
Topological Phenomena in Tensor
Network States of Quantum Spin

Systems

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der

RWTH Aachen University zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Mohsin Iqbal, M.Sc.

aus Karachi

Berichter: Priv.-Doz. Dr. rer. nat. Norbert Schuch

Prof. Dr. rer. nat. Stefan Weßel

January 2018





Abstract

The focus of our investigations in this thesis is quantum spin systems in two dimensions.

We examine phase transitions between topologically distinct phases of quantum mat-

ter using the framework of tensor network states. We study the phenomena of anyon

condensation and confinement in the context of tensor network states where these two

notions offer a robust probe to characterize the universal features of quantum phase

transitions. We do a comprehensive study of the numerical methods enabled by the

tensor network formalism for the study of quantum phase transitions. We map out the

phase diagram of certain exotic phases of quantum matter (namely the D (Z4) quantum

double, the toric code, and the double semion model) and identify the order and the

universality classes of the phase transitions between these distinct topological phases.

We analyze the phase boundaries of the toric code and the double semion model which

exhibit both the first and second order phase transitions.

We investigate the class of Z2-invariant tensor network states while taking in to account

the spin rotation and lattice symmetries. The resulting tensor network states allow us

to map the phase diagram of Z2 spin liquids. The behavior of the system at the phase

boundaries of Z2 spin liquid is governed by the condensation of spinons and visions.

We also present our preliminary findings regarding the Z4-invariant tensors with SU(2)

symmetry. This approach enables us to study the spin liquid states of the toric code

and the double semion model in the unified framework.

We give a local tensor description for the approximate ground states of Heisenberg an-

tiferromagnet on the kagome lattice using a variational manifold of just three and five

parameters in the gapped Z2 spin liquid phase. The approximation of the ground states

we construct have an energy density that is remarkably close to the results from the

state-of-the-art density matrix renormalization group and exact diagonalization meth-

ods. By analyzing the deconfinement of anyonic excitations, we also present our findings

regarding the vicinity of the variational ground state in gapped Z2 spin liquid phase.
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Zusammenfassung

Der Fokus unserer Untersuchungen in dieser Arbeit liegt auf Quantenspinsystemen

in zwei Dimensionen. Wir untersuchen Phasenübergänge zwischen topologisch unter-

schiedlichen Phasen von Quantenmaterie mit Hilfe von Tensornetzwerkzuständen. Wir

untersuchen die Phänomene der Anyon-Kondensierung und des Anyon-Confinement

im Kontext von Tensornetzwerkzuständen, wo diese Konzepte ein robustes Mittel zur

Charakterisierung der universellen Eigenschaften von Quantenphasenübergängen bieten.

Wir führen eine umfassende Studie der numerischen Methoden zur Untersuchung von

Quantenphasenübergängen durch, die durch den Tensornetzwerkformalismus erschlossen

werden. Wir vermessen das Phasendiagramm von bestimmten exotischen Phasen von

Quantenmaterie (der D (Z4) “quantum double” Modelle, des “toric code” und des “dou-

ble semion” Modells) und identifizieren die Ordnung und die Universalitätsklassen der

Phasenübergänge zwischen diesen verschiedenen topologischen Phasen. Wir analysieren

die Phasengrenzen des “toric code” und des “double semion” Modells, welche Phasenübe-

rgänge sowohl erster alsauch zweiter Ordnung aufweisen.

Wir untersuchen die Klasse der Z2-invarianten Tensornetzwerkzustände, bei denen wir

Spinrotation und Gittersymmetrien mit einbeziehen. Die daraus resultierenden Ten-

sornetzwerkzustände erlauben es uns, das Phasendiagramm von Z2-Spinflüssigkeiten zu

vermessen. Das Verhalten des Systems an den Phasenrändern der Z2-Spinflüssigkeit wird

durch die Kondensierung von Spinonen und Visonen bestimmt. Zudem präsentieren wir

unsere Ergebnisse bezüglich der Z4-invarianten Tensoren mit SU(2) Symmetrie. Diese

Herangehensweise ermöglicht es uns, die Spinflüssigkeitszustände des toric code und des

double semion Modells in einem einheitlichen Rahmen zu analysieren.

Wir präsentieren eine lokale Tensor-Beschreibung des näherungsweisen Grundzustands

des Heisenberg Antiferromagneten auf dem Kagomegitter, wozu wir eine variationelle

Mannigfaltigkeit von lediglich drei bzw. fünf Parametern in der Z2 Spinflüssigkeitsphase

benötigen. Die Approximation der Grundzustände, die wir konstruieren, haben eine

Energiedichte die bemerkenswert nah an den Ergebnissen liegt, die mit den Methoden

hochoptimierter DMRG und exakter Diagonalisierung erzielt werden. Mithilfe der Anal-

yse des Deconfinement von anyonischen Anregungen präsentieren wir ebenfalls unsere

Ergebnisse bezüglich der Umgebung des variationellen Grundzustands in Spinflüssigkeit-

sphasen mit Bandlücke.
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Chapter 1

Introduction

The field of quantum information has seen an unprecedented development in the recent

years, and remarkable improvements have been made in our understanding of entan-

glement [1, 2]. Furthermore, there has been a cross-fertilization of ideas between the

fields of quantum information and many-body strongly correlated systems. The frame-

work of tensor networks is an embodiment of ideas which have been developed during

the last three decades by hybridizing different concepts from the two fields of quantum

computing and quantum many-body systems.

The most important lesson that has been learned is the realization that the entanglement

plays a very crucial role in determining the physics of strongly correlated systems. The

starting point in our quest for understanding the properties of the strongly correlated

systems has to be the study of the ‘structure’ of entanglement between the different

constituents of the system. The idea of tensor network states (which are also referred

as projected entangled pair states (PEPS)) enables a systematic approach to investigate

correlations between different components of the system [3]. And once we have that

information, it is possible to construct a finite description of an infinite object (i.e., the

many-body quantum state) in terms of local tensors. The tensor network approach has

solved the representability problem for the class of quantum states which are relevant

to describe the low energy properties of the systems where the complexity of a naive

approach would grow exponentially with the system size. It has also been the backbone

of the new numerical tools which have allowed for the large-scale simulation of quantum

systems on classical computers.

The existence of strong correlations in many body systems acts both as a curse and

as a blessing. While on the one hand, the added complexity from these correlations

prevents an explanation using the traditional approaches which are centered around

the mean field theory, the strong coupling between subsystems also enrich the phase
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Introduction 2

diagram of strongly correlated spin systems. And these correlations are responsible

for the emergence of ‘exotic’ phases of matter which are topologically ordered [4]. The

topologically ordered phases cannot be described by the conventional ideas of local order

parameter and symmetry breaking which were developed by Lev Landau during the first

half of the last century [5, 6]. Topologically ordered systems lack the presence of local

order parameters which are used to differentiate between distinct phases. Furthermore,

topologically ordered systems allow for the presence of particles with anyonic exchange

statistics and the seminal work of Kitaev et al. [7, 8] have shown that certain properties

of topologically ordered systems can be used for the implementation of a fault-tolerant

quantum computer.

A crucial insight into our understanding of topological order has been made during

the last decade from the studies of topological systems using the framework of tensor

networks. It has been found that a subtle structure in the local tensors is necessary

for the description of topologically ordered systems [9–11]. Tensor networks have also

played a very vital role in the better understanding of the quantities which act as the

most natural analog of order parameters for the topologically ordered systems [12, 13].

A unified theory of quantum phases allows for the possibility of anyons (quasi-particle

excitations) from a well-defined set. And in any quantum phase, there is a distinct subset

of anyons which are deconfined (i.e., these anyons can independently exist) while the

rest of the anyons are confined. Another closely related phenomenon is the idea of anyon

condensation which characterizes the distinguishability between an anyon and quantum

vacuum. The formalism of tensor networks enables us to quantify these qualitative

notions. As a result, we can use the condensation and confinement of anyons as order

parameters for topologically ordered systems. This approach is robust enough to be

used for the study of phase transitions between distinct topological phases. The study

of the class of topologically ordered systems and their phase transitions using these ideas

is one of the leading topics of this thesis.

Historically, the earliest example of the state with a non-trivial topological order is

resonating valence bond state. Anderson first studied the resonating valence bond state

for the description of high-Tc superconductors [14]. Later, it was observed that the

quantum phase of resonating valence bond states shows features which are the hallmarks

of a topologically ordered system [15]. Furthermore, by using the tools which have been

developed using the formalism of tensor networks, it was shown rigorously that the

topological order of disordered spin-liquid resonating valence bond states on the kagome

lattice is of the same type as the topological order of the Kiteav toric code on the

honeycomb [16, 17]. In this thesis, we extend the ideas of anyon condensation and

confinement to construct the phase diagram of simplest spin liquids (namely the spin

liquid of toric code topological order) [18]. Moreover, we also study the phase diagram
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of another class of spin liquids where the topological order is characterized by the double

semion model [19].

The realization of a quantum phase with a non-trivial topological order can be an im-

portant step for the implementation of a reliable quantum computer. One of the most

challenging hurdles in this direction is due to the presence of many-body interactions in

the Hamiltonian (e.g., in the case of Kiteav’s toric code each interaction involves four

sites), and these interactions can be very hard to engineer. Remarkably, it has been pro-

posed by using the numerical method of density matrix renormalization group (DMRG)

that the class of frustrated spin systems on the kagome lattice, where underlying Hamil-

tonians contain only nearest neighbor Heisenberg interactions, can have ground states

which exhibit the topological order of the same type as the toric code model [20, 21].

Although there is a growing consensus on the conclusion that the ground states have

the topological nature of toric code type, the debate is still open. One source of un-

certainty is because the variational manifold in DMRG computations is characterized

by an exceedingly large number of parameters. In this thesis, we construct a class of

highly entangled quantum states where the variational manifold is parametrized by a

few parameters and the ground states with remarkably low energies can be obtained.

In short, the three main topics of this thesis are the study of anyon condensation and

topological phase transitions, the investigation of the phase diagrams of the toric code

and double semion spin liquids, and the construction of an efficient local tensor network

description for the ground state of Heisenberg antiferromagnet on the kagome lattice

in the gaped spin liquid phases. In the end, we also digress to analyze the geometric

structure of reduced density matrices for the ground state of Heisenberg antiferromagnet

on the square lattice.

This thesis has been organized as follows,

• In the second chapter, we start by reviewing the fundamental notions of entangle-

ment and tensors. We discuss the basic idea behind tensor network formalism and

the modeling of many-body wavefunctions using tensor networks.

• Chapter 3 contains an overview of numerical tools and methods that have been

developed using the formalism of tensor networks. We use these techniques later

for the computation of quantities which are relevant to examine the topological

phenomena in spin systems.

• In chapter 4, we present our findings regarding the study of topological order

and topological phase transitions in a class of many-body systems which could be

referred to have the Z4 topological order.
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• In chapter 5, we construct the phase diagram of gapped Z2 spin liquid and present

our findings regarding the phase diagram of double semion spin liquid.

• In Chapter 6, we give a constructive description of the quantum states which form

good candidates for the ground state of the Heisenberg antiferromagnet on the

kagome.

• Chapter 7 contains the conclusions of this thesis and an outlook.

Publications

Most of the results in this thesis are based on the following publications/preprints:

Mohsin Iqbal, Kasper Duivenvoorden, and Norbert Schuch,

Study of anyon condensation and topological phase transitions from a Z4

topological phase using Projected Entangled Pair States,

arXiv:1712.04021 [cond-mat.str-el], 2017.

Mohsin Iqbal, Didier Poilblanc and Norbert Schuch,

Semionic resonating valence-bond states,

Phys. Rev. B 90, 115129, 2014.

Another publication where I contributed to the construction and analysis of Z4 family

of states and did the numerics:

Kasper Duivenvoorden, Mohsin Iqbal, Jutho Haegeman, Frank Verstraete

and Norbert Schuch,

Entanglement phases as holographic duals of anyon condensates,

Phys. Rev. B 95, 235119, 2017.
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Tensor network states

One significant innovation in the context of Hamiltonian complexity is the development

of Area laws which provide bounds on the entanglement entropy of different quantum

systems. They have played a role similar to that of complexity classes in the field of

computational complexity. On the one hand, these bounds have justified our inability to

solve certain quantum systems (i.e., the systems where entanglement entropy does not

satisfy Area laws) as that would require a wavefunction ansatz with ‘right’ entanglement.

On the other hand, the bounds provided by Area laws have enabled the development of

ansatzes which contains the relevant quantum states, i.e., the ansatz of tensor network

states.

Historically, the density matrix renormalization group (DMRG) is the first method which

used the variational ansatz of tensor network states in 1D (i.e., matrix product states)

to find the ground states of local Hamiltonians [22–24]. From the analytic point of view,

the AKLT state (i.e., the ground state of AKLT Hamiltonian) is the first example of the

non-trivial matrix product state [25].

The outline of the chapter is as follows. Firstly we begin with the brief description of

the fundamental idea of entanglement. We describe the notion of a tensor and the basic

operation of the tensor trace which is a natural mean for the composition of tensors.

We then explain the formalism of tensor network states. Following on, we describe the

tensor network construction of two wavefunctions (which are important for the purposes

of this thesis) and the intuition behind the construction. In the last section, we give an

application of tensor networks as a tool which can be used for finding the solution of

certain classical counting problems.

5
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2.1 Entanglement

Entanglement refers to the inseparability of a quantum state of a given system in terms

of the constituting subsystems. The fundamental postulates of quantum mechanics for

composite systems allow for the possibility of quantum states which cannot be decoupled

as the tensor product of individual subsystems. Here, our discussion is restricted to the

entanglement in pure quantum states. A quantum state is said to be ‘entangled’ if it

cannot be written as a product state [26], i.e., for the bipartition A-B, a quantum state

|ψ〉AB is entangled if

|ψ〉AB 6= |ψ〉A|ψ〉B. (2.1)

States of the form (2.1) give rise to some of the most counter intuitive effects in quantum

mechanics with a wide range of applications in quantum computing [27].

2.1.1 Entanglement entropy

The above described qualitative notion of entanglement can be quantified by using the

Schmidt decomposition. Schmidt’s theorem states that any bipartite quantum state can

be decomposed as,

|ψ〉AB =
∑

i

λi|i〉A|i〉B, (2.2)

where |i〉A (|i〉B) are orthonormal states of system A (B), and λi’s are called the Schmidt

coefficients with the property that the sum of their squares is equal to 1.

An important feature of Schmidt decomposition is that it allows us to retrieve the

reduced density matrices of sub-system A and B directly, i.e.,

ρA =
∑

i

λ2
i |i〉A〈i|A , ρB =

∑

i

λ2
i |i〉B〈i|B (2.3)

The appearance of Schmidt coefficients {λi} in (2.2) and (2.3) reveals a fundamental

connection between the ‘inseparability’ of a pure state and the ‘mixedness’ of the quan-

tum states of the sub-systems. Entanglement of the quantum state is the same as the

entropy of the reduced matrices, and one way to quantify these two notions is by using

the measure known as entanglement entropy, and which can be defined as,

S =
∑

i

λ2
i log λ2

i . (2.4)
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2.1.2 Entanglement structure of the ground states and Area laws

Entanglement entropy S is an extensive quantity, and for a generic quantum state,

entanglement entropy of a region ‘A’ is expected to grow with the volume of the region

A. But, remarkably for the ground states of the gapped local Hamiltonians the scaling

of S of restrictive. The submanifolds of the full Hilbert space which are home to the

ground states of local Hamiltonians share a similar restrictive scaling in the growth of

their entanglement entropy. Given a bipartition A-B, the entanglement entropy grows

in proportion to the surface area of the interface between region A and B.

S ∝ A, (2.5)

where A is the surface area. Relation (2.5) is termed as Area law. Area law has been

proved rigorously for 1D systems by Hasting et al. [28], and there exists a strong

numerical evidence for the higher dimensional systems. The intuition behind (2.5) is

the insight that the ‘correlations’ in the ground states of the gapped local Hamiltonian

tend to live at the boundary of regions.

Remarkably, the relation (2.5) also holds for the ground state of topological systems with

an additive correction (also called topological entanglement entropy) to compensate for

long range entanglements [29–31].

2.2 Tensor

A tensor A with n-indices is a d1×d2 ...×dn array of complex numbers (in general, this

could be the elements of any field, but for this thesis, we restrict to the complex field

C).

