then apply

the local double tensor E on the physical (double-)index of the initial MPS.

This gives yet another MPS, however with increased bond dimension χD2. Of

this we compute the iMPS representation as detailed above. If we repeated

this application of the E tensor, the bond dimension would run out of control,

therefore we have to truncate. This is done by truncating the singular values

across the virtual index. The index of the original problem is sitting between R
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and L. We therefore perform an SVD on

RL = USV †, (5.20)

and decompose this across the singular values into

USV † = U
√
S
√
SV †, (5.21)

which we can truncate according to

PL =
√
S−1U†R (5.22)

and

PR = LV
√
S−1, (5.23)

where we assume the singular values to be in decreasing order and can then

truncate according to our choosing. Overall, this again gives an update proce-

dure, applying E and truncating back to a smaller bond dimension. We depict

this recursion in fig. 5.4.

Figure 5.4: Recursion formula for finding the iMPS decsription of the fixed point
of a two-dimensoinal PEPS model.

The convergence criterion is to ask, whether the updated MPS and its prede-

cessor describe the same quantum state, which is equivalent to measuring the

fidelity of the state, that is in turn given by the (mixed) transfer operators.

〈ψ′|ψ〉 =
tr(
∑
i F

i′ ⊗ F̄ i)N√
tr(
∑
i F

i′ ⊗ F̄ i′)N
√

tr(
∑
i F

i ⊗ F̄ i)N
(5.24)

In practice, we measure the fidelity per site, which is the ratio of the dominant
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eigenvalues corresponding to eq. (5.24):

δ′ =
λmax(Tmixed

F ′,F )√
λmax(TF ′)λmax(TF )

. (5.25)

If this quantity converges, we have good confidence, that we have found the

optimal MPS representation of the fixed point of the respective model. The next

task is to compute expectation values within the iMPS framework. Extracting

the expectation value of an observable O is straightforward: we simply put O
on one site (or a block of sites as long as O has finite support), which gives

us a dressed site. We extend the lattice in both directions to infinity with

undressed sites. Then we apply the iMPS algorithm both from the top and

from the bottom, which will give us the optimal MPS from both directions. We

are then left with a one-dimensional problem with three rows. The top row is

one (infinitely extended) line of the optimal MPS from the top, the middle line

has the initial model tensor, which carried the operator O on its physical index

on one site. The bottom row is again the optimal MPS tensor. This structure is

infinitely extended to left and right, except for the site where O is sitting. We

exploit this and find the left and right fixed point of this three-layered transfer

operator [41]. This allows us to evaluate the expectation value on the iMPS as

Figure 5.5: Computation of expectation values in iMPS framework: We first
compute the iMPS fixed points from bottom fb and from the top ft (infinite
plane). We then define a (“channel-”) matrixW with three layers: the optimized
MPS on top and bottom and one unmodified layer with the original tensor (no
operator on the physical index, indicated by 1). Evaluating the left and right
dominant eigenvectors of this with a dressed channel matrix, where we put the
observable O on the physical index gives the expectation value on the infinite
plane, where we normalize by dividing by the value of the same diagram without
putting the observable on the center site.

Since the wave-function is, as always, unnormalized, we also have to compute

the corresponding quantity where we replace O by 1. The expectation value is

thus given by the ratio of the diagrams in Fig. 5.5.
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Since we will only need on site expectation values later, let us just make the

side-remark, that higher order correlation functions are a bit more involved. If

the two non-trivial operators act close enough to each other on the lattice, one

can still use the above method by enlarging the unit-cell, however this quickly

becomes intractable and one has to resort to different methods. For recent

advances on building so called environment channels, see [73].
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Chapter 6

Prototype models: Ising,

AKLT and q-state Potts

PEPS

In the previous chapter, we accomplished a complete characterization the fixed

point space of the PEPS transfer operator in symmetry breaking phases. In

order to verify these findings, which in particular involve assumptions about

the properties of the transfer operator, we now would like to study the sym-

metry breaking mechanism numerically to see what we learn from our analytic

results in realistic models. To find suitable PEPS models for this, we use the

Rokhsar-Kivelson ansatz presented in chapter 3.4. Remarkably, we can simply

use a classical Hamiltonian and construct a (quantum-) PEPS model from it.

We will use the classical Ising and Potts models and hence call the correspond-

ing PEPS models the “Ising PEPS” and the “Potts PEPS”. To test our results

in a setting beyond the RK ansatz, we will furthermore study the AKLT model

with a nematic field.

The Ising model [33] was the first statistical mechanics model that was shown to

have a (Z2-) symmetry breaking phase transition in two dimensions [48], before

later being famously solved analytically by Onsager [43], including an unsub-

stantiated claim for the formula of its spontaneous magnetization, which was

later derived by Chen-Ning Yang [81]. An accessible analytical solution, relying

on the application of transfer operators and the Jordan-Wigner transformation,
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was later given by Schultz, Mattis and Lieb [69]. The Potts model [55] can be

seen as a generalization of the Ising model and hosts a ZN -symmetry breaking

transition [80].

6.1 Ising PEPS

The Ising PEPS was defined in chapter 3.4 and is given by

A0 = |0〉 〈θ|⊗4
A1 = |1〉 〈θ̄|⊗4

, (6.1)

where

|θ〉 = cos(θ) |0〉+ sin(θ) |1〉 (6.2)

|θ̄〉 = X |θ〉 = sin(θ) |0〉+ cos(θ) |1〉 . (6.3)

The tensor manifestly has a Z2-symmetry for any parameter value θ, given

simply by the Pauli matrix X on both virtual and physical indices:

XijA
j
αβγδ = AiµνρσXµαXνβXργXσδ. (6.4)

Furthermore, due to the mapping to the square lattice Ising model we know

that it has a critical point at θc ≈ 0.35 and we expect a degeneracy in the

transfer operator for θ < θc. To verify this, we take the model and put it on a

finite cylinder, where we can diagonalize the transfer operator exactly, as was

described in detail in chapter 5.

T =
∑
k,α

λk,α|rk,α)(lk,α| (6.5)

We diagonalize the transfer operator by an Arnoldi method, which gives the

largest eigenvalues for moderate cylinder sizes. We first study (Fig. 6.1), how

the largest eigenvalues vary with θ and find a clear indication for the phase

transition at θc ≈ 0.35, which was expected from the exact value of the critical

point, which lies at θc = 1
2 arcsin[(1 +

√
2)−

1
2 ]. The plot shows, that the second

largest eigenvalue is gapped out in the trivial phase (right hand side) and be-

comes part of the degenerate ground state subspace (left hand side), which is an

indication for a phase transition. The two eigenstates are numerically distinct

due to the splitting, which is far above machine precision. We can thus resolve
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them individually to confirm that the leading eigenvector lives in the positive

symmetry sector and the sub-leading one in the negative symmetry sector:

(X ⊗X)⊗Nv |r±) = ±|r±). (6.6)

To study the way in which the degeneracy arises, we make a finite size scaling

of the splitting between λ0 − λ1 against the system size N (Fig. 6.2). We find

that the splitting closes exponentially fast in Nv, λ0 − λ1 = O(e−cNv )

θ
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Figure 6.1: Spectrum of the Ising PEPS transfer operator for increasing system
size. Blue: second largest eigenvalue, Red: third largest eigenvalue. Both for
Nv = 4, 6, .., 12 (bottom to top)

Validity of the subspace approximation: fidelity measurement

We would like to test the validity of our results on symmetry broken states (cf.

chapter 4.3). According to the explicit construction, the asymptotic channel of

the Ising PEPS is

T = |r+)(r+|+ |r−)(r−| (6.7)

with the symmetry broken states

R↑↓ =
1√
2

(r+ ± r−) (6.8)

In order to verify this numerically, we construct these states explicitly from the

exact diagonalization result. We compare these states with the fixed point of a
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Figure 6.2: Scaling of the second largest eigenvalue in the Ising PEPS transfer
operator. We plot log(1 − λ1) vs. Nv for varying parameter θ = (0.15..0.35)
(bottom to top), a straight line with negative slope indicates a splitting of the
form exp(−cNv)

perturbed system, where we explicitly break the symmetry by applying a local

perturbation on the physical index of the PEPS tensor of the form

Ai → (1+ εZ)Ai. (6.9)

As was described in chapter 3.3, the perturbation lifts the degeneracy if the

matrix element (r−|TZ |r+) is non-zero. The diagonal elements are zero due to

the symmetry:

(r+|TZ |r+) = (r+|X⊗2NvTZX
⊗2Nv |r+) = −(r+|TZ |r+) = 0 (6.10)

This means that the matrix we have to diagonalize a symmetric off-diagonal

2x2 matrix,

M =

(
0 (r−|TZ |r+)

(r+|TZ |r−) 0

)
(6.11)

which leads to correction in the eigenvalues of

λ±(ε) = 1± ε(r−|TZ |r+) (6.12)
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Since the perturbation lifts the degeneracy, this perturbed model will have

a unique fixed point, which we again compute with an exact diagonalization

(Arnoldi eigensolver). Let us call the fixed point of the perturbed model |Rε).
We measure the difference between the two states by computing the residue of

the fidelity, given by

δ = 1− min
k∈↑↓

[|(Rε|Rk)|2] (6.13)

In order to compare different system sizes, we normalize by the number of sites

used in the respective calculation δ(ε)/Nv. The result of the calculation for

some parameter choice in the symmetry broken phase θ = π/16 is shown in Fig.