It is very convenient to use graphical representations for the manipulations of tensors,

e.g., the entries of tensor A can be denoted as,

Ai1i2...in := (2.6)

Each index ik of A can take a value from a set Bk (the elements of Bk are the basis

vectors of the vector space associated with the index) and ‖Bk‖ = dk. It is conventional

to label the elements of the set Bk by a number from {0, 1, ..., dk−1}, but it is important

to note that the value of an index is intrinsically a label for the element of Bk.
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Furthermore, tensors provide a natural way to generalize bilinear functions. In analogy

with a matrix which for the given basis can specify a bilinear function, f : Cd1×Cd2 → C.

The entries of a tensor, for the given basis, can encode a multi-linear function,

g : Cd1 × C
d2 × ...Cdn → C.

2.2.1 Parallel string processor

Another useful approach, which is reasonably intuitive in the context of quantum infor-

mation, is to consider tensors as machines which could process strings in parallel.

We begin by first defining the notion of a ‘string’. Given an alphabet Σk = {0, 1, ..., dk−1}
that is a set of dk letters, an n-letter string is an element of Σ1×Σ2× ...Σn. E.g., ‘0011’

is a 4-letter string, if the alphabets Σk = {0, 1} ∀ k.

Now, a tensor can be interpreted as a quantum machine which takes as an input a fixed

length string and produces a fixed length output string. But in contrast to a classical

device, a tensor can also process a superposition of strings. To elaborate we consider a

flip tensor X. The tensor X has 2n indices (n input plus n output indices), each index

takes a value from the alphabet Σ = {0, 1}. The tensor X process the value on the input

index and puts it on the output index after doing a flip. If n = 2, then the action of flip

tensor can be represented as,

, (2.7)

where x =


0 1

1 0


 is a Pauli matrix.

2.2.2 Tensor trace

A vital operation which enables the composition of tensors is tensor trace. It corresponds

to picking two indices from the same or different tensors and identifying these indices

with each other by summing over their possible values. Given two tensors Ai1i2i3,i and

Bj1j2j3,j , the trace operation on one of their indices can be given by,

Ci1i2i3,j1j2j3 =
∑

i

Ai1i2i3,iBj1j2j3,i = . (2.8)
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2.3 Tensor network states

One of the most severe difficulties in the study of many-body systems lies in representing

the quantum state efficiently on a classical computer. The size of the state space grows

exponentially with the system size and the specification of the generic quantum state,

|ψ〉 =
∑

ik∈{0,1,...d−1}∀k

Ci1,i2,...iN
|i1, i2, ...iN 〉, (2.9)

requires O(dN ) complex numbers.

As we discussed earlier in Sec. 2.1, Area laws put a strict bound on the entangle-

ment entropy for the ground state of gapped local Hamiltonians. The most significant

development which has enabled to take advantage of low entanglement entropy require-

ments for the ground state was made in [3], where Verstraete et al. constructed a class of

many-body wavefunctions which they termed as projected entangled pair states (PEPS).

PEPS by construction satisfy the Area law of entanglement entropy with a very impor-

tant property that these states have an efficient description in terms of local tensors.

The class of projected entangled pair states can also be referred as tensor network states.

The important idea is first to identify the entanglement structure (i.e., how the individual

constituents of the systems are connected with each other) and then use it for the

representation of many-body wavefunctions. The entanglement degrees or the virtual

indices of tensors in the tensor network or PEPS framework enable a natural approach

to encode the quantum correlations. The transformation from the global object to a

description in terms of local tensors can be given as,

The applications of PEPS have been two-fold. On the one hand, they have to lead

to the development of numerical methods for the finding the ground states of local

Hamiltonians where the underlying ansatz is characterized by the tensor network states.

On the other hand and perhaps more importantly, the analysis of local tensors and the

study of their symmetries and different structures have revealed the otherwise hidden

nature of quantum phases in strongly correlated systems.
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2.4 Modeling wavefunctions using tensor networks

Tensor network framework enables a local description of objects (i.e., many body wave-

functions) with highly non-local components. The modeling of many-body quantum

state in terms of a local tensor involves an analysis of the properties of the wavefunction

at the smallest possible scale. The idea is to identify a set of local configurations (i.e.,

a set of ‘tilling patterns’) that the wavefunction can take and a set of rules under which

these tiling patterns can be glued to form all the valid global configurations. The local

tensor can be thought of as a device in which the information about the set of tiling

patterns and the set of gluing rules can be encoded.

Furthermore, the global wavefunction is not only a superposition of extended objects,

but different configurations in the superpositions could also have different amplitudes. If

there is an underlying local rule which pertains to the generation of the overall amplitude

of the configuration, then that rule can also be enforced in the local tensor.

In the following, we will describe the tensor network construction of two quantum states,

namely the toric code model and the nearest neighbor resonating valence bond state.

The first proposed tensor network description of these wavefunctions can be found in

[32, 33]. These two states contain the following two features which are the essential

ingredients to highlight the power of tensor network methods fully.

• Different configurations in the superposition contain objects which can be as large

as the system itself.

• The number of possible configurations is constrained, but it is large enough that

there is no efficient way to enumerate all of them.

2.4.1 Toric code model

The quantum state we first construct is the ground state of Kiteav’s toric code Hamilto-

nian on the hexagonal lattice [7], where each site on the edge of the lattice is comprised

of a qubit. The state can be understood as the superposition of all the possible closed

loop string configurations. Here we refer to qubit in the state |1〉 (|0〉) as a ‘string’

(‘empty site’). The wavefunction can be pictorially written as,

|ψTC〉 = (2.10)



Tensor network states 11

The above diagram gives the local view of different global configurations. Red lines on

the edges indicate strings. At any vertex of the hexagonal lattice, there could be four

possible configurations. In the above representation, the vertex marked by a dashed

circle shows the four possibilities. Either there is a string on the two legs of the vertex,

or all the vertices are free. The four local configurations can be encoded by defining a

vertex tensor as,

E = =





1 α1 + α2 + α3 = 0 mod 2

0 otherwise,
(2.11)

where α1, α2, α3 ∈ {0, 1}. The entries of vertex tensor E are non-zeros only if the parity

of α1 + α2 + α3 is even. After placing the tensor E on each vertex of the hexagonal

lattice, the next step is to define the on-site tensor P .

P = = δα1sδα2s (2.12)

where s ∈ {0, 1}. The tensor P copies the information on the edge (i.e., whether or not

there is a string on the edge) to the physical index. The resulting tensor network of the

toric code wavefunction on the hexagonal lattice can be written as,

|ψTC〉 = (2.13)

2.4.2 Resonating valence bond state

The resonating valence bond state was introduced by Linus Pauling [34] as an approach

to extend the resonance of bonds in the benzene ring to the whole lattice. The resonating

valence bond wavefunction is a superposition of all the nearest neighbor singlet pairings

(or coverings). The singlets could be long ranged in general, but here we restrict to

nearest neighbor pairings on the kagome lattice. The reason for using the kagome

lattice will become apparent later in the thesis. The superposition of different singlet

pairings can be written pictorially as,

|ψRVB〉 = (2.14)

Red lines on the edge indicate a singlet. Locally each triangle of the kagome could be in

one of the four possible configurations (this can be seen in the case of the triangle with

the dashed circle). In three configurations there is a singlet on one edge of the triangle
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and one configuration all the edges are free. Similar to the case of toric code, the singlet

configurations can be encoded by defining a vertex tensor E, and it is placed inside each

triangle of the kagome lattice.

E = =





σβ2β3 β1 = 2

σβ3β1 β2 = 2

σβ1β2 β3 = 2

1 β1 = β2 = β3 = 2

0 otherwise,

(2.15)

where β1, β2, β3 ∈ {0, 1, 2}, and the matrix σ = diag


 1√

2


0 −1

1 0


 , 0


. The next step

is to define an on-site tensor which ensures that each vertex is paired with exactly one

vertex via a singlet.

P = =





δβ1p β2 = 2

δβ2p β1 = 2

0 otherwise,

(2.16)

where p ∈ {0, 1}. By placing each vertex tensor E inside each triangle and on-site tensor

P at each vertex of the kagome, we get the tensor network of resonating valence bond

wavefunction.

|ψRVB〉 = (2.17)

2.5 Tensor networks as a counting device

Tensor networks also offer a robust tool which could be used to count the number

of possible solutions in different enumeration problems. Local tensors can be used to

locally impose multiple constraints, and the contraction of these tensors can be used to

simultaneously sum up the number of possible solutions.

Here, we review two problems from Project Euler (https://projecteuler.net) and

we use these two problems to highlight the usefulness of this approach.

https://projecteuler.net
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2.5.1 Problem 15: Lattice paths

We are given a 2D grid (Fig. 2.1a) with two points of interest (S and D) at the diagonal

corners and the goal is to find the number of possible paths from S to D. Each path also

has the constraint that it can be traversed only by making moves to the right and down

(https://projecteuler.net/problem=15).

Tensor network solution

Given a solution (a path from S to D), each edge on the grid has two possibilities. It

is either free or lies in the path, and these possibilities can be labeled as ‘0’ and ‘1’

respectively. Furthermore, for every vertex in the grid except the boundary and corner

vertices, we have the following possibilities for every solution.

1. All the edges of the vertex are free, i.e., they can be labeled as ‘0’.

2. The vertex is traversed by the path. The path hits the vertex from the left or

top edge, so exactly one these edges lies in the path. Similarly, the path leaves

the vertex from the right or the bottom edge, and exactly one of these edges is

occupied.

The following definition of the vertex tensor A summarized the above possibilities (or

constraints).

Aabcd = =





1 if a = b = c = d = 0

1 if a⊕ d = b⊕ c = 1

0 otherwise

(2.18)

Here, we label the four indices (one corresponding to each edge) by a, b, c and d, and

each index could take two values ‘0’ and ‘1’.

The vertices at the boundary of the grid also have similar constraints for every solution.

1. All the edges from the vertex are free.

2. Assuming that the vertex is on the left boundary and the vertex lies in the path.

The path hits the vertex from the top and leaves either from the right edge and

or from the bottom.

https://projecteuler.net/problem=15
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Figure 2.1: (a) Two possible solutions with endpoints at the diagonal corners. (b)
Tensor network to count the number of paths on a 4× 4 grid.

These constraints on the boundary vertices can be specified as

Babc = =





1 if a = b = c = 0

1 if a = 1, b⊕ c = 0

0 otherwise

(2.19)

Note that the arrowhead points in the direction of the index labeled as b.

Vertices at the start ‘S’ and at the destination ‘D’ of the path have the constraint that

exactly one of their edges lies in the path. Similarly, the vertices at the off-diagonal

corners of the grid have the constraint that either both of their edges are occupied, or

both of them are free. We specify these constraints by the following definition of corner

tensors.

C1 = =





1 if a 6= b

0 otherwise
, C2 = =





1 if a = b

0 otherwise
, (2.20)

The contraction of resulting tensor network (Fig. 2.1b) gives a number which represents

the sum of all the possibilities. It is important to emphasize the robustness of this

approach. The tensor network description can be easily modified to find the number of

paths with different endpoints and different lattice structures.

2.5.2 Problem 393: Migrating ants

Consider an n × n square lattice. Each square contains exactly one ant (Fig. 2.2a).

All the ants want to move simultaneously to the neighboring squares. The swapping

of homes between two ants is not allowed (i.e., no two ants can cross the same edge

simultaneously). The problem is to count the number of all the possible migrations

(https://projecteuler.net/problem=393).

https://projecteuler.net/problem=393
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Tensor network solution

For every solution (a possible migration of ants), we get a pattern of arrows on the dual

lattice of the 2D grid. A possible migration of ants is given in Fig. 2.2b. Incoming

(outgoing) arrow on the edge of a vertex specifies the direction of entering (leaving) ant.

So, for every solution, each side on the dual grid is in one of the three possible states.

In one case it is free, and in the other two cases, it has an arrow on it pointing in one of

the two possible directions. We label these possibilities by ‘0’, ‘1’, and ‘2’ respectively.

On the four edges of every vertex, we have exactly one incoming arrow and one outgoing

arrow, and the two edges are free. These constraints can be summarized as

Aa1a2a3a4 = =





1 if a1 + a2 + a3 + a4 = 3, (ai = aj = 0, i 6= j)

0 otherwise
(2.21)

Each of the four indices ai can take three values ‘0’, ‘1’, and ‘2’.

In the case of vertices at the boundary, the constraints are given by

Ba1a2a3 = =





1 if a1 + a2 + a3 = 3, ai = 0

0 otherwise
(2.22)

On the three edges of boundary vertex, we have one incoming arrow, one outgoing arrow

and precisely one edge is free.

Edges of the corner vertex have exactly one incoming arrow and one outgoing arrow.

C = =





1 if a1 + a2 = 3

0 otherwise
. (2.23)

By contracting out the indices of the tensor network on the dual lattice (Fig. 2.2c), we

get the count of all the possible ant migrations.

2.6 Summary

We have reviewed that the Area laws bound the scaling of entanglement entropy in the

ground states of local Hamiltonians. The formalism of tensor network states allows us

to access the quantum states which satisfy Area law by construction and take advantage

of the low requirements of entanglement entropy for the ground states of gapped local
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Figure 2.2: (a) 4× 4 grid. Dashed gray lines indicate the dual lattice. (b) A possible
solution (migration of ants). Blue lines with an arrow on the edges of dual lattice
indicate the direction of ant movement. (c) Tensor network construction of the dual
lattice.

Hamiltonians. Furthermore, the tensor networks give an efficient description of many-

body quantum states that scales polynomially with the system size.



Chapter 3

Numerical methods

The tensor network formalism enables an efficient description of many-body wavefunc-

tions in the form of local tensors which can be studied analytically. Besides, the manifold

which is defined by the tensor network states essentially contains all the information

about the properties of the system at low temperature where the underlying Hamil-

tonian contains only local interactions. And that insight has lead to the development

of numerical techniques which use tensor network states with finite bond dimension as

an ansatz for finding the ground states and these techniques can be divided into two

broad categories, (1) time-evolving block decimation (TEBD) algorithms [35–37], and

(2) variational methods such as density matrix renormalization group (DMRG) [22].

Both approaches have their variants to work for systems in the thermodynamic limit

[38, 39]. These methods are developed enough to be used reliably in the case of 1D

systems, and there have been some recent major developments for 2D systems [40, 41].

But an essential problem in the case of 2D systems is that even the complexity of

finding an exact contraction of a tensor network grows exponentially with the system

size. The contraction of tensors is an essential step in finding the expectation value of

local operators and a lot of effort in the recent years has been invested in obtaining an

approximate contraction of tensor networks [42]. Furthermore, it is also essential that

the numerical methods should allow us to handle an infinitely large number of particles

(the same way we observe in the natural world), only then it would be possible to see

the emergence of exotic phenomena like topological order in the quantum simulations.

So the focus of discussion in this chapter will be on the strategies for the contraction

of semi-infinite (i.e., infinite cylindrical geometries with finite perimeter) and infinite

tensor networks. Along the way, we also describe the computation of quantities which

are essential for determining the entanglement behavior and the quantum phase of the

system. All the tensor network techniques which we review in the chapter will be used

17
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in our studies of topological phenomena and quantum phase transitions in the later

chapters.

3.1 Semi-infinite systems

The physical properties of finite systems suffer from strong boundary effects, and to

have a reliable estimate of an observable; one has to do finite size scaling by growing the

systems’ size in two dimensions. One approach to partially solve the scaling problem

is to do computations on infinite systems with cylindrical geometries. This approach

can be implemented without incurring a significant overhead in the complexity, and the

main advantage of this method is that it does not suffer from boundary effects, and only

by examining the behavior of the computed quantity as the function of the perimeter of

the cylinder, it is possible to get a very good approximation.

In the next subsection, we will first elaborate the underlying setup and describe the

method for computing the expectation values of local observables. In the later sub-

sections, we will explain an approach for calculating the entanglement spectrum and

entanglement entropy for cylindrical geometries which was first described in [43, 44]. In

the end, we will define a procedure for computing the fidelity of quantum states and the

fidelity susceptibility which are some of the essential probes to investigate the behavior

of quantum phase transitions.

3.1.1 Expectation value of local observables

Consider a system on the infinite cylinder (Nh →∞) with the finite perimeter Nv. The

translation invariant description of the quantum state |ψ〉 is given by an on-site tensor

A with a physical index of dimension d and four virtual indices each of dimension D.