(6.3), where we plot the fidelity per site against the perturbation strength ε and

find a straight line with slope 1.97 ± 0.02 on the log-log scale. This is in very

good agreement with our expectation from perturbation theory point of view

(see A.18): What we measure, is how much of the fixed point lies outside the

“true” (analytic) fixed point space. As explicated in chapter 3.3, the correction

to the state in first order in ε is orthogonal to the “ground state” subspace

(adapted to our case, the fixed point subspace), hence only in second order in

the perturbation to we expect a change in the fixed point, which explains the

nearly perfect ε2 behavior in the fidelity per site scaling.

ǫ

10
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10
-2

10
-1

δ
/N

v

10
-9

10
-8

10
-7

Figure 6.3: Scaling of the residual fidelity δ = 1−|(f(ε)|g)|2 against ε for different
Nv = 9, 11, 13, 15, the lines almost exactly coincide. θ = 0.25π/4 Dashed: linear
fit (log/log-scale) with slope p = 1.97± 0.02
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Connection to “usual” symmetry breaking with order parameters:

Ising PEPS

In order to make the connection to the more common way of detecting symme-

try breaking, we measure the order parameter in the Ising PEPS fixed points.

The order parameter is the dressed transfer operator TZ , which is in direct

correspondence with the order parameter Z of the Ising model (which acts on

the physical indices). It is clear from symmetry considerations, that this is

identically zero on the symmetric fixed points |r±). We measure

〈TZ〉(θ) = |(R↑(θ)|TZ |R↑(θ))| (6.14)

by exact diagonalization and a single application of an (implicitly constructed)

TZ . The result is plotted in 6.4. The failure of the order parameter to drop

θ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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Figure 6.4: Order parameter measured on the analytic symmetry broken states
R↑↓ for finite system sizes (Exact diagonalization). The phase transition lies at
θc ≈ 0.35. We can see a clear indication, that the order parameter significantly
drops around the critical point, however it remains finite in the disordered phase.

to zero in the disordered phase is due to the fact that our assumptions for the

construction of the states R↑↓ are only valid in the symmetry broken phase.

Once the phase transition happens, the contribution of r− is incorrect. It there-

fore only makes sense, to talk about the behavior of the order parameter on

the symmetry broken side of the transition. We will demonstrate, that one can

extract remarkably accurate information from the finite size fixed points about
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the infinite lattice limit by making a mild assumption about correlations in the

system. Around the phase transition, the system tends towards an infinite cor-

relation length, our finite cylinder setting therefore leads to an artificial cutoff

as soon as the correlation length approaches the system size. Let us assume,

that the finite size correction is exponential in the circumference of the cylinder:

m(θ,Nv) = m(θ,∞) + a exp(−bNv) (6.15)

with unknowns m(θ,∞) a and b, which are functions of θ (and potentially also

Nv).

This in particular gives an (inverse) correlation length ξ−1 := b, which we plot

against θ in Fig. 6.5. We observe a linear dependence, which we extrapolate

further to the critical point by fitting it linearly (with quadratic correction)

θ
0.25 0.3 0.35 0.4

1
/
ξ

0

0.5

1

1.5

Figure 6.5: Correlation length from the finite size scaling of the order parameter
(green) and linear fit (red)

The final step is to then feed the fitted correlation length ξ(θ) back into eq.

6.15, where we now also model the prefactor as a = c(Nv)
g, to account for

short-range effects close to criticality. We compare the result to the formula for

the magnetization analytically derived by Yang [81],

m =
[
1− sinh−4(2βJ)

]1/8
, (6.16)

where βJ = − log sin(2θ). We are able to extract the spontaneous magnetization
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by the described two-step fitting method to remarkably high accuracy.

θ

0.33 0.34 0.35 0.36

〈 
T

Z
〉

0

0.2

0.4

0.6

0.8

1

Figure 6.6: Order parameter, zoomed in around the critical point. We plot the
finite size values (black), the final extrapolation curve (green) and the analytic
function (Yang’s formula) of the magnetization, (red, dot/dashed). Remarkably,
the finite size extrapolation is very close to the analytic curve.

Let us summarize what we learned by studying the Ising PEPS model. We

started by identifying a phase transition from the spectrum of the PEPS trans-

fer operator, including a finite size scaling of the splitting in the quasi-degenerate

subspace. The transition point coincides with a mapping of the Ising PEPS to

the exact result of the square lattice Ising model. We then introduced fidelity

measurements as a tool to test our analytical results about how to define sym-

metry breaking in the PEPS environment, which were presented in chapter 4.

These fidelity measurements confirm that we found the correct description of

the fixed points of PEPS models with spontaneous symmetry breaking. We were

furthermore able to extract remarkably accurate information about the phase

transition from the finite size PEPS data by measuring the order parameter on

the symmetry broken fixed points.

6.2 AKLT model with “nematic” field

We would like to test our results on a model that does not come from a classical

model. To that end, we take the well known AKLT model (invented by Affleck

Kennedy Lieb and Tasaki [1, 2]) with a “nematic” field [16]. This model was
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invented before matrix product states were discovered and is thus an early ex-

ample where it was possible to construct a model with a non-trivial ground state

which could be exactly formulated (“exactly solved”). The Hamiltonian of the

model turns out to be an approximation to the spin-1 Heisenberg Hamiltonian,

which to this day is a research focus in quantum magnetism. It furthermore

lies in what is now known as the Haldane phase and hosts symmetry protected

topological order.

The AKLT model is constructed by forming SU(2)−singlet-pairs from spin- 1
2

particles, which we then use as bonds on a square lattice. On every vertex, four

particles meet, and we thus get several representations (with multiplicities) on

each vertex: (
1

2

)⊗4

= 2⊕ (3)1⊕ (2)0. (6.17)

We now project the vertices, onto the spin-2 subspace. The local tensor of the

square lattice AKLT A is thus of the form

Aiαβγδ = 〈i| [ΠS=2 · (1⊗ 1⊗ Y ⊗ Y )] |α, β, γ, δ〉 , (6.18)

with respect to the computational basis and the conventionally used maximally

entangled state |ω〉 = |00〉+ |11〉.

Figure 6.7: Definition of the AKLT model via the local tensor as a map from
four virtual qubits to the physical (5-dimensional) Hilbert-space. The Pauli
matrix Y is applied once in both lattice directions on the qubits and the map
to the physical space is the spin-2 projection.

The AKLT model has a unique ground state for integer spin [1]. The symmetry

of the tensor is given by the fact that it is a map between representations of

SU(2) (an “intertwiner”), hence any symmetry action on the physical index is

related to some symmetry action on the virtual particles. The spin operators
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on the physical spin can be constructed from the ladder operators via

Sx =
1

2
(S+ + S−) (6.19)

Sy =
1

2i
(S+ − S−) (6.20)

In particular, we can pull the virtual Pauli-Y operators through to the physical

index on every second site due to

exp(iπSy) = exp(iπ

4∑
i=1

Yi/2) = (eiπY/2)⊗4 = Y ⊗4 (6.21)

Since the corresponding operator acts on a sub-lattice of the original lattice, this

is called a sub-lattice-rotation. It is a computational trick, which we exploit in

order to have a ferromagnetic model as opposed to the original AKLT, which

would tend towards anti-ferromagnetism due to the singlet bonds and we would

then have to deal with staggered order parameters. Note that this equivalence

only works on a lattice with even sites, otherwise one of the sub-lattices is

dangling on one side. So far, we just have a particular state. In order to have

a phase, we deform the state by acting with a particular field of the form

N(α) = exp(α(Sz)
2), (6.22)

which has been dubbed a “nematic” [16] field, since it constrains the particles in

some degrees of freedom while others remain unaffected, analogous to nematic

crystals, which are crystals that have some liquid degrees of freedom. In our

case, because we explicitly have a Sz term, the generators Sx and Sy no longer

commute and thus the nematic field explicitly breaks the SU(2) invariance of

the AKLT down to a semi-direct product of Z2 nU(1). By semi-direct product

we mean, that the Z2 symmetry has the usual composition, while the U(1)

composition is contingent on the Z2 part (because the Z2 generator reverses the

rotations of the U(1) group). The nematic field will eventually favor high value

of S2
z , i.e. Sz = ±2. We hope to deform the model into a phase, where the

Z2 symmetry will break spontaneously. To that end, we study the transition

numerically, the spectrum of the transfer operator (exact diagonalization) is

given in figure 6.8.

We see the onset of a twofold degeneracy in the transfer operator. Even though

there are finite size effects, that smooth out the shape of the onset, we can
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Figure 6.8: Spectrum of the nematic AKLT PEPS transfer operator against the
nematic field strength, plotted for increasing system sizes. Blue: second largest
eigenvalue, Red: third largest eigenvalue. Both for Nv = 4, 6, .., 12 (bottom to
top)

guess the transition to lie somewhere around α ≈ 0.05, consistent with the

behavior of the lower eigenvalues, which peak around the same value. We find

an exponentially closing degeneracy in the second eigenvalue for high α (Fig.