Quantum state |ψ〉 as a tensor network on the cylinder can be given as,

|ψ〉 = , where A = (3.1)

Now to proceed with the contraction of the tensor network in a systematic manner, we de-

fine trivial and non-trivial double tensors as E :=
∑

iA
i ⊗Ai∗

and EO :=
∑

i,j A
iOij ⊗Aj∗

respectively. The non-trivial double tensor EO is obtained by sandwiching the local oper-

ator O between the physical indices of on-site tensors. These tensors can be represented
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graphically as

. (3.2)

Using the above definitions of double tensors, the expectation value of a local observable

O which is acting on a site in the middle of infinitely long cylinder can be graphically

represented as,

〈ψ|O|ψ〉 = . (3.3)

An object of fundamental importance which will also appear later for doing numerics in

the case of infinite systems is the transfer operator which is obtained by blocking a chain

of double tensors E in one direction. In this case, the transfer operator T is defined as,

T := . (3.4)

After defining the transfer operator, the next important step in computing the expecta-

tion value of local observables is the calculation of the fixed points of the transfer matrix.

Let (σL| and |σR) be the left and right eigenvectors of the transfer operator with the

largest eigenvalue λ0, i.e., the transfer operator acts on (σL| and |σR) in the following

manner,

. (3.5)

It is important to note here that the memory requirements for storing the transfer

operator T grow as
(
D4
)Nv , and so it is not feasible to explicitly construct the transfer

matrix. This problem can be fixed by computing the left and right eigenvectors by an

iterative eigenvalue solver. These routines do not explicitly require the transfer operator

as an input, but the only action of transfer operator on an input vector has to be

specified. Although the simple usage of iterative solvers restricts the computation of

eigenvectors to cylinders with small perimeter, it is possible to use implementations of
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iterative solvers which have been optimized to fully exploit the computational power of

shared and distributed memory architectures or even the GPUs.

Assuming that the largest eigenvalue of transfer operator is unique, in the thermody-

namic limit, the contribution from only the largest eigenvector survives, and so the

expectation value can be written as,

〈ψ|O|ψ〉 ≈ lim
Nh→∞

λNh−1
0 (σL|TO|σR),

where TO is the transfer operator with a non-trivial double tensor EO. The normalized

expectation value of the local observable can be calculated as,

〈Ô〉 :=
〈ψ|O|ψ〉
〈ψ|ψ〉

≈ λNh−1
0 (σL|TO|σR)

λNh

0 (σL|σR)
=

(σL|TO|σR)

λ0 (σL|σR)
.

(3.6)

3.1.2 Entanglement spectrum

Area laws quantify the entanglement entropy of a region in terms of the region’s bound-

ary for the ground state of gapped quantum systems. Following this observation, a

remarkable result came from the understanding of perhaps an even more profound con-

nection between the whole entanglement spectrum of the region in the bulk and the

energy spectrum of certain boundary models [45]. Furthermore, in the context of ten-

sor networks it was shown by Cirac et al. in [43] that the boundary of the region can

be assigned a Hamiltonian whose spectrum corresponds to the entanglement spectrum

of the bulk. Moreover, tensor network formalism not only enables the construction of

states with an entanglement structure prescribed by the Area laws, it also allows for the

construction of these boundary Hamiltonians which act on the entanglement degrees of

the tensor network.

The method to compute the entanglement spectrum of the system on infinite cylinder

(Nh → ∞) with finite perimeter (Nv) was described by Schuch et al. in [44]. Given

a translation invariant tensor network state for an infinite system partitioned in the

middle,

, (3.7)

with dimensions d and D for the physical and virtual indices respectively. The size of the

reduced density matrix grows exponentially with Nh and Nv and it is an infinite object
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as Nh →∞. But quite remarkably the spectrum of ρA can be computed by relating the

reduced density matrix to a finite object via an isometry (see [44]), i.e.,

ρA = V
√
σLσr

√
σLV

†, (3.8)

where σL and σr are the left and right fixed points of the transfer operator as we discussed

earlier in (3.5) and
√
σLσR

√
σL is a DNv × DNv matrix. V is an isometry and since

the spectrum is preserved under the transformation by V , the entanglement spectrum

of a bipartition in (3.7) can be computed by doing the eigenvalue decomposition on
√
σLσR

√
σL.

Once we have computed
√
σLσR

√
σL, the boundary Hamiltonian Hb can be obtained by

taking its logarithm [43],

Hb := − ln(
√
σLσR

√
σL).

Later, we will use the above definition for computing the boundary Hamiltonian of a

twisted spin liquid state (i.e., the semionic resonating valence bond state).

3.1.3 Entanglement entropy

A measure of fundamental interest which quantifies the entanglement between subsys-

tems A and B of a bipartition is the Von Neumann entanglement entropy S. It is defined

as

S (ρA) := −Tr (ρA log ρA) (3.9)

where ρA is the reduced density matrix of subsystem A. Let {λi}D
NV

i=1 be the eigenvalue

decomposition of
√
σLσr

√
σL, then by using (3.8), the Von Neumann entanglement

entropy can be computed as

S (ρA) = −
∑

i

λi log λi (3.10)

3.1.4 Fidelity per site

Quantum state fidelity defines a measure of distinguishability between two different

states. Since for any non-zero δ, the overlap 〈ψ(θ)|ψ(θ + δ)〉 between the quantum

states goes to zero in the thermodynamic limit (also called Anderson’s orthogonality

catastrophe), a meaningful measure of the distinguishability of quantum states can only

be an intensive quantity which does not depend on the system size.
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An intensive quantity called fidelity per site for quantum states |θ1〉 := |ψ(θ = θ1)〉 and

|θ2〉 := |ψ(θ = θ2)〉 is defined as

f (θ1, θ2) :=

∣∣∣∣∣
〈θ2|θ1〉√
〈θ2|θ2〉〈θ1|θ1〉

∣∣∣∣∣

1/NhNv

(3.11)

The notion of quantum state fidelity was first applied by Zanardi et al. for the study of

quantum phase transitions [46]. Later, applications of fidelity per site in the context of

tensor networks were investigated in [47, 48].

In order to compute the fidelity per site for tensor network states on infinite cylinders,

let λ0 (θi, θj) be the largest eigenvalue of transfer operator T (θi, θj). Then as Nh →∞,

the fidelity per site can be approximated as

f (θ1, θ2) ≈
∣∣∣∣∣

λ0(θ1, θ2)√
λ0(θ2, θ2)λ0(θ1, θ1)

∣∣∣∣∣

1/Nv

. (3.12)

3.1.5 Fidelity susceptibility

Given a quantum state parametrized by the variable θ, the sensitivity of fidelity per

site (or the norm per site) for |ψ(θ)〉 to an infinitesimal change in θ can be used as

useful probe for the study of quantum phase transitions [49]. Fidelity susceptibility χF

quantifies this sensitivity and it is defined as the second derivative of fidelity per site,

χF := lim
δ→0

2 (1− f (θ, θ + δ))

δ2
(3.13)

We will later use the notion of fidelity susceptibility to characterize the behavior of

quantum phase transitions.

3.2 Infinite systems

Now, we describe different numerical approaches which have been designed to handle

computations for 2D systems directly in the thermodynamic limit. Our focus here

would be to explain techniques which assume translation invariant local tensor network

description of the 2D wavefunction and the goal would be to answer different qualitative

and quantitative questions regarding its properties. In the end, we will briefly review a

method by Haegeman et al. [55] to compute the spectrum of transfer operator in the

thermodynamic limit by using the excitation ansatz.
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We begin by describing the notion of overlap per site and a method to find an approxi-

mation of MPS with lower bond dimension. These ideas will be used to obtain the fixed

points of transfer operator which is an essential ingredient to find the answers to many

questions.

3.2.1 Overlap per site - 1D

Overlap per site (also called fidelity per site f , as we discussed earlier for semi-infinite

2D systems) is a measure to quantify distinguishability between two quantum states in

the thermodynamic limit,

f(φ, ψ) := lim
N→∞

∣∣∣∣∣
〈ψ|φ〉√
〈φ|φ〉〈ψ|ψ〉

∣∣∣∣∣

1/N

.

Let A and B be the MPS tensors, and |ψ(A)〉 and |ψ(B)〉 be the corresponding transla-

tion invariant MPSs, then the overlap per site can be computed as

f =
λAB√
λAAλBB

(3.14)

where λAB is the largest eigenvalue of the double tensor EAB =
∑

iAi ⊗B†
i , which is

obtained by contracting the physical indices of A and B.

3.2.2 Approximation of MPSs

We describe an approach to truncate the bond dimension of an MPS in the thermody-

namic limit. An extensive review of different approximation techniques can be found

in [42]. The idea is to find an MPS of lower bond dimension χ with reduced density

matrices which best approximate the density matrices of the original state. First, we

describe an approach which uses singular value decomposition (SVD) to truncate single

site MPSs. Second, we discuss the extension of this method to truncate multi-site MPSs.

3.2.3 Single-site MPSs

We want to finds an approximation of tensor A with a tensor A′ such that the overlap

between |ψ(A)〉 and |ψ(A′)〉 is maximized. Pictorially,

, (3.15)
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where D > χ. An approximation with the mentioned properties can be computed by

truncating the number of Schmidt coefficients to χ. The Schmidt coefficients can be

accessed via the canonical representation (described by Garcia et al. [50]) of A. We

want to find the matrix L such that

. (3.16)

L can be computed by repeated applications of QR decomposition (see Algo. 1). Sim-

ilarly, the matrix R which characterize the right canonical representation of A such

that

, (3.17)

can be found using the similar procedure.

Given that we have the matrices L and R satisfying above two equations, we can define

projections which could do truncation on the Schmidt coefficients. Since,

=

=

(3.18)

If LR = UΣV † is the singular value decomposition, where the matrix Σ contains the

Schmidt coefficients for a bipartition in the middle of infinity, then

L−1LRR−1 = RV Σ−1/2 Σ−1/2U †L. (3.19)

Let P r := RV Σ̃−1/2 and P l := Σ̃−1/2U †L be the projectors. Matrix Σ̃ represents Σ

truncated to χ Schmidt coefficients. The approximate representation of A is obtained

by applying projections P l and P r such that,

. (3.20)

3.2.4 Multi-site MPSs

The MPS representation of |ψ〉 is characterized by m tensors

, (3.21)
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Algorithm 1: Find the matrix L by orthogonalization of the MPS from the left.

1 function LeftOrth;
Input : MPS tensor A, tolerance tol.

2 A← reshape(A)
// The dimensions of tensor A are D × d×D. Reshape A to be a Dd×D

matrix.

3 Atemp = A ; // Initialize Atemp with A.

4 Ltemp = 0, err = 1;
5 while err > tol do
6 L = qr(Atemp)

// Q-less QR-decomposition of Atemp. QR-decomposition is unique up

to the sign of each row of L. Fix the sign, such that each

diagonal entry of L is positive.

7 nL = 1/norm(L)
8 L = nL× L; // Normalize the matrix L.

9 err = norm(L− Ltemp)
10 Atemp = L×A
11 end

Output: L

and the goal is to find an approximation A′
a for each Aa with lower bond dimension.

As in the case of the single site, to construct the projections, we need the Schmidt

coefficients for bipartition across cuts between different Aas. First, we compute the

matrices La and Ra for a ∈ {1, 2, ..m} such that

, (3.22)

where
∑

iQ
l
a,i

†
Ql

a,i = ID×D and
∑

iQ
r
a,iQ

r
a,i

† = ID×D for each a. This can be done by

extending Algo. 1 to the case of multi-site MPSs (see Algo. 2).

Similar to single-site case, we insert an identity L−1
a LaRaR

−1
a between sites a− 1 and a,

(3.23)

Let UaΣaV
†

a be the singular value decomposition of LaRa, then

L−1
a LaRaR

−1
a = RaVaΣ−1/2

a Σ−1/2
a U †

aLa

≈ RaVaΣ̃−1/2
a Σ̃−1/2

a U †
aLa

(3.24)
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Algorithm 2: Find matrices L[a] with a ∈ {1, 2..,m} by orthogonalization from the
left.

1 function LeftOrthMultiSite;
Input : MPS tensor A[1 : m], tolerance tol.

2 A[1 : m]← reshape(A[1 : m]);
// The dimensions of tensors A[a] are D × d×D. Reshape A[a] to be

Dd×D matrices.

3 Atemp[1 : m] = A[1 : m] ; // Initialize Atemp’s with A’s.

4 Ltemp[1 : m] = 0, maxErr = 1;
5 a = 1;
6 while maxErr > tol do
7 L[a] = qr(Atemp[a])
8 nL = 1/norm(L[a])
9 L[a] = nL× L[a] ; // Normalize the matrix L[a].

10 err[a] = norm(L[a]− Ltemp[a])
11 Atemp[a] = L[a]×A[a]
12 a = mod(a,m) + 1 ; // mod(a,m) computes the remainder of m divided by

a.

13 if a = 1 then
14 maxErr = max(err)
15 end

16 end
Output: L[1 : m]

with P l
a := RaVaΣ̃−1/2

a and P r
a := Σ̃−1/2

a+1 U
†
a+1La+1, the truncated representation of Aa

is obtained by

. (3.25)

3.2.5 Fixed points of the transfer operator

The transfer operator is one of the fundamental objects which appears naturally in

tensor network computations. It is constructed by blocking the double tensors E in one

direction.

T = (3.26)

We say that |l) and |r) are the left and right fixed points of transfer operator, if (l|T = (l|
and T |r) = |r). The transfer operator is an infinite object for systems in the thermody-

namic limit. Now, to have a useful definition of fixed points, we assume that an MPS

can represent the fixed points with finite bond dimension. Let A be an MPS tensor and
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the action of the double tensor E on A generates tensor A′.

(3.27)

The arrow highlights the fact that the tensor A′ is an approximation of the left tensor

with bond dimension χ. We call |l[A]) the left fixed point of T if the overlap per site

between |l[A]) and |l[A′]) is equal to 1 up to a certain tolerance. Similarly, it is possible

to define right fixed points with an MPS structure.

In the following, we will describe a method to numerically compute the fixed points of

the transfer operator which is enabled by the extension of power iteration method for

eigenvalue problems in the thermodynamic limit and it is usually referred to as infinite

matrix product state (iMPS) algorithm. First, we describe the method to compute left

and right fixed points. Second, a method to compute the diagonal fixed points has been

described.

Left/Right fixed points

Power iteration algorithm is the most straightforward method to compute the largest

eigenvalues of matrices. The idea is to start with a random initial vector and iteratively

multiply it by the matrix while normalizing the resulting vector on each iteration. The

intuition is that the procedure would converge to a vector after a finite number of

iterations and the only contribution in the resulting vector would be from the largest

eigenvector.

iMPS algorithm works in the same spirit. It starts execution with a randomly initialized

MPS approximation of a fixed point. An MPO (i.e., the transfer operator) is iteratively

applied to the MPS. In each iteration, after acting with MPO, the new MPS is trans-

formed into the canonical form. Given the canonical description, the bond dimension

of MPS is truncated as we described earlier by restricting the number of Schmidt coef-

ficients across any bipartition to a fixed bond dimension. The execution is halted when

the overlap per site between two successive MPSs is equal to 1 up to a certain tolerance.

These steps have been formalized in Algo. 3. It should be noted here that the conver-

gence occurs in the fixed point approximations from two consecutive iterations and not

necessarily in their local MPS tensors due to the gauge freedom [50].

In each iteration of iMPS algorithm, we apply the double tensor E with dimensions

(D2 × D2 × D2 × D2) to the tensor A with dimensions (χ × D2 × χ). The indices of

resulting MPS tensor has dimensions (χD2 × D2 × χD2). Finding out the canonical
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Algorithm 3: Find the fixed of the transfer operator from the left.

1 function iMPSLeft;
Input : Double tensor E, bond dimension χ, tolerance tol.

2 A = rand ; // Initialize A randomly to a χ× d× χ tensor.

3 Aprev = 0, err = 1;
4 while err > tol do
5 A← applyDoubleTensor(E, A); // Apply the double tensor E to A as

shown in eq.(3.27).
6 nA = 1/norm(A)
7 A = A× nA ; // Normalize A.

8 A← truncate(A,χ) ; // Find the approximation of A with bond dimension

χ.

9 err = |1− overlapPerSite(A,Aprev)|
// Find the overlap per site between the last two iterations.

10 Aprev = A

11 end
Output: A

representation of the resulting MPS is computationally the most expensive step both in

terms of space (memory) and time requirements. A crucial improvement can be made

in this step by exploiting the ket and bra structure of double tensors E. The idea is to

split each iteration into two steps. In the first step, we apply only the bra layer E to

the MPS tensor. Then we compute the canonical form and approximate the resulting

tensor. In the second step, the bra layer of E is applied to the MPS tensor.