6.9). While it is in general hard to tell, where exactly the slope of the lines turn

“significantly” negative, we see that the degeneracy scaling is consistent with

our expectation from fig. 6.8.

In order to confirm, that we have a symmetry breaking transition, we again

measure the fidelity per site and the order parameter. The conjectured correct

fixed points are again

R↑↓ =
1√
2

(r0 ± r1) (6.23)

and the residual fidelity per site is again given by

δ

Nv
=

1− min
k∈↑↓

[|(Rε|Rk)|2]

Nv
. (6.24)

We measure the fidelity by computing the eigenvectors for a finite cylinder with

exact diagonalization, where for |Rε), we perturb the tensor infinitesimally with

1+εSz, which removes the degeneracy, such that the corresponding fixed point is

unique. The results are given in Fig. 6.10. We again observe, that the residual

fidelity decreases with decreasing perturbation strength, where we find an ε2
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Figure 6.9: Scaling of the second largest eigenvalue in the nematic AKLT PEPS
transfer operator. We plot (1 − λ1) logarithmically against cylinder size Nv
for varying parameter α = (0.01, 0.03, 0.05, 0.06, 0.11, 0.16) (top to bottom), a
straight line with negative slope indicates a splitting of the form exp(−cNv)

scaling, which corroborates that these states Eq. 6.23 are indeed the symmetry

breaking fixed points. Upon a closer look, we notice that for large enough ε, all

lines practically coincide. However, for small enough perturbations, δ/Nv starts

to increase again. This behavior is explained by the finite size of the system,

which leads to a finite splitting, which is diagonal in the irrep basis {r0, r1}.
As soon as the perturbation strength drops below the strength of this finite

splitting, which is diagonal in the irrep basis, the fixed point of the perturbed

system drifts away from the symmetry broken state (eq. 6.23).

As a second test for symmetry breaking, which will show us how the conventional

symmetry breaking and our approach to symmetry breaking are related, we

measure the order parameter of the system. In the case of the nematic AKLT,

the order parameter is the spin operator Sz. If the system is symmetric, the

average should be zero and the operator would detect a spontaneous breaking

of that symmetry, which favors a particular Sz direction. We measure the

expectation value of the dressed transfer operator TSz
on the symmetry broken

states:

〈TSz
〉 = (L↑|TSz

|R↑)/(L↑|T |R↑) (6.25)

The results are plotted in Fig. 6.11. We find, that for low values of α, the
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Figure 6.10: Residual fidelity per site of the nematic AKLT model, α = 0.145,
N = 9..12 (top to bottom), dashed line: fitted line with slope p = 1.97 ± 0.03.
We thus have ε2-scaling

order parameter changes significantly with system size. Since this is before the

expected transition point, we expect that in this region the true value should

be zero and we are dealing with substantial finite size effects. As soon as we

approach the expected transition point, the lines approach each other and ap-

pear to converge for increasing α, eventually coinciding. We perform a finite

size extrapolation, following our ansatz for the Ising PEPS model (eq. 6.15),

which we write again for reference:

m(θ,Nv) = m(θ,∞) + a exp(−bNv) (6.26)

The extrapolation to the thermodynamic limit Nv → ∞ is given by the red

curve in fig. 6.11.

In the extrapolation process, we have access to a correlation length 1
b in the

finite size correction a exp(−bNv). Away from the critical point, this is finite

and as long as it is smaller than the system size, it should coincide with the true

correlation length. By making a scaling ansatz for this quantity b = 1
ξ , we can

extrapolate the critical point. Our method allows us to find it to be

αc ≈ 0.0447, (6.27)

which has not been determined before.
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exponential correction ansatz (details see text)
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Figure 6.12: Nematic AKLT, correlation length of the order parameter finite
size extrapolation fit. Green: Result of the finite size fit, Red: now we fit a
straight line to the correlation length, which gives us a clear indication for the
true critical point (where ξ =∞)

Let us sum up our findings about the nematic AKLT model. We first identified

a phase transition from the spectrum of the transfer operator. This gave us

an estimate for the transition point. We confirmed that the phase for large α
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is Z2 symmetry breaking and that this is reflected in the PEPS environment

by constructing the fixed points explicitly and comparing this to perturbatively

breaking the symmetry in the bulk. We furthermore were able to extract de-

tailed properties about the transition directly from the finite size PEPS data,

characterizing the transition.

6.3 Potts PEPS

Having gained confidence from two instances of Z2 symmetry breaking, we now

would like to turn to higher symmetries. To that end, the so called Potts model is

the natural candidate. The Potts model was suggested to its namesake Renfrey

Potts by his advisor Cyril Domb and is an intensely studied model in various

fields of physics [55]. It is a generalization of the Ising model to “spins”, which

can have more than two configurations. There exist two variants of the Potts

model. Both are defined over local variables (“spins” or “colors”), taking one

of q possible values. The simpler one is called the standard q-state Potts model

and is defined with a nearest neighbor interaction that only gives an energy

contribution if both neighbors are in the same state and is otherwise zero:

HSP = −
∑
〈sisj〉

Jijδsisj , i, j ∈ {1..q} (6.28)

The second version is called the planar, vector or clock q-state Potts model,

where the interaction strength is not simply zero in case of a mismatch but

depends on the difference. It is defined via the Hamiltonian

Hc = −
∑
〈sisj〉

cos

(
2π(si − sj)

q

)
(6.29)

An extensive review (including both versions) can be found in [80]. In the two-

dimensional case, all Potts models host a phase transition and have a long-range

ordered and a disordered phase. For q < 4, both models can be easily mapped

onto each other and are thus equivalent. The nature of the q = 4 transition is

still under some debate, while for higher q the situation becomes clearer again.

In that case the vector Potts model additionally hosts a quasi-long-range or-

der phase and in particular converges towards the famous XY-model used by

Kosterlitz and Thouless to demonstrate the transition named after them. We

will construct a 3−state Potts PEPS model. This will have interesting new
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features, which are absent in the Ising case, in particular the symmetry will be

described by complex phases.

We define the PEPS in the following way: We take a delta tensor of bond and

physical dimension three, on which we want to host a Potts model. To that

end, we apply a matrix on two of the virtual bonds, corresponding to the two

directions of the square lattice.

Aiαβγσ(θ) = δiαβµνM(θ)µγM(θ)νσ, (6.30)

where δ is the usual Kronecker delta, which is equal to one if all (including the

physical) indices coincide and else zero. The matrix M encodes the weights

between adjacent spins on the lattice and is given by

M(θ) =

 1 sin(π2 θ) sin(π2 θ)

sin(π2 θ) 1 sin(π2 θ)

sin(π2 θ) sin(π2 θ) 1

 , (6.31)

where 0 < θ < 1. This matrix in particular commutes with the shift matrix

X =

0 1 0

0 0 1

1 0 0

 , (6.32)

which is a generator of Z3 with X3 = 1. Together with the fact, that the

Kronecker delta is invariant under an application of X on all three indices, we

thus learn that the Potts PEPS tensor has a Z3 symmetry by construction, as

desired.

Figure 6.13: Symmetry of the Potts PEPS tensor.

This in particular implies, that the transfer operator of this model commutes

with the symmetry operation on an entire column,

S := (X ⊗ X̄)⊗Nv (6.33)
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[T, S] = 0, (6.34)

which allows us to label eigenvectors of the transfer operator by their eigenvalue

with respect to the Z3 symmetry, i.e. they are all (spanned by) eigenstates of

S|ri,κ) = κ|ri,κ), (6.35)

where κ ∈ {1, ω, ω̄}, ω = e2πi/3 (left eigenvectors likewise). This helps us

computationally, since we can construct projectors into the three respective

symmetry sectors:

Pκ =
1

3
(1 + κS + κ̄S†) (6.36)

The next thing we need, is to find a phase where we have an asymptotic de-

generacy in the transfer operator. For that, let us first compare the matrix M

to the nearest neighbor weights of the partition function of the standard Potts

Hamiltonian.

e−βhij = eβδij

eβ i = j

1 i 6= j
(6.37)

We can freely normalize the weights, similarly to the partition function, which

only ever appears in ratios, when calculating physical quantities, such that its

normalization is a matter of convenience. We thus arrive at a mapping between

the temperature in the classical standard Potts model and the parameter θ in

our PEPS tensor:

e−β = sin2
(π

2
θ
)
. (6.38)

The critical point of the thermal phase transition in the classical standard Potts

model is known to be at [80]

eβc = 1 +
√

3, (6.39)

which carries over to

θc =
2

π
arcsin

(
1√

1 +
√

3

)
≈ 0.4137 (6.40)

Let us look at the extremal cases: At θ = 0, we have the superposition of

three orthogonal states and are hence in a GHZ-type situation, where |r) ∝
|0)⊗N + |1)⊗N + |2)⊗N . On the other side of the interval, we have the θ = 1
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case, which is a complete mixture of all possible lattice configurations, which

corresponds to |r) ∝ [|0) + |1) + |2)]⊗N . Our hope, that these are the extreme

cases of a ferromagnetic and a paramagnetic phase respectively, is corroborated

by the analysis of the spectrum of the corresponding PEPS transfer operator,

shown in figs. 6.14,6.15.
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Figure 6.14: Spectrum of the Potts PEPS transfer operator. Solid lines: second
and third largest (for which we observe an exact degeneracy). Dashed: fourth
largest eigenvalue, both for different system size Nv (see legend). The exact
critical point (Nv →∞) is θc ≈ 0.4137

We calculate the spectrum with exact diagonalization, where we use the above

defined projectors (6.36), and compute the spectrum per sector. We find that the

leading eigenvector is in the (trivial) 1-sector, the two onsetting eigenvectors are

in the (ω, ω̄)-sectors respectively. In the ferromagnetic phase the two subleading

eigenvalues approach the dominant eigenvalue exponentially fast in the system

size (fig. 6.15). We conclude that we have an asymptotic degeneracy with one

eigenstate per symmetry sector and thus a prerequisite for symmetry breaking

in the Potts PEPS state.

The next question is whether the transition has a (local) order parameter. Since

the on-site symmetry is a shift matrix, its natural partner is the so called clock

matrix
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Figure 6.15: Splitting between first and second eigenvalue against system size
Nv, plotted for different values of θ in the Potts PEPS. The dashed line is at
criticality (of the infinite system). In the ferromagnetic phase θ < θc we observe
an exponentially small splitting of the form exp(−cNv)

Z =

1 0 0

0 ω 0

0 0 ω̄

 (6.41)

They obey a graded anticommutativity:

ZX = ωXZ. (6.42)

This means two things: Firstly, it tells us that Z has zero expectation value on

a symmetric state:

〈Z〉sym. = 〈ψκ|Z |ψκ〉 = 〈ψκ|ψκ+1〉 = 0. (6.43)

Secondly, this implies that the transfer operator dressed with a single Z, TZ has

matrix elements between the symmetry sectors and can thus lead to a new, sym-

metry broken eigenbasis, if we use it as a perturbation of the original, degenerate

model. To test this, we perturb the Potts PEPS with a physical perturbation of

the form 1 + εZ. According to our findings in chapter 3.3, we have to find the

basis that diagonalizes the perturbation in the degenerate fixed point subspace
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|r1), |rω), |rω̄). This is equivalent to the matrix problem

(li|Tε|rj) =

1 + γ 0 0

0 1 0

0 0 1

+ ε

0 χ χ̄

χ̄ 0 χ

χ χ̄ 0

+O(ε2), (6.44)

where χ = Nv(l1|TZ |rω) and γ is the finite exponentially small splitting. This

equation tells us, that on a finite system we will have a competition between γ

and ε: For γ � ε, the largest eigenvector is simply |r1), however if we choose

ε � γ, we can effectively neglect γ, such that we should diagonalize just the

perturbation term in eq. 6.44. This term is a cyclic matrix and thus diagonalized

by the Fourier transform, such that we get three eigenstates

|R[3×3]
0 ) =

1√
3
{|r1) + |rω) + |rω̄} (6.45)

|R[3×3]
1 ) =

1√
3
{|r1) + ω|rω) + ω̄|rω̄)} (6.46)

|R[3×3]
2 ) =

1√
3
{|r1) + ω̄|rω) + ω|rω̄)}, (6.47)

which are indeed the ones we found in our analytic fixed point analysis for gen-

eral ZN symmetry breaking. (Note that, crucially, this is independent of the

specific values ε and |χ|, it only matters that they are non-zero.)

In total, we now have three candidates that describe the fixed point of the per-

turbed PEPS model. The first candidate is the (unique) fixed point of the fully

perturbed model, which we find by exact diagonalization and call |Rε). The

second candidate is the fixed point, that we get on the degenerate subspace eq.

6.47, which is incorporating ε to first order and the finite size splitting γ. We

denote this fixed point by |R[3×3]), which is again found by exact diagonaliza-

tion. As a third candidate, we compute the iMPS of the perturbed model, which

gives a matrix product state representing the fixed point in the thermodynamic

limit, as was explained in chapter 5.

We then compare these three to the fixed point we analytically constructed (see

4.38) (ω = e2πi/3) as

|Ri) =
1√
3

∑
j

ωij |rj). (6.48)
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Finite size effects in fidelity measurement

For all three cases, we measure the remainder of the fidelity (“infidelity”) per

site
δ

Nv
= min
|Ri)

(
1− |(a|Ri)|2

Nv

)
(6.49)

where |a) is the placeholder for the respective candidate fixed point. We plot

this quantity in fig. 6.16, where we use system sizes Nv = 6, 8, 10 (and “infinite”

for the iMPS data). This plot contains several effects which teach us about the

limitations of the perturbative treatment and symmetry breaking on a finite

system. We identify two regimes, which are given by the ratio of the finite-size

splitting γ and the perturbation strength ε.
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Figure 6.16: Fidelity per site in the 3-state Potts model, measuring the dif-
ference between the solution of the full transfer matrix and the solution on the
fixed point subspace projection. Solid lines: Exact diagonalization for specified
Nv, dashed line iMPS ansatz (“infinite” Nv), θ = 0.25.

The regime ε � γ corresponds to the right hand side of the plot in fig. 6.16.

Here we observe that for the “full” perturbation case of (Ri|Rε) (solid blue

lines), δ/Nv falls of as a power law δ/Nv ∼ εκ, thus tending towards 0. This is

a strong indication that we capture the correct fixed point and we furthermore

measure an exponent of 1.91 ± 0.09. Looking at the perturbation expansion

of the perturbed fixed point eq. 3.35, we see that the first order correction

is orthogonal to the fixed-point subspace, which implies that the correction in
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the fidelity per site, we are measuring here, only enters in second order, which

corresponds to an exponent of 2, explaining the exponent in the power-law be-

havior. In contrast to this, the data for the infidelity of the 3 × 3-subspace

solution (Ri|R[3×3]) (dashed black lines) suggests that this is independent of

ε on the right hand side of the plot, where all lines for different systems sizes

seem to be constant. This is in agreement with eq. 6.47, where we found that

the states do not depend on the strength of ε. The higher order correction that

we see in the full problem does not enter here because we truncated the state

correction at first order. For increasing system size, the three lines saturate at

decreasing infidelity, which is explained by the finite size of the system, where

the symmetry broken fixed points (eq. 6.48) are not exactly orthogonal.

We identify the transition to a different regime, γ � ε, which sets in for smaller

ε if we increase the system size. This is indicated by a minimum of the in-

fidelity, after which decreasing ε leads to the approximation of the symmetry

broken fixed points actually getting worse, since the infidelity is increasing again.

While this might seem surprising, it is explained remarkably well by the finite

size effect. On a finite system, the degeneracy between the three fixed points is

not exact. This means that in order to mix the three states, the perturbation

has to have some sufficient strength. If ε � γ, the perturbative fixed points

do not capture the symmetry breaking correctly, but just give the fixed point

in the trivial symmetry sector (which is always the leading one as explained

above). Now the value of the splitting depends on the system size, it scales as

γ ∼ e−Nv , which explains the observation that this effect kicks in for smaller ε,

if we increase the system size Nv. This effect is completely captured on the fixed

point subspace, which is incorporated into the infidelity we get from (Ri|R[3×3])

(dashed lines), which explains why on the left hand side these exactly coincide

with the full problem fixed point.

The iMPS fixed point fits very nicely into this picture: We measure the infidelity

per site between the symmetry broken iMPS describing |Ri) and the perturbed

iMPS, which corresponds to an “infinite” version of the full problem fixed point

|Rε). In the regime ε � γ the infidelities match with the finite size systems,

however we do not observe a transition to the regime γ � ε, because there is

no finite size splitting γ.
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iMPS for symmetry breaking fixed points

We observe a numerical problem, when we are in the symmetry broken phase

and start with a random initial MPS. In that case, the convergence time drasti-

cally increases and the resulting fixed point has complex eigenvalues, when put

on a finite ring. This is likely due to the degeneracy in the transfer operator

in that phase. The convergence time vastly decreases, if we make a smarter

choice on the initial MPS, which is somewhat with hindsight: Note that the

symmetry broken fixed points have orthogonal support. If we start with an

MPS that has only support in one of the sectors, the method quickly converges

to an optimal MPS, which is also only supported in that support region and

has real non-negative eigenvalues when put on a finite circle. We confirm this

in the Potts case by computing the maximal eigenvalue of the mixed transfer

matrix of a converged MPS sandwiched with the physical symmetry operation.

The largest eigenvalue of this is far below 1, which tells us that the two states

are orthogonal on a large system.

To confirm that we get the correct states, we measure the order parameter on

the iMPS (cf. 5.5) 〈Z〉 against θ. The result is shown in Fig. 6.17. As we can

see, the lines quickly coincide, which gives us confidence that the iMPS correctly

captures the thermodynamic limit. To confirm this, we go one step further and

do a scaling analysis in the vicinity of the critical point. Here we expect a power

law behavior, as is well known in the study of critical phenomena. The exponent

of the power law for the order parameter is known as β, i.e. 〈Z〉 ∼ (θc − θ)β .