, (3.28)

where the red lines represent the physical indices of 2D wavefunction.

Diagonal fixed points

Given a lattice structure or the expectation value of observables one intends to compute,

sometimes it is natural to find the fixed points of the system from the diagonal direction.
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Transfer operator Tdiag has a 2-layer structure,

(3.29)

and for illustrative convenience, we have drawn the bra and ket indices as a single index.

It is instinctive to consider MPSs with the 2-site unit cell as an ansatz for the fixed

points of diagonal transfer operator Tdiag.

(3.30)

Similar to the case of vertical transfer operator, we randomly initialize the 2-site MPS

and repeatedly apply Ediag to the MPS tensor. Each application of Ediag can be split

into two steps by exploiting the 2-layer structure. The method to approximate multi-site

MPSs has already been described in Sec. 3.2.4.

(3.31)

Furthermore, the above routine can be made more efficient by incorporating the steps

described in (3.28).
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3.2.6 Expectation value of observables

Now we describe methods for computing the expectation value of observables for the

systems in the thermodynamic limit.

Local order parameter

Assuming that there is a routine to find the fixed points of the transfer operator, the

computation of the expectation value of local observables can be reduced to the problem

of contracting a finite tensor network. Here, we illustrate the steps involved in computing

the expectation value of a product operator which acts diagonally on the physical indices

of two lattice sites (see Fig. 3.1a). The same approach can be adapted for computing

the expectation value of other local quantities. It is important to note here that we

use this example to highlight the computational overhead incurred because the local

operator acts diagonally and we use the left/right fixed points. The massive increase

in memory and time requirements can be avoided by using the fixed points of diagonal

transfer operator to compute the expectation value of ‘diagonal’ operators.

A dimensional reduction from the 2D to the 1D object is achieved by sandwiching the

left and right fixed points of the transfer operator (see Fig. 3.1(a,b)). The 1D object

is constructed from the chain of channel operators. In the middle of this infinite 1D

object, we have double tensors EÔ which specify the action of local observables. The

next step involves the computation of the largest eigenvectors of the channel operator

from the top and bottom using an exact diagonalization method.

F |ρt) = (3.32)

A similar relation also holds between F and ρb. Due to the diagonal action of operators

relative to the left and right fixed points, ρb and ρt lives in C
χ2D4

which is significantly

large compared to C
χ2D2

in the case operators with parallel action, as described in the

next subsection. Now given the largest eigenvectors of the channel operator from the

top and the bottom, the expectation value can be computed as,

〈Ô1Ô2〉 =
(ρb|FÔ1

FÔ2
|ρt)

λ2
0(ρb|ρt)

, (3.33)

which is shown pictorially in Fig. 3.1c.

The method has been applied to compute the expectation value of Heisenberg interac-

tions, Si.Sj , for the resonating valence bond (RVB) state on the kagome lattice (see
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Figure 3.1: (a) The graphical representation of the quantity, 〈Ô1Ô2〉, in the thermo-
dynamic limit. The double tensor EÔ is obtained by acting with Ô on the physical
indices of on-site tensor A followed by a contraction with the conjugate of A. (b) Ex-
cept in the middle of infinity, each slice is defined by the so-called channel operator F.
(c) The finite tensor network which represents the expectation value of the observable.

Fig. 3.2(a,b)). The tensor network description of the RVB wavefunction is given in

Sec. 2.4 for the 3-site unit cell. The RVB wavefunction does not break any rotation or

translation symmetry. However, the expectation values of the interactions on different

edges suffer the finite χ effect, where χ is the bond dimension used for approximating the

fixed points of the transfer operator. There is a finite splitting in the value of different

interactions which vanishes with increasing bond dimension (see Fig. 3.2c).
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Figure 3.2: (a) The expectation value of the Heisenberg interaction Si.Sj for the RVB
wavefunction on the 6-edges of the unit cell. The legend of the curves is defined by the
edges of up/down pointing triangles of the kagome. The color of the edge associates it
with a curve in the plot. (b) Mean energy per site for the left (red) and right (blue)
pointing triangles. (c) Splitting in the expectation value of different interactions which
have been quantified by the standard deviation of 6 energies in (a). At χ = 512, the
splitting is small enough to give a high precision estimate of energy per site, which is
-0.3931232344861(1).
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Two point correlation function

Now we describe an approach to compute two point correlation functions using a few

modifications to the steps involved in the computation of local order parameters. Cor-

relation functions provide a way to quantify correlations (i.e., the coupling or interde-

pendence) in the properties of the observables acting on different parts of the system.

Here, we have a two body operator acting on the sites separated by the distance r on

an infinite system, and the goal is to find the expectation value. We assume that the

operator acts either in the horizontal, vertical or diagonal direction. Furthermore, it is

possible to compute two point correlation function in any direction using the approach

of corner transfer matrices [41].

Figure 3.3: (a) Graphical representation of the expectation value of two point cor-
relation function 〈ÔiÔi+r〉 acting on the sites i and i + r. (b) Dimensional reduction
from a 2D to a 1D infinite object. (c) The finite tensor network to compute two point
correlations.

The graphical representation of the steps is given in Fig. 3.3. As described earlier in the

case of computing the expectation value of local order parameters with appropriately

chosen fixed points we get channel operators with better scaling properties.

F |ρt) = (3.34)

Given the largest eigenvectors of the channel operator, the expectation value can be

computed as,

〈ÔiÔi+r〉 =
(ρb|FÔi

F̂
(r−1)

FÔi+r
|ρt)

λ2
0(ρb|ρt)

, where F̂ = F/λ0. (3.35)

3.2.7 Correlation length

One of the most remarkable properties of the gapped quantum many-body systems is

the exponential decay of correlations with distance, i.e., the expectation value of two
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point correlation function acting on sites separated by distance r in a gapped quantum

system decays as K(r)e−r/ξ. Where the exact form of K(r) depends on the operators

for which we measure the correlations. Since ξ is a natural length scale to characterize

the decay, it is usually termed as the correlation length.

Tensor network states enable an approach to express these correlations as a sum of con-

stant and exponentially decaying contributions [51]. Let F(r−1) =
∑χ2D2−1

k=0 λ
(r−1)
k |ρk

t )(ρk
b |

be representation of F(r−1) obtained by using the eigenvalue decomposition, where F is

the channel operator (3.34). Then, by substituting it in (3.35), we get

〈ÔiÔi+r〉 =
(ρb|FOi

|ρt)(ρb|FOi+r
|ρt)

λ2
0(ρb|ρt)

+
χ2D2−1∑

k=1

(
λk

λ0

)r−1 (ρb|FOi
|ρk

t )(ρk
b |FOi+r

|ρt)

λ2
0(ρb|ρt)

≈ 〈Ôi〉〈Ôi+r〉+
(
λ1

λ0

)r−1 (ρb|FOi
|ρ1

t )(ρ1
b |FOi+r

|ρt)

λ2
0(ρb|ρt)

.

(3.36)

Now, the connected correlation function which quantifies correlations can be expressed

as

Ĉ(i, i+ r) = 〈ÔiÔi+r〉 − 〈Ôi〉〈Ôi+r〉

≈
(
λ1

λ0

)r (ρb|FOi
|ρ1

t )(ρ1
b |FOi+r

|ρt)

λ0λ1(ρb|ρt)
= K

(
λ1

λ0

)r

,
(3.37)

If the state has the translation symmetry, then the prefactor K does not depend on r.

By equating the exponentially decaying term with e−r/ξ, we get ξ = −1/ln(λ1/λ0).

3.2.8 Spectrum of the transfer operator

Eigenvalues of the transfer operator essentially contain all the information about the low

energy properties of the system [44, 52]. Given a system on an infinite cylinder, the com-

putation of the eigenvalues of the transfer operator can be done by exact diagonalization

using an iterative eigenvalue solver routine. However, for the infinite systems, informa-

tion about the excited states of the system can be extracted by using the ‘excitation

ansatz.’ This approach was introduced in [53] for MPSs, and it was later extended to

infinite systems by Haegeman et al. in [54]. An extensive review of these methods can be

found in [55]. Here, we will briefly describe the method to later use it for computing the

eigenvalues of the transfer matrix. We will assume that transfer operator is Hermitian

which implies that the left and right fixed points are related by the conjugate.

Given a system with translation invariant transfer operator (e.g. a finite chain with

periodic boundary conditions or an infinitely long system), the spectrum can be divided
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into different sectors. Each of these sectors can be labeled by the irreducible representa-

tion (irrep) of translation symmetry ZN . Let k ∈ {0, 1, 2, ..N −1} represents the irrep of

ZN , then a projector onto the sector where the eigenvalues of transfer operator T have

a label k is Pk =
∑N−1

n=0

(
e2πik/NT

)n
, T is the generator of ZN . The action of T on the

system shifts lattice sites by a unit distance. As N → ∞ in the thermodynamic limit,

it is more convenient to write Pk as,

Pk =
∞∑

n=−∞

(
eikT

)n
, (3.38)

with k ∈ [−π, π).

Let A be an MPS tensor which characterizes the fixed point |ψ(A)〉 of transfer operator

(Sec. 3.2.5). We also assume that the transfer operator has been rescaled such that its

largest eigenvalue is equal to 1. It is intuitive to consider the states of the form

, (3.39)

where the tensor B lies in the middle of infinity, and B is computed by a variational

method in order to construct the excited states of the transfer operator. Furthermore,

this approach can be extended to build an ansatz for the excited states of the transfer

operator within each k sector,

|φk(B;A)〉 = Pk

( )
. (3.40)

As it has been observed by Haegeman et al. in [55], there is an additional gauge freedom

in the representation of the variational tensor B. Any two B’s which are related to each

other by

, (3.41)

generate the same quantum state (3.40). Now for every k, we want to find B’s such

that,

〈φk(B;A)|φk′(B′;A)〉 = 0 if k 6= k′ or B
(3.41)
6= B′

〈ψ(A)|φk(B;A)〉 = 0 ∀ k,
(3.42)

i.e., B is not related to B′ by (3.40) and every excited state should be orthogonal to the

fixed point |ψ(A)〉 of the transfer operator.

A remarkable insight made in [55] is to exploit the freedom in the representation of B

in order to construct a variational manifold where the constraints on B are implicitly
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satisfied. Consider D × dD matrix L

(3.43)

and let VL be an orthogonal projector onto the null space of L i.e.

= ID×D (3.44)

VL is a Dd× (D − 1)d matrix. Using these definitions, one can define a representation

of B on a restricted manifold which satisfy the constraints on B in (3.42).

, (3.45)

where X is an (D− 1)d×D matrix which contains the variational parameters. Further-

more, for any X the state |φk(B;A)〉 is orthogonal to |ψ(A)〉. Another nice feature of the

representation in (3.42) is that the norm of |φk(B;A)〉 is equal to 1 if X is normalized

since 〈φk(B;A)|φk(B;A)〉 = tr(X†X).

Given that we have a representation ofB in termsX which also satisfy all the constraints,

the problem can now be formalized as

λ(k) = max
X,tr(X†X)=1

〈φk(X;A)|T|φk(X;A)〉 , (3.46)

which can be reduced to the problem of diagonalizing an effective transfer matrix Teff .

Teff (k)Xi(k) = λi(k)Xi(k) , (3.47)

where each eigenvector of Teff lives in C
χ2D2

. Teff can be computed as a sum of three

terms

(3.48)

where the second and third term involve infinite geometric sums. Let

(3.49)
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then for k 6= 0, the geometric sums can be expressed as

∞∑

r=0

(
eik

F

)r
=
(
I− eik (F− |ρt)(ρb|)

)−1
+ |ρt)(ρb| , (3.50)

where the operator F is assumed to be rescaled such that its largest eigenvalue equal to

1. The substitution of last term |ρt)(ρb| in the (3.48) gives zero because of the gauge

which has been chosen to represent B. So the sum can be defined as

Hk :=
(
I− eik (F− |ρt)(ρb|)

)−1
(3.51)

In the case of k = 0, the infinite sum also contains divergent prefactor with |ρt)(ρb|
which again can be discarded due to the chosen gauge. So the definition in (3.51) holds

for every k. Using these definitions the sum can be expressed as

(3.52)

Although it is possible to compute the matrix Hk explicitly if the bond dimension is

very small, for a problem with large bond dimensions, the computation of inverse or

even the matrix
(
I− eik (F− |ρt)(ρb|)

)
is not feasible. An efficient approach is to reduce

the problem of finding a matrix to the problem of multiplying a vector with the matrix

(which is easier). Furthermore, the problem of finding an inverse can be reduced to the

problem of finding a solution for a linear system of equations and the system of linear

equations can be solved very efficiently by an iterative solver, for example by GMRES

method, or by a variant of Conjugate Gradient method.



Chapter 4

Anyon condensation and

topological phase transitions

The remarkable properties of topologically ordered systems which include topologically

degenerate ground states and existence of anyonic excitations remain intact against

the local effects of the environment [56–60]. It has been suggested that the stability

of these characteristics can be employed for building a reliable quantum computer [7].

The absence of the two related notions of local order parameter and symmetry breaking

in topologically ordered systems while on the one hand makes the problem of study-

ing topological phase transitions challenging, it also opens up the possibility of phase

diagrams with richer properties.

One approach to generalize the idea of order parameters for topologically ordered systems

is by using the framework of anyon condensation and anyon confinement [12, 61, 62].

The idea is to use the mutual distinguishability between different species of anyon and

their existence as a fundamental measure to characterize the topological order of the

quantum phase. We can start with a fundamental model having an underlying structure

(i.e., the virtual symmetry of local tensors in the tensor network framework), and the

set of anyons which are allowed to exist characterizes the topological order of the funda-

mental model. By doing operations (which keep the topological structure intact) on the

quantum states, it is possible to undergo phase transitions. Furthermore, each quantum

phase resulting from the phase transition has a unique set of anyons which are allowed

to exist in it. By studying the set of anyons and the condensation and confinement

pattern of anyons in a given topological phase, we can map the phase diagram of the

topological phases of quantum matter.

The framework of tensor networks provides a natural setting for analyzing the phenom-

ena of anyon condensation and confinement. Although the topological order is associated

37
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with the global properties of the system (e.g., topological degeneracy and long-range en-

tanglement), what has been observed quite remarkably is that the emergence of these

global properties is a manifestation of a certain structure in the local description [9–11].

The kind of topological order is dictated by the virtual symmetries of local tensors.

Moreover, the condensation and confinement of anyons in a given topological phase

is ultimately associated with the pattern of symmetry breaking in the fixed points of

the transfer operator. As a result, it is possible to use anyon condensation, and con-

finement as order parameters for topologically ordered systems and this approach is

capable enough to capture the universal features of quantum phase transitions between

topologically trivial and non-trivial phases.

This chapter has been organized as follows. In Sec. 4.1 we give an introduction to the

basic ideas and tools which will be crucial for the later studies. We also briefly review the

conventional ‘flux line’ (or loop pattern) interpretation of D (ZN ) quantum doubles, the

toric code, and the double semion model. In Sec. 4.2, we describe distinct topological

phases in terms of Z4-invariant tensors. In Sec. 4.3, we describe phase transitions

between topologically trivial and non-trivial phases of Z4-invariant tensors. In Sec. 4.4

we describe methods which are available from the framework of tensor networks for

studying topological phase transitions. In Sec. 4.5, we study the phase diagram of

Z4-invariant tensors. We summarize our results in Sec. 4.6.

4.1 Preliminary concepts

This section contains a primary introduction to the basic notions which will be important

for the later discussions.

4.1.1 Objects from the tensor network toolbox

Here we present the graphical notation for different objects in the framework of tensor

networks. These objects have already been discussed in the previous chapter, and the

intention here is to keep the content of the current chapter self-contained. The fun-

damental object which encodes the entanglement structure of many-body wavefunction

|ψ〉 is the on-site tensor A (Fig. 4.1a). The virtual and physical indices of the on-site

tensor A are denoted by vi and p respectively. By tracing out the virtual indices of the

local tensor, we get the many-body wavefunction |ψ[A]〉 (Fig. 4.1b) which is a global

object. Another object of interest for our purposes is the double tensor E which results

from contracting the physical indices of on-site tensor A with its conjugate. The double
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Figure 4.1: (a) The graphical notation of an on-site tensor A. (b) Tensor network
representation of a many body wavefunction. (c) Tensor network representation of the
wavefunction norm. (d) On-site transfer operator (or the double tensor) E is obtained
by contracting the physical indices of A and its conjugate. (e) Transfer operator T

obtained by blocking E tensors in one direction.

tensor can be viewed as a map between virtual spaces associated with ket and bra layer

(Fig. 4.1d).

Now to compute the expectation value of local observables and the norm of quantum

states, transfer operator T plays a central role. Transfer operator T can be obtained

by gluing double tensors in the horizontal or vertical direction. Although the transfer

operator can have a periodic structure, for our purposes in this chapter, we assume it

to be an infinite object that describes the system in the thermodynamic limit unless

mentioned otherwise.

4.1.2 Topological or virtual symmetries

The ‘virtual symmetries’ of local tensors dictate the kind of the topological order in the

underlying quantum state [9–11]. An on-site tensor is matrix product operator (MPO)-

invariant if one can pull through the action of the MPO on the virtual legs of tensor

A.

= , (4.1)

where the solid red squares denote local tensors of MPO. For our purposes in this

chapter, we will focus on G-invariant tensors where the MPO is product operator with

point group action. Furthermore, we will restrict ourselves to the cyclic groups of order

N .

If we consider a ZN -invariant tensor A as a map from virtual to the physical space and if

the map is injective on ZN invariant subspace than A is called ZN -injective. Besides, the

ZN -injective tensor is called ZN -isometric if it also acts as an isometry. The canonical

approach to construct ZN -isometric tensor involves taking a symmetric sum over the
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elements of the ZN .

AD (ZN ) =
N−1∑

g=0

Xg ⊗Xg ⊗Xg† ⊗Xg† , (4.2)

where the symmetrized sum enforces the constraint defined by (4.1), Xg :=
∑N−1

i=0 |i+ g〉〈i|
and X is the generator of ZN with regular representation. The construction works in

any unitary representation, but for our purposes, we will assume X to be a regular rep-

resentation of ZN unless mentioned otherwise. The subscript D (ZN ) of on-site tensor

A on LHS highlights the fact that ZN -isometric tensors provide a natural description

for the ground states of D (ZN ) quantum doubles.

4.1.3 Tensor network construction of anyonic excitations

The different anyonic particles of a topological model can be labeled by the conjugacy

classes and the irreducible representations (irreps) of the symmetry group [7]. In the

case of ZN , the conjugacy classes are just the group elements. Anyons labeled with a

non-trivial conjugacy class but with a trivial irrep represent the presence of a flux line in

the anyonic vacuum and two violations of Gauss law at the endpoints of flux line which

corresponds to a pair of anyonic excitations. In the framework of tensor networks, flux

lines can be created by acting with the string operator XgXg...Xg, where g is an element

of ZN , on the virtual indices of the tensor network [9]. If the tensor network description

of on-site tensors is given in terms of ZN -invariant tensors, than (4.1) ensures that the

presence of flux line in the quantum vacuum cannot be detected anywhere except at the

endpoints. Anyons labeled with a trivial conjugacy class but with a non-trivial irrep

represent charged anyons, and they can be created by acting with Zα :=
∑N−1

i=0 αi|i〉〈i|,
where α denotes an irrep of ZN , on the virtual edge. We can also create a bound state

of flux and charged anyons by composing the string and irrep action.

Given a tensor network description of the quantum vacuum on an infinite plane, we

can extend the ends of Xg string to be infinitely far apart and treat the open ends as

individual anyons with the string attached. The anyonic excitation can be represented

graphically as,

= |g, α〉, (4.3)
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where the red squares on the red string denote, Xg and the blue square represents Zα.

We will write anyonic vacuum as |0, 1〉, where g = 0 represents the identity element of

ZN and α = 1 denotes the trivial irrep.

4.1.4 Condensation and confinement of anyons

In the preceding subsection, we have described the tensor network construction of any-

onic excitations in terms of string operators which act solely on the entanglement degrees

of the tensor network. Now the deformations on local tensors which keep the virtual

symmetries intact (i.e., the action on the physical indices of on-site tensors) can induce

quantum phase transitions. Since the excitation operators act on virtual indices, their

behavior remains well-defined irrespective of the action of deformation on the physical

indices. The collective action of these excitation operators can be used to label not only

the topological phase of D (ZN ) quantum double but also the topological phases which

can be induced from it. Condensation and confinement of anyons provide an approach

to summarize the behavior of anyonic excitations [12]. Here we give a review of the two

notions, a detailed account of anyon condensation and confinement in the context of

tensor networks is given in [63].

Condensation of anyons refers to the fact that in certain topological phases resulting from

quantum phase transitions, it is not possible to distinguish certain species of anyons from

the quantum vacuum, i.e., the actions which lead to the creation of anyons act trivially

on the vacuum state in the anyon condensed phase. As the system is tuned from one

topological phase to another, operators corresponding to certain anyons act trivially on

the vacuum (ground state). More precisely, we say an anyon |g, α〉 has been condensed

to the vacuum |0, 1〉 if

〈0, 1|g, α〉 6= 0. (4.4)

On the other hand, anyon confinement refers to the existence of certain anyonic species

in a given topological phase where it is not possible to separate some pair of anyons

attached by the string and treat them individually, i.e., these anyons are confined. An

anyon is confined if

〈g, α|g, α〉 = 0. (4.5)

The graphical representations of the two overlaps 〈0, 1|g, α〉 and 〈g, α|g, α〉 which are

relevant for computing the condensation and confinement of anyon |g, α〉 are given in

Fig. 4.2.

One of the most crucial aspects of critical systems is that they exhibit universality. The

qualitative behavior of the macroscopic quantities of different critical systems shares
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Figure 4.2: Graphical representation of wavefunctions overlaps in the thermodynamic
limit. (a) Overlap quantify the condensation of anyon |g, α〉 (bra layer) to the vacuum
〈0, 1| (ket layer). (b) Overlap quantify the confinement fraction of anyon |g, α〉.

common features in the vicinity of phase transitions. This commonality in the behavior

points to a more deep structure which is independent of microscopic details, and the

condensation and confinement of anyons is a way to capture this structure for the phase

transitions involving topological phases. Each topological phase (trivial/non-trivial)

can be identified with a distinct pattern of anyon condensation and confinement, and we

can use them as a probe to extract universal features of topological phase transitions.

Instead of treating the condensation and confinement as an absolute property (all or

nothing) without being partial, we can quantify them by their corresponding fractions.

Remarkably, the behavior of certain fractions along the phase transition is analogous

to that of ‘local order parameter’, and they can be used as a robust tool which is more

capable of characterizing different phase transitions.

The main quantity of interest for our purposes is the overlap 〈g′, α′|g, α〉 of two wave-

functions, where the condensation and confinement fractions can be given by overlaps

of the form 〈0, 1|g, α〉 and 〈g, α|g, α〉 respectively. In general, the overlap 〈g′, α′|g, α〉
quantifies how much the quantum state with anyon |g, α〉 is indistinguishable from the

anyon |g′, α′〉 and the value of 1 characterizes complete indistinguishably (assuming that

the wavefunctions are normalized). Furthermore, the anyon table enables a way to

graphically represent the unique condensation and confinement pattern of anyons of a

topological phase.

Figure 4.3: Anyon table of a topological phase. ω = e2πi/N and the black dot in entry(
1, ω1

)
indicates that 〈1, ω|1, ω〉 = 1. Absence of a black dot in entry

(
1, ω0

)
shows

confinement (e.g., 〈1, 1|1, 1〉 = 0). Solid line between entry
(
0, ω0

)
and

(
2, ω2

)
shows

the condensation of anyon
∣∣2, ω2

〉
to the vacuum |0, 1〉.
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Existence(absence) of the black dot ( ) for an entry (g, α) indicate the existence(absence

or confinement) of anyon |g, α〉 in the model. Solid line between the entry (g, α) and

(g′, α′) shows that overlap 〈g, α|g′, α′〉 is 1 up to normalization. Note that the number

(#black dots + 2#dashed lines) is same for every anyon table in the framework irrespec-

tive of the topological phase.

4.1.5 Connection between the phases at the boundary and the bulk

The topological structure of on-site tensors is also carried by the transfer operator. If

the on-site tensor A is ZN -invariant, then the transfer operator comprised of the chain

of double tensors is invariant under the action of the group ZN ×ZN and it satisfies the

following commutation relations [44].

[
T, (X ⊗ I)⊗L

]
=
[
T, (I⊗X)⊗L

]
= 0. (4.6)

Where L→∞ as T is an infinite object and X is the generator of ZN .

The behavior of transfer operators is of fundamental importance to understand the

behavior of topological phases and phase transitions [13, 44]. The ZN × ZN symmetry

of transfer operator is preserved by the deformation on the physical indices of on-site

tensors. Let (l| and |r) be the left and right fixed points of the transfer operator such

that T |r) = λ0 |r) and (l|T = λ0 (l| (Fig. 4.4a). Then the fixed points of the transfer

operator can break or reduce the symmetry of transfer operator (Fig. 4.4b) . It is

important to note that in Fig. 4.4a, due to the gauge freedom, equality only holds for

the fixed points and not for the local MPS tensors.

It has been observed in [63] that the different instances of symmetry breaking in the

fixed points of the transfer operator are directly related to the condensation and confine-

ment pattern of anyons in the topological bulk. The connection between the symmetry

breaking in the fixed points of the transfer operator and the condensation and confine-

ment patterns of anyons can be used to label different topological phases realized by

|ψ[A]〉. The 1D boundary phase associated with the fixed points of the transfer operator

is characterized by the symmetries of the fixed points. The condensation and confine-

ment pattern of anyon is related to the expectation value of string order parameter in

the boundary phase,

〈g′, α′|g, α〉 =
(l|[[g′, α′]]⊗ [[g, α]]|r)

(l|r) . (4.7)

[[g, α]] := (...XgXgZα) and [[g′, α′]] :=
(
...Xg′

Xg′
Zα′

)
act on the bra and ket indices of

fixed points respectively (Fig. 4.4b). We will assume that the endpoints of semi-infinite

strings (...XgXgZα) and (...Xg′
Xg′

Zα′) in 〈g′, α′|g, α〉 lie at the same location.
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Figure 4.4: (a) Matrix product state (MPS) representation for the left and right fixed
points of the transfer operator. The yellow lines indicate the virtual indices of local
MPS tensors. (b) Symmetry action given by the Kronecker product of light and dark
red string gets absorbed by the fixed points. (c) Mapping of an overlap of anyonic
wavefunctions to the expectation value of string order parameter.

4.1.6 Topological phases

We briefly review distinct topological phases before studying them in the unified frame-

work of Z4 invariant tensors.

D (ZN ) quantum double

D (ZN ) quantum doubles (QD) are higher-order generalizations of Kiteav’s D (Z2) toric

code [7]. The model can be defined on the hexagonal lattice where the Hamiltonian has

the form

HZN
= −

∑

vertices

−
∑

plaquettes

(4.8)

We define := X and := Z. X and Z are the generators of the cyclic group

ZN and the two are related to each other by the Fourier transform (i.e., X = HZH†)

and satisfy the following relation,

ZX − exp (2πi/N)XZ = 0 (4.9)

HZN
has a particular property that it is an example of frustration-free Hamiltonian (i.e.,

the ground state of the Hamiltonian is also the ground state of each local term in the

Hamiltonian).

Every site on each edge of the honeycomb lives in the N dimensional Hilbert space with

basis vectors |0〉 , |1〉 , ..., |N − 1〉. The basis vectors can label different flux lines from

0..N − 1. The vertex terms in (4.8) enforce Gauss Law. In the ground state manifold,

the net flux around each vertex is zero. The constraint imposed by the vertex terms in

(4.8) on a unit cell of hexagonal lattice can be summarized as follows

i+ j − l −m = 0 (mod N) ,

i j

ml
ki

j
k
l
m (4.10)
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To summarize, the vertex terms in (4.8) put a restraint on the possible configurations

in the ground state manifold, and the plaquette terms create the resonance between

different configurations up to the charge (also called parity for Z2) of the sector. The

resulting ground state is a superposition of all the configurations within the charge

sector.

Toric code model

The ground state of the Kiteav’s D (Z2) QD is an equal weight superposition of closed

loop configurations. A tensor network representation of the ground state was described

in Sec. 2.4. The parity constraints of closed loop patterns ensure that the on-site tensors

have Z2 symmetry. Here, we enlarge the bond dimension of local virtual spaces from two

to four and give two tensor network descriptions of toric code in the form of Z4-invariant

tensors.

The first construction of the toric code involves the embedding of loop patterns in two

dimensional subspace while discarding the rest. The pictorial description of the on-site

tensor is given in Fig. 4.5. The on-site tensor is invariant under Z4 action on the virtual

indices.

 

Figure 4.5: Solid circles represent the physical index. Blue (black) circles on the
edges specify the presence (absence) of string. Virtual indices and the labels for sites
with and without strings are indicated at the lower left corner. The on-site tensor A
can be interpreted as the sum of all the configurations above.

There exists another way to embed the toric code wavefunction in the four dimensional

space. The idea is to use two copies of closed loop patterns and fully exploit the four

dimensional virtual space. The resulting description of the on-site tensors is given in

Fig. 4.6.

Double semion model

Closely related to the toric code is the double semion model. The ground state of the

double semion model is characterized by the superposition of possible loop patterns

where in contrast to the toric code model, configurations with an odd number of closed

loops are weighted by −1 [19, 64].
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c



 



-1

1

-1

1

Figure 4.6: Solid circles represent the physical index. Blue(black) circles on the
edges specify the presence(absence) of string. Virtual indices with labels for possible
configurations are shown at the top and bottom of first two columns. Straight and
wiggly lines represent two decoupled copies of toric code at the virtual level. Amplitudes
in the last two columns have been adjusted from 1 to −1 to keep Z4 invariance.

The tensor network of the double semion model on the honeycomb can be given by

assigning an Ising (color) variable to each hexagon and by interpreting strings as the

difference of color on two sides. The weighting factors can be calculated by assigning

appropriate amplitudes to configurations in local tensor (Fig. 4.7). The virtual symme-

try of the resulting tensor is given by X = σx ⊕ iσx, where σx is spin-1/2 Pauli matrix.









-1 -1

1 1

Figure 4.7: Sum of configurations in the two rows gives double semion model. Solid
circles represent the physical index. Blue(black) circles on the edges specify the pres-
ence(absence) of string for the double semion model. Labels {0, 1, 2, 3} at the top and
bottom of the first two columns give the encoding of strings and vacuum at the virtual
level for the double semion model. Group action on the virtual indices switches between
the pair of matrix elements in each column.

4.2 Topological phases of Z4-invariant tensors

We now describe the tensor network constructions for the renormalization group (RG)

fixed points of topological phases which can be realized by Z4-invariant tensors. It

is important to note that the form of local tensor which we use for describing the

RG fixed point of a topological phase is motivated by the symmetry properties of the
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Figure 4.8: Patterns of symmetry breaking in the fixed points of the transfer opera-
tor. Each node corresponds to a topologically trivial/non-trivial phase of Z4-invariant
tensors. Arrowheads point in the direction of reduced symmetry. The description of
MPO projectors is given in the text.

transfer operator’s fixed points, i.e., by using these local tensor constructions, we can

explicitly derive the fixed points of the transfer operator. Furthermore, we discuss the

condensation and confinement pattern of anyons in distinct topological phases.

Patterns of symmetry breaking and topologically trivial/non-trivial phases which can

be realized in the case of ZN -invariant tensors have been studied in [63]. In the case

of Z4-invariant tensors, the partition of different phases and the symmetry properties

of their fixed points are given in Fig. 4.8, where the symmetry group of each node

(topological phase) is Zi ⊠ Zj
∼= Zi × Zj . The use of ⊠ instead of × is to emphasize

the structure of group actions which define the symmetry. For example, Z4 in Z4 ⊠ Z2

consists of diagonal elements of the form (X,X) and the generator of Z2 is
(
I, X2

)
. X2

in the action
(
I, X2

)
acts on the bra and I on the ket layer of fixed points.