By fitting the values close to the transition point to a straight line, we estimate

the exponent to be β ≈ 0.10, which is close to the known value β = 1/9 [80].

We now compute the correlation length, which is present in the fixed point

MPS, we found with the iMPS method. It is given by the ratio of the largest

eigenvalues of the MPS transfer matrix:

ξ = − 1

log(λ1/λ0)
(6.50)

The result is given in Fig. 6.18a). We then make a scaling analysis to extract

the critical exponent of the correlation length, which we find to be α ≈ 0.80,

which is in good agreement with the literature value α = 8/9.
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Figure 6.17: Order parameter of the 3-Potts PEPS for increasing bond dimen-
sion. a) We see that the order parameter detects the continuous symmetry
breaking transition already with moderate bond dimension. b) critical expo-
nent extrapolation: we find β ≈ 0.10
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Figure 6.18: a) Correlation length in the fixed point, for increasing bond di-
mension we capture the divergence increasingly well. b) Scaling analysis in the
vicinity of the critical point, the slope of the dashed line is α ≈ 0.80.

Summary

Let us summarize our findings about the Potts PEPS and this entire chapter,

which was about numerical study of three concrete models, which we all found

to be PEPS models with spontaneous symmetry breaking. By studying the

3-state Potts PEPS we confirmed that our description of symmetry breaking

in the fixed point space is correct also for higher symmetry groups. We iden-

tified the relevant degrees of freedom for understanding symmetry breaking in

a finite size PEPS model: (1) the presence of long-range order, which implies

an asymptotic degeneracy in the transfer operator; (2) the finite-size splitting
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in this quasi-degeneracy on finite systems and (3) the existence of symmetry

breaking matrix elements, which eventually lift the degeneracy and which (4)

then “collapse” to (positive-semi-definite) symmetry broken fixed points. We

laid out a complete understanding of the interplay between these ingredients.

We furthermore demonstrated that iMPS are suitable for the study of sym-

metry breaking PEPS models by showing that they fit into this picture. The

PEPS fixed point, which are then themselves described by an MPS, furthermore

carry the full information about the symmetry breaking in the bulk, which we

demonstrated by measuring the order parameter and the correlation length on

the iMPS fixed point.

We will continue in the next chapter, where we will study the entanglement

properties of the symmetry broken fixed points.
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Chapter 7

Entanglement Hamiltonians

It was recently discovered, that the entanglement structure of two-dimensional

systems can be captured by a (pseudo-)Hamiltonian. This Hamiltonian is there-

fore called the entanglement Hamiltonian [37, 11]. It has proven a useful tool

to characterize model wave-functions in different contexts [83, 51, 23, 12]. Re-

markably, in the PEPS framework, we can formulate an exact “holographic”

mapping from the bulk to a boundary state, which is given by the fixed points

of the transfer operator, we have been dealing with in all of the previous chap-

ters. Non-surprisingly, entanglement Hamiltonians are used regularly in PEPS

models [54, 16, 78].

In this chapter, we introduce the concept of Entanglement Hamiltonians and

how they can be realized exactly in the PEPS framework. We will be concerned

with the question under what conditions this entanglement Hamiltonian is phys-

ical and therefore describes a physical “edge theory”. This condition will be a

notion of locality of the Hamiltonian and we will present the tools to determine

the locality properties of N−body Hamiltonians.

7.1 The Li-Haldane conjecture

As described in chapter 2, entanglement is what is “non-classical” about quan-

tum theory. Tools have to be developed to measure, characterize and understand

entanglement, which is a field with many open questions. We are particularly in-

terested in ways to characterize entanglement in many body systems. One way,
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that has been put forward recently, is the method of entanglement Hamiltonians,

which takes the bipartite reduced state and interprets it as a thermodynamic

quantity. This way, we get access to a (quasi-)Hamiltonian, whose structure

might tell us something about the state and its phase. In a seminal paper [37],

Li and Haldane observed a remarkable connection between Gibbs states and

entanglement properties: The density matrix resulting from the reduced state

after an entanglement bipartition can be described by the Gibbs state of some

Hamiltonian ρ(H) = e−βH . They suggested, that instead of just computing the

real number S(ρ), one can take a step back an look at the operator ρ. This

state is in general a mixed state (it is pure if and only if there is no entangle-

ment between A and B) and following Haldane, we make the claim, that this

mixed state is the Gibbs state of an underlying Hamiltonian. Since ρ ≥ 0 , this

mapping is in principle always possible

ρ =
∑
k

pk |k〉 〈k| (7.1)

ρA =: exp(−HE) (7.2)

HE = − log(ρ) = −
∑
k

log(pk) |k〉 〈k| , (7.3)

with the restriction that the logarithm is only defined on the positive real axis,

i.e. we might get infinite energies for singular ρ. Furthermore, the role of β is

not clearly defined, since there is no clear concept of temperature and we can

absorb it into H. The entanglement entropy of the system is then equivalent to

the thermal entropy of this Hamiltonian. The study of the spectrum of this en-

tanglement Hamiltonian is the subject of the field of entanglement spectroscopy,

which has the major goal of discovering measures for characterizing phases of

many body systems based on their entanglement [56]. The analogy between

Hamiltonians and entanglement is not accidental: It hints towards the hope,

that entanglement properties can be used to describe and discern phases. For

the more familiar case of Hamiltonians, not only the ground state itself but also

its low energy excitations characterize the phase. Similarly, the analogy sug-

gests that there is a “low-entanglement” theory above the ground-state, which

is captured by the entanglement spectrum and the entanglement Hamiltonian

[37].
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7.2 Bulk-boundary isometry, Boundary Hamil-

tonians

Given the PEPS structure in the (physical) quantum state, one can make a

connection to a virtual boundary state of the system [16, 17, 82, 67]. We again

start with a PEPS (or MPS) on a cylinder (chain), where we assume the cylinder

to be extended long enough in the horizontal direction. We then perform an

entanglement cut along the vertical line of the cylinder. Our goal is to compute

the reduced state on region A (we called it R for region in chapter 2, but now

the notion of left and right will enter, which is why we resort to the original

bipartite formulation in terms of A and B of chapter 2).

Figure 7.1: The reduced density matrix in a bipartition is isometric to a virtual
density matrix σ =

√
σLσR

√
σL, if we assume the horizontal system size to be

large (Nh →∞).

In the computation of the reduced state ρA, we trace out over bra and ket layer

of part B, which for a large system just gives the right fixed point. The non-

trivial part is to compute the left hand side of the reduced state, which has

open physical indices. In order to do that, we view the entire left half of the

bipartition as one big matrix M : The left index of M is a composite index with

all physical indices of |ψ〉 on system A and the right composite index consists

of all the virtual indices along the entanglement cut. We now employ the polar

decomposition: For every rectangular matrix M , there exists a decomposition

of the form

M = Γ · P, (7.4)

where P =
√
M†M ≥ 0 is a positive semi-definite matrix and Γ†Γ = 1, i.e. Γ
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is an isometry. The polar decomposition can be seen as an implication of the

more familiar singular value decomposition (eq. 2.6) by identifying

Γ = UV † P = V SV †, (7.5)

which shows that it always exists. We thus learn, that the reduced state can be

written as

ρA =
∑

M{Iket}α σRαβ(M
{Ibra}
β )†, (7.6)

where I is the composite physical index and α (β) the composite virtual index.

We now use the polar decomposition and arrive at

ρA = ΓPσRPΓ†. (7.7)

We find a more familiar expression for P , by evaluating the norm of the state

〈ψ|ψ〉 = tr(σLσR) = trM†MσR, from which we learn that

M†M = P 2 = σL (7.8)

and finally arrive at

ρA = Γ
√
σLσR

√
σLΓ†. (7.9)

This tells us, that, asymptotically, the spectrum of the reduced state of region A

is isometric to the spectrum of a state which lives on the boundary of the system.

Note that the boundary state is well defined, as it is positive (semi-)definite,

due to
√
σLσR

√
σL =

√
σL
√
σR(
√
σL
√
σR)† ≥ 0. (7.10)

The mapping between bulk and boundary state is given by the isometry Γ.

We take eq. (7.9) in conjunction with eq. (7.2), to define the notion of the

boundary Hamiltonian:

HB = − log(
√
σLσR

√
σL) (7.11)

The boundary Hamiltonian is a one-dimensional object acting on the virtual de-

grees of freedom at the entanglement cut and therefore cannot fully reproduce

the two-dimensional entanglement Hamiltonian of the bulk system. However,

it is intuitively clear that the entanglement should be dominated by degrees of
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freedom at the boundary of the bulk region. This intuition has been substanti-

ated in [54], where the bulk correlation length has been identified with a thermal

length at the one-dimensional boundary system. We will be concerned with the

analysis of the above defined boundary Hamiltonian and studying what we can

learn from it about the bulk quantum system.