Now, for a systematic application of ideas, we study a class of topological phases which

could be realized in terms of tensors with a certain underlying symmetry namely the

Z4-invariant tensors [9]. Other than providing a description of quantum doubles which

include D (Z4), D (Z2), and D (Z1), the class of Z4-invariant tensors is rich enough to

encode a twisted quantum double Dt (Z2) which is also known as the double semion

model. Both the D (Z2) quantum double which we refer to as toric code and the double

semion model can be obtained from D (Z4) quantum double by applying continuous

deformations. Furthermore, the application of the ideas of anyon condensation and

confinement enables us not only to study the toric code and double semion model in

a unified manner, but this approach also allows us to sketch the phase diagram of all

phases which could be modeled by Z4-invariant tensors.
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4.2.1 D (Z4) quantum double

D (Z4) quantum double (QD) is a topological model which can be realized on an oriented

lattice where at each edge there exists a flux line labeled {0, 1, 2, 3}, and the conservation

of flux is enforced on each vertex, i.e.,

i j

ml
k

r
r

r
r

, r1 + r2 − r3 − r4 = 0 (mod 4). (4.11)

The tensor network description of D (Z4) QD can be given by Z4-isometric tensor as

defined in (4.2). We begin by writing down the on-site tensor for the ground state of

D (Z4) QD as an MPO.

,
b

a
= δabX

a (4.12)

and a, b ∈ {0, 1, 2, 3}. The black ring in (4.12) is another graphical representation of

local tensor given in Fig. 4.1a. Open ends on the inside (outside) of ring denote the

physical ri (virtual vi) indices of on-site tensor. X is the generator of Z4 and the white

color of solid circles indicates Hermitian conjugate.

The construction in (4.12) can be motivated from a physical point of view by considering

X as a generator of Z4 with diagonal representation. Then the constraints on flux at

each vertex can be modeled very naturally in terms of local tensors. Each entry of on-site

tensor is non-zero if (4.11) is satisfied, i.e.,

=





1 v1 + v2 − v3 − v4 = 0 (mod 4), ri = vi

0 otherwise
, (4.13)

where indices ri, vi ∈ {0, 1, 2, 3}. Blocking of on-site tensors while contracting the virtual

indices leads to the superposition of all the configurations having zero net flux through

every vertex.

Now, we construct the fixed points of the transfer operator at the RG fixed point of

D (Z4) QD. Before proceeding further, we note that with the properly chosen normal-

ization factor, the MPO in (4.12) squares to itself. Furthermore, the MPO is also

Hermitian, so it leads to the on-site transfer operator (Fig. 4.1d) with same representa-

tion as (4.12). The fixed points of the transfer operator and their symmetry properties

can be deduced by using the following property of MPO tensors.

= , (4.14)
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The RHS acts like a δ-tensor, and it is equal to zero except for the diagonal entries.

Using (4.14), we can write the transfer operator for the ground state of D (Z4) QD as

= (4.15)

δ-tensors between sites sync-up the entries and the transfer operator can be written as

a sum of four product operators.

T =
3∑

g=0

(
Xg ⊗Xg†

)⊗Nv

, (4.16)

where Nv →∞ in the thermodynamic limit. By rewriting the entries in the sum, we can

show that the following four product states are the fixed points of the transfer operator.

(Xg)⊗Nv , where g ∈ {0, 1, 2, 3}. (4.17)

We will write the fixed points (which are pure states) of the transfer operator for con-

venience as a density matrix by flipping the ket index of fixed points. Each of the fixed

point of the transfer operator in (4.17) breaks Z4⊠Z4 symmetry of the transfer operator

down to Z4 ⊠ Z1. They are invariant under the diagonal action (X,X) on the bra and

ket layer. It is also important to note a correspondence between the symmetry broken

fixed points of the transfer operator and the different blocks in the local tensor network

description of the RG fixed point. The MPO tensor in (4.12) contains four independent

blocks, and each block can be identified with one of the fixed points of the transfer

operator in (4.17).

The behavior of operators which act trivially (up to a phase factor) on the fixed points

of the transfer operator can be explained by their action on local tensors.

, (4.18)

where φ is an additional phase factor whose exact value depend on the fixed point and

the charge label α. The yellow tensor denotes a fixed point of the transfer operator

(Fig. 4.4a). Using (4.18) we can deduce that none of the possible anyons are confined

in D (Z4) QD phase. Moreover, actions of the form (Xg1 , Xg2) or (Zα1 , Zα2), where

g1 6= g2 and α1 6= α2, on the local tensors of fixed points generate blocks which lead

to orthogonal states, so none of the flux or charge anyon are condensed in D (Z4) QD

phase. Condensation and confinement pattern of anyons at the RG fixed point of D (Z4)
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QD phase can be summarized as

〈g′, α′|g, α〉 =





1 g′ = g, α′ = α

0 otherwise.

The overlap is non-zero only if it is associated with a confinement fraction.

4.2.2 Toric code model

We described in Sec. 4.1.6 two different embeddings of the toric code (TC) model (i.e.,

the ground state of D (Z2) QD) by using Z4-invariant tensors. The two realizations

of the toric code model enforce different patterns of symmetry breaking for the fixed

points of the transfer operator. In one case, the fixed points of the transfer operator

have Z4 ⊠ Z2 symmetry whereas in the other the fixed points of the transfer operator

break Z4 ⊠ Z4 symmetry to Z2 ⊠ Z1.

In the following, we first give the tensor network constructions of the two toric codes by

using MPO projectors and the action of two different MPO projectors on the physical

indices of D (Z4) QD gives the two toric codes.

Z4 ⊠ Z2 Toric code

An action which is given by projector,
(
I +X2

)⊗4
, on the local tensors of D (Z4) QD

yields a tensor for the RG fixed point of the TC phase where the fixed points of the

transfer operator have Z4 ⊠ Z2 symmetry.

, = I +X2. (4.19)

The action of red bubbles on the black ring gives two independent blocks, and the

resulting tensor can be written as an MPO with bond dimension two.

= , = δabX
a
(
I +X2

)
, (4.20)

and a, b ∈ {0, 1}. The intuition behind (4.20) as the tensor network description for the

RG fixed point of TC phase can be understood from the following equivalence

= δab (|+〉〈+|⊗σa
x) , (4.21)
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where a, b ∈ {0, 1} and σx is the generator of Z2. Z4 ⊠ Z2 TC can be viewed as an

extension of D (Z2) QD with an ancilla qubit.

The on-site transfer operator of Z4 ⊠ Z2 TC also satisfies the ‘delta’ relation as given

in (4.14) and each of the two blocks in (4.20) can be identified with a symmetry broken

fixed point of the transfer operator. Fixed points of the transfer operator can be written

as product states of the form

(
I +X2

)⊗Nv

,
(
X +X3

)⊗Nv

as Nv →∞, (4.22)

Each of the fixed points is invariant under the (X,X) action on the bra and ket indices.

An Action of the form
(
I, X2

)
also leaves the fixed points invariant. Both (X,X) and

(
I, X2

)
generate Z4 ⊠ Z2. The action of the elements of Z4 ⊠ Z2 on the local tensors of

the fixed points can be summarized as follows

, (4.23)

where φ is a phase factor with a value which depends on the fixed point. Using (4.23),

we can derive the condensation and confinement pattern of anyons at the RG fixed point

of Z4 ⊠ Z2 TC phase.

〈g′, α′|g, α〉 =





1 g′ = g (mod 2), α′ = α = 1 or − 1

0 otherwise,

where g, g′ represent the conjugacy classes (group elements) of Z4 while α, α′ are the

irreps.

Z2 ⊠ Z1 Toric code

The tensor network description of the other toric code in the framework of Z4-invariant

tensors can be obtained by applying projection on the dual basis. In contrast to Z4 ⊠Z2

TC, the projection in the dual basis reduces the symmetry of fixed points of the transfer

operator to Z2 ⊠ Z1, and the largest eigenvector subspace of the transfer operator is

spanned by eight symmetry broken fixed points. An action of the form
(
I + Z2

)⊗4
+

(
I− Z2

)⊗4
on the local tensor of D (Z4) QD generates an MPO with eight blocks.

,
a

b
= δab

(
I + (−1)aZ2

)
, (4.24)

a, b ∈ {0, 1}, and Z := Z1.
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The on-site transfer operator of Z2 ⊠ Z1 TC also satisfy the ‘delta’ relation similar to

(4.14) and each block can be identified with one of the symmetry broken fixed points of

the transfer operator. The fixed points of the transfer operator are

(
Xa

(
I + (−1)bZ2

))⊗Nv

, (4.25)

where a ∈ {0, 1, 2, 3} and b ∈ {0, 1}. The fixed points of Z2 ⊠ Z1 TC remain invariant

under actions of the form

. (4.26)

Overlap of anyonic wavefunctions which summarize the condensation and confinement

pattern of anyon at the RG fixed point of Z2 ⊠ Z1 TC phase are

〈g′, α′|g, α〉 =





1 g′ = g = 0 or 2, α′ = (−1)aα

0 otherwise,

where a ∈ {0, 1}.

4.2.3 Double semion model

Double semion (DS) model as discussed earlier in Sec. 4.1.6 describes a twisted Dt (Z2)

QD and while being simple, it has no tensor network description in terms of Z2-invariant

tensors and the simplest un-twisted description requires Z4-invariance [65]. Fixed points

of the transfer operator in the case of the DS model have been determined to have

Z4 ⊠ Z2 symmetry [63]. Although the fixed points have the same symmetry as in the

case of Z4 ⊠ Z2 TC, a defining feature of the DS model is the boundary phase with

non-local string order parameter. The local tensor of the DS model can be constructed

by applying an MPO projector on D (Z4) QD.

, =
(
X2
)a(

Z2
)a+b

, (4.27)

and a ∈ {0, 1}. Arrowheads in the ring point in the direction of index b. The form of DS

MPO projector (green tensor) is motivated by the fact that this construction enables

us to retrieve the fixed points of the transfer operator directly from the local tensor

description, in keeping with the spirit of previous constructions. The composition of

D (Z4) QD (black ring) and Z4 ⊠ Z2 DS (green ring) projector gives an MPO with two

independent blocks and each block has a dimension of two. It should be emphasized

here that the construction which is given in (4.27) can be mapped to the ‘canonical’
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description of the double semion model in terms of loop patterns by transforming on-site

tensors by local unitaries (see Sec. 4.1.6). Furthermore, the tensor network description

of the double semion model breaks the lattice symmetries. This can be seen from the

following decomposition of the DS projector.

=
(
IIII + IIZ2Z2

) (
IIII +

(
X2Z2

) (
X2Z2

)
II

) (
IIII + IZ2

(
X2Z2

)
I

)
(4.28)

Blocking of the on-site transfer operators of Z4 ⊠ Z2 DS model results in a δ-tensor,

similar to the case of D (Z4) QD in (4.14) but with an additional structure. Fixed

points of DS model which breaks the Z4 ⊠ Z4 symmetry of the transfer operator down

to Z4 ⊠ Z2 can be identified with independent blocks in (4.27), we can write the MPS

tensors for the fixed points of the transfer operator as

= = Xi
(
X2
)a(

Z2
)a+b

, (4.29)

where i ∈ {0, 1} and the green line has bond dimension 2. Fixed points in the case of

the DS model cannot be written as the product states. Symmetry actions of the form

(Xg, Xg) and
(
X0, X2

)
on the physical indices can be absorbed only by non-trivial action

on the ‘virtual’ indices of fixed points, which leads to the fact that the boundary phase

of the DS model can only be characterized by string order parameter
(
...III, ...X2X2Z2

)

in contrast to the local order parameter in boundary phase of Z4⊠Z2 TC. The boundary

phase of the DS model has symmetry protected topological (SPT) order. The existence

of a string order parameter can be explained by the following properties of fixed point

local tensors.

, (4.30)

where σx and σz are the Pauli matrices and φ is an additional phase factor. Using (4.30),

we can derive the condensation and confinement properties at the RG fixed point of DS

phase. Let a ∈ {0, 1} then the overlap of anyonic wavefunctions can be written as

〈g′, α′|g, α〉 =





1 g′ = g = a (mod 2),

α ∈ {ia,−ia}, α′ = i(g−g′)α

0 otherwise,



Anyon condensation and topological phase transitions 54

4.2.4 Topologically trivial phases

Although topologically trivial phases (TP) do not support the existence of non-trivial

anyons, it is possible to realize trivial phases with boundary phases having distinct

symmetries. Each trivial phase is characterized by a unique set of anyons which are

condensed.

Z4 ⊠ Z4 Trivial phase

Z4⊠Z4 TP can be obtained by applying a projector
(
I +X +X2 +X3

)⊗4
on the physical

indices of D (Z4) QD. The action leads to the collapsing of four blocks in the MPO tensor

of D (Z4) QD into a single block. Since the fixed point is unique, it inherits all the

symmetries of the transfer operator and it is invariant under Z4 ⊠ Z4. A manifestation

of Z4 ⊠ Z4 symmetry is the condensation of all the flux anyons. Condensation and

confinement properties of anyons in the Z4 ⊠ Z4 TP can be summarized as

〈g′, α′|g, α〉 =





1 α′ = α = 1

0 otherwise.

Z2 ⊠ Z2 Trivial phase

There exists a topologically trivial phase where the fixed points of the transfer operator

break all but the Z2 ⊠ Z2 symmetry. The Z2 ⊠ Z2 symmetry action on the bra and ket

indices is given by the generators
(
X2, X2

)
and

(
I, X2

)
. The RG fixed point of Z2 ⊠ Z2

TP can be written as

, = δab

(
I +X2

) (
I + (−1)aZ2

)
, (4.31)

where a =∈ {0, 1}. MPO projector (brown ring) acts on the local tensor of D (Z4) QD

(black ring) . Four fixed points of the transfer operator in Z2 ⊠ Z2 TP are as follows

((
I +X2

) (
I + Z2

))⊗Nv

,
((
X +X3

) (
I + Z2

))⊗Nv

,
((

I +X2
) (

I− Z2
))⊗Nv

,
((
X +X3

) (
I− Z2

))⊗Nv

.
(4.32)

Furthermore, the condensation and confinement pattern of anyons in Z2 ⊠ Z2 TP can

be given by

〈g′, α′|g, α〉 =





1 g, g′ ∈ {0, 2}, α′, α ∈ {1,−1}

0 otherwise.
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Z1 ⊠ Z1 Trivial phase

A completely symmetry broken trivial phase is obtained by acting with an MPO pro-

jector with bond dimension 4.

, = δab

3∑

j=0

(iaZ)j , (4.33)

where a, b ∈ {0, 1, 2, 3}. The effective MPO which is obtained by composing black and

violet rings has bond dimension 16 and the local tensors of it contain 16 blocks each

leading to one of the symmetry broken fixed point.

Z1 ⊠ Z1 TP only supports the existence of charge excitations which are condensed.

〈g′, α′|g, α〉 =





1 g = g′ = 0

0 otherwise.

4.3 Modeling of phase transitions between the phases of

Z4-invariant tensors

Phases with distinct topological orders defined earlier in the context of Z4-invariant

tensors set a playing field where these phases can be deformed and allow for different

excursions in the phase diagram. In this section, we develop an intuitive picture for

different manipulations on local tensors. These continuous actions enable us to explore

the behavior of many-body systems at the interface of different topological (trivial/non-

trivial) phases, where their boundaries meet.

On an abstract level, we can label the mechanisms of different phase transitions which

we study here as local filtering and effective linear interpolations. In the following, we

will give a detailed account of the two. Results regarding the universal features of the

phase transitions which we describe here are presented in Sec. 4.4 and 4.5.

4.3.1 Local filtering operations

The idea of local filtering operations was introduced in [66] and it was later adopted

in [67] for their applications in tensor networks. Their action on local tensors (which

corresponds to an additional field in parent Hamiltonian) effectively emulates a filtering

of different strings. When applied to the ground state of D (Z2) QD, it penalizes strings

which form closed loops and drives the system into a topologically trivial phase [66]. The
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goal here is to construct filtering operations which could be applied in a more general

setting, and these operations should enable the realization of different projections in the

limiting case as a function of some parameter. It is important to be emphasized that

the form of different deformations which we construct here is partially motivated by the

analytic rigor or closed form solutions one could obtain from them without affecting the

universal features of the underlying phase transition.

The order of discussion is in the same spirit as Fig. 4.8. We begin by discussing string

tensions which connect D (Z4) QD to TCs and DS model. Next, we describe filtering

operations which govern the phase transitions from TCs and DS model to trivial phases.

D (Z4) QD and Z4 ⊠ Z2 TC

A defining feature of D (Z4) QD is the possibility of four different flux lines at each site in

contrast to the TC and DS model which have only two. It is obvious to consider a local

filtering which amplifies (or restricts) the amplitude of certain flux lines. And indeed,

the approach does give a direct phase transition between D (Z4) QD and Z4 ⊠ Z2 TC.

To understand the action, it is more lucid to consider X with diagonal representation.

An action of the form exp
(
θTCX

2
)

= diag
(
eθTC , e−θTC , eθTC , e−θTC

)
on the physical

legs of D (Z4) QD will amplify flux lines 0 and 2, while suppressing lines 1 and 3. Since

exp
(
θTCX

2
)

= cosh θTC I + sinh θTC X2, for large values of θTC the deformation acts

effectively as a projector of the form
(
I +X2

)
. Furthermore, the behavior is independent

of how one chooses to represent X.

, where = exp(θTCX
2). (4.34)

At θTC = 0, the deformation acts trivially, whereas at θTC = ∞, the system is in

Z4 ⊠ Z2 TC phase. The phase transition can be understood in terms of spontaneous

symmetry breaking from a symmetry broken phase (the fixed points of the transfer

operator in D (Z4) QD are not invariant under
(
I, X2

)
action) to a ‘disordered’ phase

(the fixed points in Z4 ⊠ Z2 TC phase are invariant under
(
I, X2

)
action) where a

symmetry has been restored. Moreover, it is possible to modify local tensors such that

the transfer operator is no longer invariant under the action
(
I, X2

)
on its virtual legs.

This corresponds to adding an external field which explicitly breaks the symmetry and

it can be implemented by adding an action := diag(1 + h, 1 − h, 1 − h, 1 + h)

on the virtual legs of D (Z4) QD tensor.

(4.35)
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Later in Sec. 4.5.1, we will study the response of order parameters (condensation and

confinement fractions) to an external field and the further insights which it reveals about

the nature of the phase transition.

D (Z4) QD and Z2 ⊠ Z1 TC

Now, to get D (Z4) QD ↔ Z2 ⊠ Z1 TC phase transition, it is natural to apply string

tension on the dual basis.

, where
a

b
= δab exp

(
(−1)aθTC,Z2Z

2
)

(4.36)

and a, b ∈ {0, 1}. For θTC,Z2 =∞, blue ring acts as a projector
(
I + Z2

)⊗4
+
(
I− Z2

)⊗4
,

whose action on D (Z4) QD (black ring) gives eight blocks, and each block can be

identified with one of the symmetry broken fixed point of the transfer operator. The

phase transition can be understood as a spontaneous reduction in the symmetry of the

fixed points from Z4 ⊠Z1 down to Z2 ⊠Z1, while the transfer operator remains Z4 ⊠Z4

invariant.

D (Z4) QD and Z4 ⊠ Z2 DS

The action of deformations (4.34) and (4.36), on D (Z4) QD in the limiting case give

Z4 ⊠Z2 TC and Z2 ⊠Z1 TC respectively. Using the same insight, it is possible to derive

D (Z4) QD ↔ Z4 ⊠ Z2 DS phase transition by acting with string tension on the virtual

indices of DS MPO projector as defined in (4.27).

, where =
(
X2
)a(

Z2
)a+b

(4.37)

and = diag(cosh 1
2θDS, sinh 1

2θDS). At θDS = 0, = |0〉 〈0|, and whole ring

acts trivially, whereas for θDS ≫ 0, = I2 and the green ring acts to give DS

phase.

D (Z4) QD and topological phase transitions

We have described how one can deform D (Z4) QD down to TCs in (4.34) and (4.36),

and down to the DS model in (4.37). The red, blue, and green deformations all commute

with each other. Moreover, they also commute with D (Z4) QD tensor (black ring). So,
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it is possible to compose them in a way which allows for more exotic phase transitions.

, (4.38)

where red, blue and green tensors have the same definitions as given in (4.34), (4.36),

and (4.37) respectively. The deformation given by the total action of red, blue and

green tensors is parametrized by θ := (θTC, θTC,Z2 , θDS). The qualitative behavior of

the composite deformation can be understood from its extremal properties.

At θ = (0, 0, 0), each of the three deformations act trivially and the local tensor describe

the RG fixed point of D (Z4) QD. At the axes endpoints

• θ = (∞, 0, 0), deformations corresponding to Z2 ⊠ Z1 TC (blue ring) and Z4 ⊠ Z2

DS (green ring) act trivially. Red bubbles act as a projector
(
I +X2

)⊗4
and the

whole deformation acts to give the RG fixed point of Z4 ⊠ Z2 TC.

• θ = (0,∞, 0), only the deformation corresponding to Z2⊠Z1 TC acts non-trivially

on D (Z4) QD to realize the RG fixed point of Z2 ⊠ Z1 TC.

• θ = (0, 0,∞), the deformation acts to realize the RG fixed of Z4 ⊠ Z2 DS model.

Compositions of any of the two or all the three projectors corresponding to Z4 ⊠Z2 TC,

Z2 ⊠ Z1 TC, and Z4 ⊠ Z2 DS model give the RG fixed point of Z2 ⊠ Z2 TP.

Z4 ⊠ Z2 TC and topologically trivial phases

Z4⊠Z2 TC can be further deformed into Z4⊠Z4 or Z2⊠Z2 TP by enhancing or reducing

the symmetry of the transfer operator fixed points. The phase diagram of Z4 ⊠ Z2 TC

can be characterized by a deformation parametrized by two parameters.

, where = δab
1

2

[
cosh θ1

(
I +X2

)
+

sinh θ1

(
X +X3

)]
exp

(
(−1)aθ2Z

2
)
, (4.39)

a, b ∈ {0, 1} and the black ring represents the local tensor of D (Z4) QD. The extremal

properties of the deformation are as follows:

• At (θ1, θ2) = (0, 0), the orange ring acts as a projector on the local tensor of D (Z4)

QD and gives the RG fixed point of Z4 ⊠ Z2 TC.
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• At (θ1, θ2) = (∞, 0), cosh θ1 = sinh θ1 and we get Z4 ⊠ Z4 TP, where the fixed

point of the transfer operator is unique.

• At (θ1, θ2) = (0,∞), the deformation acts as a projector to give a tensor network

representation for the RG fixed point of Z2 ⊠ Z2 TP.

Z2 ⊠ Z1 TC and topologically trivial phases

In the case of Z2⊠Z1 TC by enhancing the symmetry one gets into Z2⊠Z2 TP, whereas

a further reduction in the symmetry of the transfer operator fixed points leads to Z1⊠Z1

TP where the fixed points break all the symmetries. Phase transitions can be modeled

by a deformation which can be tuned by two parameters.

, = δab
1

2

[
cosh θ1

(
I + (−1)aZ2

)
+

ia sinh θ1

(
Z + (−1)aZ3

)]
exp

(
θ2X

2/4
)

(4.40)

and a, b ∈ {0, 1, 2, 3}. The behavior of deformation in the limiting cases is as follows:

• At (θ1, θ2) = (0, 0), the action of light blue ring on D (Z4) QD gives an on-site

tensor for Z2 ⊠ Z1 TC.

• At (θ1, θ2) = (∞, 0), the deformation acts as a projector for Z1 ⊠ Z1 TP.

• At (θ1, θ2) = (0,∞), the projector restores a broken symmetry and gives Z2 ⊠ Z2

TP.

Z4 ⊠ Z2 DS and topologically trivial phases

Here we describe a deformation which allows for the possibility of direct phase transition

between Z4 ⊠ Z2 DS and trivial phases which include Z2 ⊠ Z2 TP and Z4 ⊠ Z4 TP.

, where =
(
X2
)a(

Z2
)a+b

exp (θ2X), (4.41)

= exp (θ1σz), and σz is a Pauli matrix. The deformation given in (4.41) can be

justified from its extremal properties.

• At (θ1, θ2) = (0, 0), exp (θ1σz) = I2 and exp (θ2X) = I4, and the light green ring

acts as a projector for Z4 ⊠ Z2 DS model.
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• At (θ1, θ2) = (∞, 0), exp (θ1σz) = |0〉〈0| and exp (θ2X) = I4, the whole deformation

acts as an identity and the system in D (Z4) QD phase.

• At (θ1, θ2) = (0,∞), exp (θ1σz) = I2, on the other hand exp(θ2X) acts as a pro-

jector of the form I +X +X2 +X3. The collective action realizes Z2 ⊠ Z2 TP.

• At (θ1, θ2) = (∞,∞), the deformation acts to give a projector for Z4 ⊠ Z4 TP.

There exists a direct path between Z4 ⊠Z2 DS and Z4 ⊠Z4 TP via a multi-critical

regime (see Sec. 4.5.5).

4.3.2 Effective linear interpolations

Now, we describe another approach to the study of phase transitions. In principle,

one can also consider effective linear interpolations as a special case of local filtering

operations, but the emphasis here is on the interpolation of the on-site transfer operators

since this approach is more robust to retrieve direct phase transitions.

We start by defining two on-site tensors A1 and A2 which define the RG fixed point of

two distinct phases. We assume that A1 and A2 can be obtained by applying projectors

on the local tensor of D (Z4) QD, i.e., A1 = P1AD (Z4) and A2 = P2AD (Z4), where

AD (Z4) denotes the on-site tensor of D (Z4) QD. Furthermore, P1 and P2 are Hermitian

and [P1,P2] = 0.

It is instructive to first consider a linear interpolation of on-site tensors.

A(θ) = θA1 + (1− θ)A2 (4.42)

Since the projectors P1 and P2 act on the physical indices, the virtual symmetries

remain preserved along the path defined by (4.42). However, linear interpolation of

on-site tensors does not always give a direct phase transition between phases which are

associated with A1 and A2.

The behavior of direct phase transitions can be retrieved more elegantly by considering

paths which can be traced by linear interpolation of the on-site transfer operators.

E (θ) = θE1 + (1− θ)E2, (4.43)

where Em = A†
mAm. The linear interpolation of the on-site transfer operators in (4.43)

is achieved by an application of following action on on-site tensors.

A (θ) =
[
P12 +

√
θ(P1 − P12) +

√
1− θ(P2 − P12)

]
AD (Z4), (4.44)
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where P12 := P1P2. Since (P12 − Pm) ⊥ Pm, contraction of A(θ) with its conjugate on

physical indices give (4.43).

4.4 Probes for studying topological phase transitions

Here we describe different numerical methods which we later utilize to rigorously study

phase transitions in the context of tensor network states. The distinct features of the

phase transitions illustrated by these numerical probes are used to characterize the order

of phase transitions. Along with the description of different numerical methods, we also

study the phase transitions between Z4 ⊠ Z2 DS ↔ Z4 ⊠ Z2 TC and D (Z4) QD ↔
Z4 ⊠ Z2 TC. Both of these phase transitions are governed by linear interpolation of the

on-site transfer operators as explained in Sec. 4.3.2. From different numerical insights,

we identify the order of the phase transitions between DS and TC, and between D (Z4)

QD and TC to be first- and second-order respectively.

4.4.1 Order parameters

Order parameters are some of the fundamental objects that characterize the behavior of

phase transitions. It is not clear how to generalize the idea of order parameters in the

case of topologically non-trivial systems. It turns out that different condensation/de-

condensation and confinement/deconfinement fractions have a natural interpretation of

order parameters in the case of topological (trivial/non-trivial) phases. In analogy with

conventional order parameters, they enable us not only to distinguish different topolog-

ical (trivial/non-trivial) phases, the critical behavior of these fractions can be used to

extract the universal properties of topological phase transitions. In the following, we

will show a method for the computation of these fractions and determine their behavior

for the two phase transitions mentioned above.

Computation of order parameter

As explained in Sec. 4.1.4, every possible fraction can be summarized by the wavefunc-

tions overlap 〈g, α|g′, α′〉. Fig. 4.9a graphically shows an overlap of 2D wavefunctions

on an infinite plane and the endpoints of string actions which act on the virtual indices

are located at the same position. The overlap can be written as,

〈g′, α′|g, α〉 =
〈ψ[A]|[[g′, α′]]⊗ [[g, α]]|ψ[A]〉

〈ψ[A]|ψ[A]〉 . (4.45)
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where as defined earlier [[g, α]] := (...XgXgZα) and [[g′, α′]] :=
(
...Xg′Xg′Zα′

)
are the

semi-infinite string operators and they create excitations in the ket and bra layer of the

tensor network.

To compute the overlap, we proceed by first reducing a 2D overlap into a 1D object by

approximating the left and right fixed points of the transfer operator as illustrated in

Fig. 4.9(a,b). This step also highlights a relation between overlaps of anyonic excitations

in 2D and the expectation value of string-order parameters in the boundary phase as

explained earlier (see Sec. 4.1.5). The dimensional reduction from a 2D to a 1D object is

possible due to an underlying assumption that the fixed points of the transfer operator

can be approximated by an MPS with finite bond dimension χ. The computation of

the fixed points of the transfer operator in the thermodynamic limit (Nh, Nv → ∞) is

enabled by an infinite matrix product state (iMPS) algorithm (see Sec. 3.2.5). Let (l|
and |r) be the left and the right fixed points of the transfer operator T then the overlap

can be approximated as,

〈g′, α′|g, α〉 ≈ (l|[[g′, α′]]⊗ [[g, α]]|r)
(l|r) , (4.46)

where (l| and |r) are the left and right fixed points of the transfer operator T.

After computing the right and left fixed points of the transfer operator, the computation

of string-order parameter (corresponding to given 2D wavefunction overlap) is completed

by another dimension reduction. The object formed by contracting the right |r) and left

(l| fixed points of the transfer operator with semi-infinite string action (which acts both

on the bra and ket indices) between the two fixed points can be decomposed in terms of

the boundary transfer operators (also called the channel operators), as indicated in Fig.

4.9b. F is obtained by contracting the ‘physical’ indices of (l| and |r) local tensors. Fg,g′

denotes the dressed channel operator with an additional string action. If (g, g′) is the

symmetry of the fixed points (i.e., the fixed points remain invariant under the action of

the form (..XgXg..)⊗ (..Xg′Xg′ ..) on their physical indices) then symmetry action (g, g′)

on the local tensors of the fixed points can be moved to the virtual indices (Fig. 4.9).

Now, we compute the largest eigenvectors σb and σt of the channel operator F from the

bottom and top respectively. The eigenvectors can be computed by exact diagonalization

even for very large χ. Finally, the expectation value is computed by acting on Fα,α′ with

σt and σb with virtual symmetry action Vg,g′ as shown in Fig. 4.9c.

〈g′, α′|g, α〉 ≈
(
σt
∣∣F(α,α′)(I⊗ Vg,g′)

∣∣∣σb
)

(σt|F |σb)
. (4.47)



Anyon condensation and topological phase transitions 63

Figure 4.9: Arrows show the steps followed for the computation of a fraction
〈g′, α′|g, α〉. (a) Light(dark) red string with light(dark) blue ends acting on the vir-
tual indices in the bra(ket) layer creates an excitation. (b) Yellow lines indicate the
left (l| and right |r) fixed point of the transfer operator. Last equation in the row at
the bottom shows the translation of symmetry action from the physical to the virtual
indices of local tensors. (c) σt and σb represent the fixed points of channel operator
from the top and bottom respectively.

The procedure we have described here for computing wavefunctions overlap works di-

rectly in the thermodynamic limit, and the most expensive step of the computation lies

in finding the fixed points of the transfer operator.

Here we point out an observation which is important for the numerical computation of

fractions, specially in the context of DS model. It turns out that the tensor Fα,α′ with

non-trivial (α, α′) is not always symmetric (i.e. Fα,α′ 6= F
T
α,α′) at least in the case of Z4⊠

Z2 DS model. It is consequential whether one puts the string
(
...XgXg, ...Xg′

Xg′
)

on

the left or right of Fα,α′ for the computation of a fraction. One approach to compensate

for this effect is to compute the fraction by inserting the string on both sides of Fα,α′ .

A comparative study of order parameter

After having described the numerical method for the computation of fractions, in the

following we use these methods to study the behavior of fractions for Z4 ⊠ Z2 DS ↔
Z4 ⊠ Z2 TC and D (Z4) QD ↔ Z4 ⊠ Z2 TC phase transitions. Since g and α can each

take four possible values,
(16+2−1

2

)
= 136 combinations are sufficient to describe every

overlap and are shown in Fig. 4.10(a,b) for the two phase transitions. Legend of the

overlaps in (a) and (b) is defined by the anyon tables at the lower left corners. The color

of the solid dot in an entry of the anyon table represents the norm 〈g, α|g, α〉. The color

of an edge between two entries represents overlaps of the form 〈g, α|g′, α′〉, where g 6= g′

and α 6= α′. The absence of a dot in an entry or an edge between two entries denotes

overlaps which remain zero along the whole interpolation.