7.3 Locality analysis of extended Hermitian op-

erators

We would like to investigate, what kind of terms dominate the Hamiltonian, i.e.

whether it is a (quasi-)local Hamiltonian. We define the concept of locality by

expressing the Hamiltonian H ∈ DN ×DN in a basis of local Hermitian D×D
matrices acting on the individual N sites of the chain, which we call gi. This

is most conveniently done by finding basis elements which are orthogonal under

Hilbert-Schmidt inner product

tr(g†i gj) ∝ δij (7.12)

The central property is to define gi = 1 as trivial action and any other matrix

as non-trivial action. A term of the Hamiltonian is then considered local, if it

only acts non-trivially on a few number of neighboring sites. We quantify this

notion by constructing strings of N matrices taken from this set:

ΩI = gi1 ⊗ gi2 ⊗ . . . giN (7.13)

Due to the fact that the trace of a tensor product is the product of traces, these

strings are all orthogonal, i.e. the inner product of two strings is zero if they do

not coincide,

tr(Ω†IΩJ) ∝ δIJ . (7.14)

Crucially, there always exists a local basis spanning D ×D Hermitian matrices

and we can thus span the entire set of Hermitian DN ×DN matrices and write

H =
∑
I

hIΩI . (7.15)

The number of Hermitian N ×N matrices is N2. The identity element is spe-

cial and we require it to have no overlap with any other basis element under
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the Hilbert-Schmidt norm, which is equivalent to requiring all other elements of

the basis to be traceless. Note that for bond dimension D = N this coincides

with the definition of generators of SU(N). This is why we can use the Pauli

matrices for qubits and the Gell-Mann matrices for qutrits (see appendix A.4

for the explicit matrices).

We now define the concept of k-localness by grouping together all operator

strings, that act non-trivially on a string of length k, i.e. on the end points

of the string the matrices should be anything but the identity matrix, whereas

in-between it can be any operator, also including the identity matrix. Note that

this should not be confused with a k-body notion, where one wonders how many

operators in a set are non-trivial. The key property is the maximum distance

on the string between non-trivial operators.

Ω(k) =
∑

I∈k−local

ΩI (7.16)

which allows us to group the terms of the Hamiltonian according to their locality:

H =
∑
k

h(k)Ω(k). (7.17)

It is crucial to note, that the basis set is formed such that any unitary conjuga-

tion will maintain the locality structure since it preserves the identity and only

maps the non-trivial operators into each other. A k-local string will thus be still

k-local under conjugation and just permute the different operators within that

class:

U⊗NΩ(k)U†
⊗N

=
∑

I∈k−local

U⊗NΩIU
†⊗N =

∑
I∈k−local

ΩΠ(I) = Ω(k) (7.18)

The Hamiltonian terms can be filtered out easily thanks to the orthogonality

property of the basis elements:

hk(ρ) = tr(HE(ρ)Ω̂(k)) (∈ R), (7.19)

where we use dual elements tr(Ω̂(k)Ω(l)) = δkl. The hk can be efficiently com-

puted by vectorization. Vectorizing Ω̂(k) gives a matrix, where each row cor-

responds to a particular arrangement of putting strings of local operators with

non-trivial endpoints of distance k. The columns then correspond to all permu-

98



CHAPTER 7. ENTANGLEMENT HAMILTONIANS 7.3.

tations of this string and of all possible replacements of the particular operators

by other operator strings with the same k-locality. Vectorizing HB gives just one

vector. The matrix-vector product between the two then gives another vector,

whose norm is the k-locality weight.

hk(ρ) = M(Ω(k)) · ~v(HB(ρ)), (7.20)

which means computing a weight just consists in one matrix multiplication,

making the computation of the weights numerically efficient. The main bottle-

neck will be the matrix logarithm, which will restrict us system size Nv = 12

for qubits (Ising and AKLT PEPS) and Nv = 8 for qutrits (Potts PEPS).

Entanglement Hamiltonians and entanglement measures

We would like to point out that the locality weights of the entanglement Hamil-

tonian, which we will use to make statement about the entanglement structure

of PEPS, share important properties with so called entanglement measures [53].

The core ones are additivity, monotonicity and continuity. We first establish,

that the matrix logarithm splits under tensor products as

log(A⊗B) = log(A)⊗ 1+ 1⊗ log(B), (7.21)

which can be easily seen in the eigenbasis of A and B as log(
∑
aibj |ij〉 〈ij|) =∑

(log(ai) + log(bj)) |ij〉 〈ij|. This implies additivity in the sense that

hk(ρ⊗ σ) = hk(ρ) + hk(σ). (7.22)

Similarity transformations and in particular unitaries can be pulled out of the

matrix logarithm,

log(XρX−1) = X log(ρ)X−1, (7.23)

which implies that the locality weights are invariant under local unitaries

hk(U⊗NρU†
⊗N

) = tr(U⊗NHEU
†⊗NΩ(k)) = tr(HEU

†⊗NΩ(k)U⊗N ) = hk(ρ).

(7.24)

Note that here by local we mean that we are restricted to on-site unitaries, which

is a stronger restriction than in usual bipartite entanglement, where any unitary

on system A should be allowed. However, since we talk about the “range” of

entanglement on system A, it is natural to have this stronger constraint, since
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long-ranged unitaries could change this. Continuity is given by the continuity

of the matrix logarithm | log(A + εX) − log(A)| < δ, from which we take that

changing the state infinitesimally leads to infinitesimal changes in the locality

weights.

7.4 Entanglement Hamiltonians for symmetry

broken PEPS

Entanglement Hamiltonians allow us to define a way to quantify, what could

intuitively be described as the concept of the “range” of entanglement in a many

body setting by relating the reduced state to an underlying (pseudo-)Hamiltonian

via its Gibbs state. We state the formula for the boundary Hamiltonian again,

for reference:

HB = − log(
√
lr
√
l), (7.25)

where l and r are left and right fixed points of the transfer operator of the

particular system. Mapping the quantity encoding the entanglement properties

to a Hamiltonian is convenient, because for Hamiltonians, the concept of locality

is clear: it’s simply the distance between sites where the Hamiltonian terms act

non-trivially. The focus of this chapter is to inquire into the locality structure

of entanglement in PEPS. Since this is only accessible by numerical means, we

will have to rely on a set of concrete models, which are however universal in the

sense of continuous phase transitions and allow us to answer this question in

this setting.

Local Hamiltonians for trivial phases

It was demonstrated in [16], that the boundary Hamiltonian in a trivial phase is

(quasi-)local (we will omit the prefix “quasi” in the remainder, since we always

deal with tails and exponential falloffs). This appeals to the intuition, that

entanglement and correlation length are related and the correlation length is

finite in a trivial phase. The weights of the boundary Hamiltonian indicate that

this behavior breaks down as we approach the critical point, which is again in

accordance with the analogy to the (or a) correlation length, which diverges at

the critical point. However, it was found, that as we drive the system away

from criticality deeper into the ordered phase, the weights stay highly non-

local, as depicted in Fig. 7.2. Note that this would be at odds with the above
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reasoning, since also the ordered phase has a finite correlation length and for

certain models, there even exist duality mappings between both sides of the

transition.

Local Hamiltonians for symmetry broken phases

One of the central results of this work is the characterization of the fixed point

space of transfer operators. Note, that in equation 7.25 for the boundary Hamil-

tonian, we deliberately did not specify what exactly we mean by “a fixed point”.

This is unambiguous in a trivial phase, since by definition one only has to deal

with a unique (left and right) fixed point. As we go into a symmetry breaking

phase, this however becomes ambiguous: In a finite system, we typically have

a splitting between the largest eigenvalue and the low lying eigenvalues. As

we elaborated, this is however an artifact of a finite system. The correct fixed

points are the ones we dubbed the symmetry breaking fixed points: the fixed

points that are positive and stable under arbitrary perturbations. We thus pro-

pose to change the perspective and take these fixed points as the starting point

for the boundary Hamiltonian analysis:

HB = − log(
√
LiRi

√
Li). (7.26)

We in principle get different Hamiltonians labeled by i. However, the different

fixed points are all related by local unitary conjugation, which we can pull out of

the square root and out of the matrix logarithm, such that also the Hamiltonians

will be related by a local unitary. We developed the locality measure precisely

such that it be invariant under local unitaries, from which we conclude that it

suffices to study one representative HB .

Ising PEPS

We start with the Ising PEPS, previously studied in [16]. We compute the

fixed points again with exact diagonalization and for θ < θc we construct the

symmetry broken states explicitly on an Nv = 12 system. We then do the

Hamiltonian analysis by choosing a local Hermitian basis, which in this case

consists of the Pauli matrices (and the identity matrix). The resulting weights

are plotted (semi-)logarithmically, such that straight lines with negative slope

indicate exponentially falling of weights and thus a local boundary Hamiltonian.

We first plot the “näıve” boundary Hamiltonian weights (Fig. 7.2), which is
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computed from the fixed point r+ disregarding the symmetry breaking. When

we set the parameter θ into the symmetry broken phase of the model, the weights

of these Hamiltonians clearly tend towards a horizontal line, which indicates

long-range characteristics.
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Figure 7.2: The unbroken boundary Hamiltonian of the Ising PEPS, when not
taking symmetry breaking into account. Deep in the symmetry broken phase
(θ < θc = 0.35) the boundary Hamiltonian is highly non-local, due to GHZ-type
long ranged entanglement.

Now to contrast this behavior in the symmetry broken phase, we compute the

weights of the symmetry broken boundary Hamiltonian HB = log(r+ + r−). In

fig. 7.3, we plot the weights of this Hamiltonian for several values of θ, where of

course θ < θc. We also plot the corresponding weights of the näıve Hamiltonian

(dashed lines) for comparison. Note, how the weights are “dual” to each other:

the more non-local log(r+) gets, the more local the correct symmetry broken

Hamiltonian gets.

Nematic AKLT

The nematic AKLT model also hosts a Z2 phase transition and as our find-

ings (see chapter 6) suggest, is in the Ising universality class. However the

wave-function and the model do not come from a statistical model Rokhsar-

Kivelson construction. Despite this, we again find that the symmetry broken

fixed points lead to a local boundary Hamiltonian. The Hamiltonian analysis

works analogously to the Ising PEPS case. We first plot the unbroken bound-

ary Hamiltonian computed from the finite-size fixed point r+, that has the full
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Figure 7.3: The “correct” boundary Hamiltonian of the Ising PEPS gives quasi-
local interaction strength decay: Solid lines are the weights of the Hamiltonian
obtained from the symmetry broken fixed points (iMPS). For comparison, we
plot the unbroken Hamiltonian weights (dashed lines, matching colors, see leg-
end), which behave in a dual way.

symmetry, see Fig. 7.4. In a second step, we then compute the Hamiltonian in-

teraction strengths for the boundary Hamiltonian that generates the symmetry

broken fixed points. In Fig. 7.5 we compare the two constructions and their

scaling with the interaction range in relation to the driving parameter. We find

that the symmetry broken boundary Hamiltonian becomes more local in the

symmetry broken phase of the nematic AKLT model.
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Figure 7.4: Boundary Hamiltonian, when we just take the dominant eigenvec-
tor on a finite system (N = 12) as the fixed point. This will generically be
symmetry-unbroken due to the splitting which suppresses the symmetry break-
ing. Here, the weights are increasingly non-local as we drive the transition to
the symmetry broken phase αc ≈ 0.045.
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Figure 7.5: Boundary Hamiltonian weight analysis of the nematic AKLT model
in the symmetry broken phase. Solid lines are the ”correct” Hamiltonian from
symmetry broken fixed points (iMPS), the Hamiltonians are more local as we
go deeper into the symmetry broken phase. Dashed line are the weights of the
Hamiltonians obtained from the unbroken (i.e. symmetric) fixed points (ED)
for comparison. Note how they become more non-local for increasing α, a dual
picture to the symmetry broken weights.

3-state Potts PEPS

The 3-state Potts PEPS hosts a Z3-symmetry breaking transition at θc ≈ 0.4137.

The Z3 symmetry is broken spontaneously for θ < θc. We want to find out,

whether our observation that we can find a local boundary Hamiltonian by

considering the symmetry broken fixed points is also confirmed for this sym-

metry class. The higher bond dimension makes the computation slightly more

demanding. We employ the iMPS algorithm with a symmetry broken initial

condition, which gives the MPS description for the infinite system limit. How-

ever, we are limited to small systems by the fact that we have to compute the

logarithm of the fixed point density matrix, which cannot be done locally, i.e.

we have to explicitly construct the density matrix as a whole. This limits us

to system size Nv = 8. We again plot the boundary Hamiltonian, we get from

the symmetry-unbroken fixed point first (Fig. 7.6) and then in a second step

we compare the weights for the symmetry broken phase to the weights of the

symmetry broken boundary Hamiltonian (Fig. 7.7).
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Figure 7.6: Same story for the 3-state Potts PEPS boundary Hamiltonian.
We make a locality analysis, here we obtained the unbroken Hamiltonian by
iMPS, where we made a twirl over the symmetry. We see again, that the
locality weights increase throughout the phase and indicate that there is no
local Hamiltonian generating the entanglement due to the artificial GHZ-type
long range entanglement.
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Figure 7.7: Now we compare the unbroken to the broken boundary Hamiltonian.
The breaking of the symmetry clearly leads to better scaling of the interaction
weights, which indicates that taking the “correct”, i.e. symmetry broken fixed
point, there is a local Hamiltonian which generates it.

Summary

Let us summarize what we have done in this chapter. After introducing and

motivating the study of entanglement spectra and entanglement Hamiltonians,

we derived an exact holographic mapping between the bulk reduced state in a

PEPS and its boundary state corresponding left and right fixed points. This

led us to consider an instance of the Li-Haldane conjecture, which states that
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the entanglement reduced state is a Gibbs state of an underlying Hamiltonian.

While it was known before, that this relation is physical in trivial phases without

symmetry breaking, we achieved to extend the notion of entanglement Hamil-

tonians to symmetry broken phases by using the correct symmetry breaking

pattern in the PEPS fixed point space, which was derived in the previous chap-

ters, and using the symmetry broken fixed points obtained there, to find their

underlying entanglement Hamiltonians to be a local Hamiltonian and therefore

physical.
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Chapter 8

Conclusions and Outlook

The central result of this thesis is that PEPS models, where symmetries are

manifestly encoded in the tensor, can host phases, in which this symmetry of

the tensor is spontaneously broken on the global wave-function. We identi-

fied long-range order as the suitable criterion for detecting this in finite volume

PEPS states. We proved that in a ZN -symmetric PEPS, long-range order leads

to an N -fold degeneracy in the fixed point space of the PEPS transfer operator

under realistic assumptions. We defined a natural notion of symmetry broken

states as the ones being stable under arbitrary perturbations, after which we

showed that positive fixed points naturally fulfill this stability property. We

then showed that the fixed point space of these models always admits such a

decomposition into positive fixed points, which we showed to be unique, thereby

identifying the symmetry breaking mechanism in PEPS as the one selecting pos-

itive fixed points. We studied prototypical PEPS models, which we verified to

host the above described symmetry breaking by extracting the signatures of

symmetry breaking in finite PEPS data. We concluded by studying the en-

tanglement structure of the identified “preferred basis”, i.e. the positive fixed

points, by studying their entanglement Hamiltonian and analyzing its locality

structure, where we found the entanglement Hamiltonian to be local, thereby

establishing that symmetry broken phases have an associated local entangle-

ment Hamiltonian.

We would like to give a concise perspective on the broader context of this thesis

and on open questions.
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The broader context of this work are general phase transitions in PEPS, which

are a very active area of research. PEPS in particular provide a local description

for topological phases and topological phase transitions. These transitions have

recently been understood in analogy to symmetry breaking on the PEPS bound-

ary [27, 18], where string order parameters in the bulk were found to be dual to

regular order parameters on the boundary. A deep understanding of symmetry

breaking in PEPS is therefore also highly relevant for the study of topological

phases, which are a candidate for quantum memory an quantum computing [47].

We close with an open question: Do PEPS models with continuous symme-

try breaking exist? As our presentation of Rokhsar-Kivelson-PEPS in section

3.4 suggested, some classes of PEPS wave-functions can be understood as ther-

mal states. The famous Mermin-Wagner theorem [39] tells us, that for thermal

states (i.e. at finite temperature) of local Hamiltonians, spontaneous symmetry

breaking is forbidden in dimension less than three. Finding a continuous sym-

metry breaking PEPS would therefore probably give very deep insights on the

exact relation between statistical physics and PEPS models.
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Appendix A

Appendix

A.1 Perturbation theory for transfer operators

We expand a perturbed transfer operator in a series expansion. This is analogous

to Rayleigh-Schrödinger perturbation theory, which we have to modify for non-

Hermitian matrices. In order to appeal to intuition, we still use the terminology

of “ground state” (i.e. the fixed point(s)) and “excitations” (i.e. eigenstates

of the transfer operator with eigenvalue less than 1) We define the full transfer

operator

T̃ := T1+εΛ = T + εT[Λ] + ε2T[Λ,Λ] + · · · (A.1)

|rk) = |r(0)
k ) + ε|r(1)

k ) + ε2|r(2)
k ) + · · · (A.2)

(lk| = (l
(0)
k |+ ε(l

(1)
k |+ ε2(l

(2)
k |+ · · · (A.3)

λk = λ
(0)
k + ελ

(1)
k + ε2λ

(2)
k + · · · (A.4)

(lk|rm) = δkm (A.5)

First, we are free to set (l
(0)
k |r

(0)
k ) = 1. In first order, this leads to (l

(0)
k |r

(1)
k ) +

(l
(1)
k |r

(0)
k ) = 0, which we fulfill by setting (l

(0)
k |r

(1)
k ) = (l

(1)
k |r

(0)
k ) = 0. We then

evaluate the expansion of

T̃ |rk) = λk|rk) (A.6)

(lk|T̃ = (lk|λk (A.7)
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order by order. We assume all operators to be completely diagonalizable and

smooth as functions of ε. The expansion reads

T̃ |rk) = λk|rk) = (A.8){
T + εT[Λ] + ε2T[Λ,Λ]

}{
|r(0)
k ) + ε|r(1)

k ) + ε2|r(2)
k )
}

= (A.9){
λ

(0)
k + ελ

(1)
k + ε2λ

(2)
k

}{
|r(0)
k ) + ε|r(1)

k ) + ε2|r(2)
k )
}
, (A.10)

where T[Λ,Λ] denotes a transfer operator dressed with two matrices on any two

sites. The expansion has to be true in any order in ε separately:

T |r(0)
k ) = λ

(0)
k |r

(0)
k ) (A.11)

T |r(1)
k ) + T[Λ]|r

(0)
k ) = λ

(1)
k |r

(0)
k ) + λ

(0)
k |r

(1)
k ) (A.12)

We now act with the left eigenvector from the left and find, that (given smooth-

ness and diagonalizability), the standard statement, that the first order eigen-

value correction is given by the matrix element of the perturbation operator in

the unperturbed ground state remains true also for non-Hermitian operators:

λ
(1)
k = (l

(0)
k |T[Λ]|r

(0)
k ) (A.13)

In case of a degeneracy, the equation is not uniquely defined, instead we have

to diagonalize in the degenerate subspace, which we denote by S:

M
(1)
k,αβ = (l

(0)
k,α|T[Λ]|r

(0)
k,β) = Uλ

(1)
k,γV

† (A.14)

We will implicitly assume in the following that we are in this “correct” basis.

Using, that 1 =
∑
m |r

(0)
m )(l

(0)
m |, we can rewrite

T[Λ]|r
(0)
k,α) = λ

(1)
k,α|r

(0)
k,α) +

∑
m/∈S

|r(0)
m )(l(0)

m |T[Λ]|r
(0)
k,α), (A.15)

which transforms the first order equation into

(λ
(0)
k − T )|r(1)

k,α) =
∑
m/∈S

|r(0)
m )(l(0)

m |T[Λ]|r
(0)
k,α) (A.16)

We substitute

T =
∑
m

λ(0)
m |r(0)

m )(l(0)
m | (A.17)
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and have

|r(1)
k,α) =

∑
m/∈S

1

λ
(0)
k − λ

(0)
m

|r(0)
m )(l(0)

m |T[Λ]|r
(0)
k,α), (A.18)

which we can do due to the fact that the |r(0)
m )(l

(0)
m | form a complete basis and

the inverse is only problematic for m ∈ S, but this case leads to a zero on

both sides and we just have to exclude it from the sum. The correction to the

eigenstate is thus in first order given by the matrix elements of the perturbation

evaluated between the ground state(s) of the unperturbed model and its excited

states, suppressed by the “energy” gap between the two.

A.2 Formal definition of the limit in a two-dimensional

PEPS with long-range order

In eq. 4.11, we deal with the double limit Nh, Nv → ∞. This can be done as

follows. Let τNv
= limNh

Nhσ
2
Nh,Nv

, and let S := limNv
τNv

. Then, for any

ε > 0,

∃N0
v ∀Nv ≥ N0

v :
∣∣∣ 1
Nv
τNv
− S

∣∣∣ < ε

2
and

∃N0
h(Nv) ∀Nh ≥ N0

h(Nv) :
1

Nv

∣∣∣Nhσ2
Nh,Nv

− τNv

∣∣∣ < ε

2
.

Thus, ∣∣∣∣NhNv σ2
Nh,Nv

− S
∣∣∣∣ ≤ ε ,

and finally

σ2 = lim
Nh,Nv→∞

σ2
Nh,Nv

≤ Nh
Nv

σ2
Nh,Nv

= S ,

as long as we couple the limits such that both Nh ≥ N0
h(Nv) and Nh ≥ Nv.

(If S = ∞, the inequality (4.11) holds trivially.) Let us note that for normal

T, the convergence in Eq. (4.10), Ref. [57], yields a scaling N0
h(Nv) ∝ Nv/(1−

|λα(Nv)|), such that a non-zero σ2 for all isotropically coupled limits Nh/Nv =

const. is sufficient to infer that |λα| → 1 as Nv →∞. .
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A.3 Taking the thermodynamic limit in the long-

range order expression

In this appendix, we give a derivation of eq. 4.10, which was the claim that the

following holds:

lim
Nh→∞

Nh−2∑
p=0

tr
[
TO†TpTOTNh−p−2

]
tr [TNh ]

= 2

∞∑
p=0

tr [TO†TpTO|r0)(l0|] .

Clearly, without the limit, we can cut the sum in half, i.e.

Nh−2∑
p=0

tr[TẐT
pTẐT

Nh−p−2]

tr[TNh ]
= S(0, Ncut) + S(Ncut + 1, Nh − 2) ,

where Ncut = bNh

2 c − 1, and

S(a, b) :=

b∑
p=a

tr[TẐT
pTẐT

Nh−p−2]

tr[TNh ]
.

Due to cyclicity of the trace, S(Ncut + 1, Nh − 2) = S(0, Ncut + κ), where

Ncut + κ = Nh − 2 − (Ncut + 1) and thus κ = −1, 0, depending whether Nh is

even or odd.

We will now show that

lim
Nh→∞

S(0, Ncut + κ) =

∞∑
p=0

tr
[
TẐT

pTẐ |r+)(l+|
]
.

To this end, we use that [72]

‖TM − |r+)(l+| ‖tr ≤ cΓM (A.19)

where Γ < 1, as well as

∣∣ tr[TẐTpTẐX]
∣∣ ≤ ‖TẐ‖op ‖Tp‖op ‖TẐ‖op ‖X‖tr ≤ ζ‖X‖tr (A.20)

with ζ := (c + 1)‖TẐ‖2op, which can be shown using Hölder’s inequality, the
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submultiplicativity of the operator norm, and

‖Tp‖op ≤
∥∥Tp−|r+)(l+|

∥∥
op

+
∥∥|r+)(l+|

∥∥
op
≤
∥∥Tp−|r+)(l+|

∥∥
tr

+1
(A.19)

≤ cΓp+1 ≤ c+1 ,

and finally

∣∣ tr[TNh ]
∣∣ ≥ ∣∣ tr[|r+)(l+|]

∣∣−∣∣ tr[TNh−|r+)(l+|]
∣∣ ≥ 1−

∥∥TNh−|r+)(l+|
∥∥

tr
≥ 1−cΓNh .

(A.21)

We now have

∆p :=

∣∣∣∣ tr[TẐTpTẐTNh−p−2]

tr[TNh ]
− tr[TẐT

pTẐ |r+)(l+|]
∣∣∣∣

≤
∣∣∣∣ tr[TẐTpTẐTNh−p−2]

tr[TNh ]
−

tr[TẐT
pTẐ |r+)(l+|]

tr[TNh ]

∣∣∣∣+

∣∣∣∣ tr[TẐTpTẐ |r+)(l+|]
tr[TNh ]

−
tr[TẐT

pTẐ |r+)(l+|]
tr[|r+)(l+|]

∣∣∣∣
(A.20,A.21)

≤
ζ
∥∥TNh−p−2 − |r+)(l+|

∥∥
tr

1− cΓNh
+ ζ
∥∥|r+)(l+|

∥∥
tr

∣∣∣∣ tr[|r+)(l+|]− tr[TNh ]

tr[TNh ] tr[|r+)(l+|]

∣∣∣∣
(A.19,A.21)

≤ ζ cΓNh−p−2

1− cΓNh
+ ζ
∥∥|r+)(l+|

∥∥
tr

cΓNh

1− cΓNh

≤ 2ζcνΓNh−p−2 ,

where in the last step we have assumed that Nh is sufficiently large such that

1− cΓNh ≥ 1
2 , and have introduced ν := 1 +

∥∥|r+)(l+|
∥∥

tr
. It follows that∣∣∣∣∣S(0, Ncut + κ)−

Ncut+κ∑
p=0

tr
[
TẐT

pTẐ |r+)(l+|
]∣∣∣∣∣ ≤

Ncut+κ∑
p=0

∆p ≤ Nh

2 ×2ζcνΓNh/2−1

where we have used Ncut + κ ≤ Nh

2 − 1 and Nh − p − 2 ≥ Nh/2 − 1. Clearly,

the r.h.s. goes to zero as Nh →∞, and thus,

lim
Nh→∞

S(0, Ncut + κ) =

∞∑
p=0

tr
[
TẐT

pTẐ |r+)(l+|
]

as claimed.
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A.4 Gell-Mann matrices for locality analysis

In order to meaningfully speak about locality of an N -body operator in chapter

7, we write the operators in terms of a local Hermitian basis (equation 7.15).

For bond-dimension D = N , these coincide with the generators of the special

unitary group SU(N), which are defined as the matrices G, whose exponential

leads to a special unitary N ×N matrix, U = exp(iG). There, unitarity leads

to G† = G and det(U) = 1 requires tr(G) = 0. When studying the 3-state Potts

PEPS, we hence use the well known Gell-Mann matrices, which we list here for

completeness:

λ1 =

0 1 0

1 0 0

0 0 0

 λ2 =

0 −i 0

i 0 0

0 0 0

 (A.22)

λ3 =

1 0 0

0 −1 0

0 0 0

 λ4 =

0 0 1

0 0 0

1 0 0

 (A.23)

λ5 =

0 0 −i
0 0 0

i 0 0

 λ6 =

0 0 0

0 0 1

0 1 0

 (A.24)

λ7 =

0 0 0

0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 . (A.25)
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