Different fractions in the vicinity of phase transition show a characteristically different

behavior for the two phase transitions. We use this qualitative difference to infer the
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Figure 4.10: Phase transitions between (a) Z4 ⊠Z2 DS and Z4 ⊠Z2 TC, and between
(b) D (Z4) QD and Z4 ⊠ Z2 TC. See text for the description of color legends defined
by anyon tables. Inset (i) in (a) and (b) shows the magnified view of overlap in the
vicinity of phase transitions and its scaling with increasing χ. The inset (ii) in (a) and
(b) shows the scaling of order parameter (i.e., 〈0, 1|2, 1〉 in (a) and 〈0, i|0, i〉 in (b))
in the critical regime. The inset (iii) in (a) and (b) shows the first excited state of
the transfer operator or inverse of correlation length computed by using the excitation
ansatz. (a,b)iv shows the scaling of correlation length with different χ computed by
using the channel operator.

order of phase transitions. In the case of the phase transition between Z4 ⊠ Z2 DS and

Z4 ⊠ Z2 TC, we observe a discontinuity, whereas in the case of the phase transition

between D (Z4) QD and Z4 ⊠ Z2 TC different fractions smoothly decay to zero. Fig.

4.10a(i) shows the magnified view of 〈0, 1|2,−1〉 with different bond dimensions. It

instantaneously drops to zero at the transition point, and the behavior is independent of

the resolution of data points. The behavior of 〈0, 1|2,−1〉 at the transition point suggests

a first-order phase transition. Fig. 4.10b(i) shows a qualitatively different behavior of
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a confinement fraction 〈0, i|0, i〉 where it smoothly decays to zero, which indicates a

second-order phase transition.

Discontinuity is also manifested in the error scaling of order parameter for the first-order

phase transition. There is a gap in the value of condensate fraction 〈0, 1|2, 1〉 as shown

in Fig. 4.10a(ii). The gap does not get narrower with increasing bond dimension even

with a high density of data points. The jump in Fig. 4.10a(i,ii) can be used to get

an estimated value of transition point which is θT = 0.2896(5). Unlike first-order, for

the case of second-order phase transition in Fig. 4.10b(ii), we observe that the error in

the value order parameter decays exponentially with increasing χ away from the critical

point. On the other hand, as one approach close enough to the critical point, the scaling

of the error is polynomial. The numerical value of the critical point can be obtained by

distinguishing the two behaviors, and it is θc = 0.5976(2).

Furthermore, if the phase transition is second-order, we can compute the critical expo-

nents β and γ by studying the scaling of fractions and the susceptibilities of the fractions

in the critical regime.

4.4.2 Correlation lengths

Correlation length ξ is another important quantity which can be used to extract the

universal features of phase transition.

Computation of correlation length

Now, to compute the correlation length, we can use the transfer operator of 2D tensor

network state (Fig. 4.1e). However, the calculation of gap above the ground state

subspace of the transfer operator is a computationally intensive problem, but there are

three methods.

1. We can use the channel operator which acts as the transfer matrix of boundary

phase (Fig. 4.9b) for the computation of correlation length (i.e., ξ = −1/ln|λ1/λ0|,
where λ0 and λ1 are the first and second largest eigenvalues of the channel oper-

ator). Channel operator is constructed from the fixed points of the 2D transfer

matrix and is a finite object; the gap can be computed efficiently. However, this

approach is restricted as it does not take into account all the two point correlations.

2. The second possibility is to compute the gap of the transfer operator using the

excitation ansatz as proposed in [54, 55, 68]. Using excitation ansatz, we can
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Figure 4.11: (a) Correlation length computed by using three numerical methods. (b)
The behavior of correlation length computed by using iMPS algorithm for different bond
dimensions χ. Green data points in (a,b) indicate correlation length corresponding to
the broken symmetry domain wall excitations. (c,d) shows the critical exponent ν of the
correlation length ξ which has been obtained by extrapolation in the bond dimension
χ by a exp(−bχ) + ξ∞, and by extrapolation in the perimeter Nv by a exp(−bNv) + ξ∞.

construct topological (trivial/non-trivial) excitations, and it is possible to work

directly in the thermodynamic limit.

3. The third possibility is to proceed by exact diagonalization on an infinite cylinder

(Nh →∞) with finite perimeter Nv to compute the gap and then by extrapolation

in Nv we can get a reliable estimate of ξ. It is important to point out here that

the exact diagonalization should be performed on the ‘complete’ transfer matrix

(i.e., the one which include all topological sectors and obtained by inserting every

possible flux in the bra and ket layer) [44]. Given a spectrum of the transfer

matrix, correlation length ξ can be computed from the gap below the largest

eigenvalue sectors, e.g., in the case of Z4-invariant tensors the dimension of the

largest eigenvector (ground state) manifold is 4× 4, so ξ = −1/ln|λ16/λ0|.

The behavior of the correlation length computed by the above three methods for the

phase transition between D (Z4) QD and Z4 ⊠ Z2 TC is shown in Fig. 4.11. Away

from the critical point the resulting correlation length ξ computed by different methods

conform with each other (Fig. 4.11a). Fig. 4.11b) shows the divergence of ξ with

increasing bond dimension computed by using the iMPS algorithm. The scaling of

correlation length in the critical regime can be used to extract the critical exponent ν

(Fig. 4.11(c,d))).
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A comparative study of correlation lengths

Now we analyze distinct features of the correlation length for the 1st (i.e., between

DS and TC) and 2nd (i.e., between D (Z4) QD and TC) order phase transitions. Fig.

4.10a(iii) shows the correlation length which have been computed by using the exci-

tation ansatz for the transfer operators for χ = (8, 16, 24). By rescaling the transfer

operator (i.e., the largest eigenvalue λ0 = 1), we can write the inverse of correlation

length as ξ−1 = lnλ1. As the system approaches the transition point, the correlation

length increases but it remain finite, and there exists a finite gap which indicates first-

order phase transition. Furthermore, the correlation length computed by using channel

operators also have a finite value in the case of first-order phase transition as indicated

by the linear fit in 1/χ (black line) in Fig. 4.10a(iv).

In contrast to the finite gap at the transition point in the case of Z4 ⊠Z2 DS ↔ Z4 ⊠Z2

phase transition, the gap closes and correlation length diverges at the critical point

for D (Z4) QD ↔ Z4 ⊠ Z2 TC case which is a further evidence for second-order phase

transition (Fig. 4.10b(iii)). Fig. 4.10b(iv) shows diverging correlation length at the

critical point with increasing χ.

4.4.3 Fidelity per site and fidelity susceptibility

The notion of fidelity per site has been studied in the context of tensor network states

in [69]. It gives a measure of distinguishably between quantum states, and it is defined

as the normalized overlap of two wavefunctions per site. The method for the compu-

tation of fidelity per site is described in the previous chapter. Furthermore, fidelity

susceptibility χF which quantifies the fidelity response against an infinitesimal change in

tuning variable also exhibits universal features which can be used to characterize phase

transitions [49].

Fidelity per site can be used to characterize the behavior of phase transitions. Fig.

4.12(a,b) show a comparison of fidelity per site for (a) first- and (b) second-order phase

transition. Fig. 4.12(c,d) shows the behavior of fidelity per site across different slices

marked in the surface plot Fig. 4.12(a,b). Although f(θ1, θ2) changes smoothly in

the first-order case, we observe a cusp-like behavior in the transition regime which is

qualitatively different in comparison to the second order phase transition between the

D (Z4) QD and Z4 ⊠ Z2 TC.

Fidelity susceptibility χF also exhibits distinct features in the case of first- and second-

order phase transition. In the case of phase transition between Z4 ⊠Z2 DS and Z4 ⊠Z2

TC, χF diverges to the delta function as the system approaches transition point. Delta
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divergence of χF can be shown by the collapse of rescaled susceptibility curves (i.e.,

δ.χF ) when viewed as a function of (θ − θc) /δ (Fig. 4.12e). Moreover, the scaling of χF

in the vicinity of phase transition cannot be explained by the power law as the critical

exponent is undefined and this behavior is characteristic of a first-order phase transition.

Fig. 4.12f shows the behavior of χF in the thermodynamic limit with different step sizes

δ for the phase transition between D (Z4) QD and Z4⊠Z2 TC. χF diverges at the critical

point as δ approaches 0. The scaling of χF in the critical regime observes a power law

behavior which suggests a second-order phase transition.

Another distinct feature is the scaling of χF with 1/δm in the vicinity of phase transition

for the first-order case. In contrast, for the second-order case we observe the scaling of

χF with ln (1/δm) (see insets of Fig. 4.12(e,f)).
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Figure 4.12: Comparison of fidelity per site for the first order phase transition between
Z4 ⊠ Z2 DS and Z4 ⊠ Z2 TC (a,c) and the second order phase transition by D (Z4)
QD and Z4 ⊠Z2 TC (b,d). Fidelity susceptibility for the (e) first- and (f) second-order
phase transition computed using iMPS algorithm with χ = 32. (e) and (f) share the
same legend. Inset of (e) shows χF as a function of δ on a log-log plot, the value of
slope m ∼ 1.57. Inset of (f) shows the linear scaling of χF for ln δ. The value of slope
m ∼ 1.14.
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4.5 Phase diagram of Z4-invariant tensors

In the previous section, we described different numerical methods and presented our

findings regarding the two phase transitions. Here we will systematically explore the

whole phase diagram of Z4-invariant tensor network states using those numerical tools.

We defined different deformations in the Sec. 4.3 which when applied on D (Z4) QD

can realize different topologically trivial and non-trivial phases. We can also compose

these deformations in order get a richer variety of phase transitions. Here we map out

the phase diagram of Z4-invariant tensors using the deformation constructed in (4.38).

Later, in the following subsections, we will dissect the whole phase diagram and discuss

in greater detail the distinct features of particular phase transitions.

The deformation described in (4.38) is parametrized by θ = (θTC, θTC,Z2 , θDS). The

state corresponding to each θ can be assigned a phase (topologically trivial/non-trivial)

by probing different fractions. The essential features of the whole phase diagram can

be captured by computing the distribution of different phases on the three hyperplanes

(Fig. 4.13). We use the iMPS algorithm for the computation of various fractions. The

deformation induces two toric codes (Z4 ⊠ Z2 TC and Z2 ⊠ Z1 TC), a DS model with

Z4 ⊠ Z2 symmetry and Z2 ⊠ Z2 TP when applied on D (Z4) QD.

Although the set is not unique, for illustrative purposes, we choose three fractions C =

{〈2, 1|0,−1〉, 〈1, i|1, i〉, 〈0, i|0,−i〉}, whose values are sufficient to visualize every phase

which can be realized by deformation. In the following, we will explain the appearance

of different phases in Fig. 4.13.

1. In D (Z4) QD, none of the possible anyons are condensed or confined, which means

that the only fraction from C with a non-zero value is 〈1, i|1, i〉. So the green region

in the phase diagram is identified with D (Z4) QD.

2. In the case of Z4 ⊠ Z2 TC, all the anyons of form |∗,±i〉 are confined, which

implies that the overlaps 〈1, i|1, i〉 and 〈0, i|0,−i〉 are equal to zero. Furthermore,

the anyon |2, 1〉 is condensed to the vacuum but it can be distinguished from the

anyon |0,−1〉. Since every fraction in C is zero for Z4 ⊠ Z2 TC phase, every point

in the black region corresponds to Z4 ⊠ Z2 TC.

3. In Z2 ⊠ Z1 TC phase, anyons of the form |1, ∗〉 and |3, ∗〉 are confined. Anyons

|2, 1〉 and |0,−1〉 are not confined but they can be distinguished from each other.

The only fraction in C with a non-zero value is 〈0, i|0,−i〉 which explains the blue

color for Z2 ⊠ Z1 TC.
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Figure 4.13: (a) Phase diagram of Z4-invariant tensor network states. The RGB
(red, green, and blue) components of color at each point on the three hyperplanes is
identified with the fractions indicated in the anyon table in (b). χ = 16 has been used
for the approximation of fixed points in the iMPS calculations.

4. Anyons |0,±i〉 are confined in Z4 ⊠ Z2 DS phase which implies that the overlap

〈0, i|0,−i〉 is zero. On the other hand, the anyon |1, i〉 is deconfined and the

anyons |2, 1〉 and |0,−1〉 are mutually indistinguishable (i.e. 〈2, 1|0,−1〉 = 1). The

fractions in C with non-zero value are 〈0, i|0, i〉 (green) and 〈2, 1|0,−1〉 (red). Sum

of red and green produces yellow, so the Z4⊠Z2 DS phase is identified with yellow

region.

5. In the case of Z2 ⊠Z2 TP the only non-zero fraction from C with a non-zero value

is 〈2, 1|0,−1〉 which determines the color of Z2 ⊠ Z2 TP phase to be red.

4.5.1 Phase transitions from D (Z4) quantum double to topological

phases

First, we study the phase transitions between D (Z4) QD and topologically non-trivial

phases which include the two toric codes and a double semion model.

D (Z4) QD and Z4 ⊠ Z2 TC

Phase transitions between D (Z4) QD and Z4 ⊠ Z2 TC can be governed either by local

filtering or by linear interpolation as described in (4.34) and (4.44) respectively. Results

regarding the phase transition between D (Z4) QD and Z4 ⊠ Z4 TC via linear inter-

polation have already been presented earlier (Fig. 4.10b). Here we discuss the phase

transition which is governed by local filtering along the path labeled by (I) in Fig. 4.13a.

We look at different fractions as a function of tuning variable θTC between the two phases.

As one moves from D (Z4) QD towards the transition point one sees the confinement
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Figure 4.14: Phase transition between D (Z4) QD and Z4 ⊠ Z2 TC driven by local
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for the computation of derivative. (iii) Correlation length ξ and the critical exponent
ν which is obtained by an extrapolation of ξ in Nv by a exp (−bNv) + C∞.

of anyons |∗,±i〉, i.e. for θTC ≥ θc = 1
2 ln

(
1 +
√

2
)
, the vacuum does not support the

existence of these anyons. After the transition point, the fixed points of the transfer

operator acquire Z4 ⊠ Z2 symmetry which leads to the condensation of anyon |2, 1〉 to

the anyonic vacuum |0, 1〉.

Fig. 4.14 shows overlaps for the phase transition obtained via local filtering. Red

(blue) curves represent the confinement (condensation) fractions. Solid dots denote the

numerical values whereas the solid lines represent the analytic results. It turns out that

the confinement (red) and condensation (blue) fractions are related, as they correspond

to the order parameters of self-dual models, one at low- and the other corresponding to

high-θ. We use this duality to derive the closed form of these fractions (see Sec. 4.5.2).

The nature of phase transition can be determined from the scaling of ‘order parameter’

(which in this case can be 〈0, i|0, i〉 or 〈0, 1|0, 2〉). Critical exponent β ∼ 1/8 as shown

in Fig. 4.14(i), is obtained from the slope of an order parameter on log-log plot. We

introduced an external field as a function of tuning variable h in Sec. 4.3.1. The

susceptibility of order parameter (e.g. 〈0, i|0, i〉) against the external field can be defined

as

χm(θ) :=
∂〈0, i|0, i〉

∂h

∣∣∣∣
h=0

(4.48)
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where |0, i〉 is a function of θ and h. We examine the behavior of χm by calculating

the derivative of 〈0, i|0, i〉 with respect to h using finite difference method for different

step sizes δ. The scaling of χm with respect to θ in the critical regime gives the critical

exponent γ ∼ 7/4 (Fig. 4.14(ii)). We also observe similar scaling behavior for the

susceptibility of 〈0, 1|2, 1〉. We calculate correlation length ξ on an infinite cylinder

with finite perimeter using the method described in Sec. 4.4.2. The critical exponent ν

has been calculated from scaling of ξ with θ in the critical regime. From the slope of

extrapolated ξ on a log-log plot, we get ν ∼ 1 (Fig. 4.14(iii)).

Values of critical exponents characterize the phase transition in the Ising universality

class. In fact, the relation is stronger. The phase transition can be mapped to the

2D classical Ising model, i.e., D (Z4) QD and Z4 ⊠ Z2 TC can be identified with the

symmetry broken and disordered phases of Ising model respectively. This relation holds

because of equivalence between the partition function of Ising model and the norm of

the vacuum state which is described in (4.34).

Partition function of 2D
classical Ising model ←→ Norm of

vacuum (4.49)

Additionally, the anyonic excitations of quantum doubles can be mapped to the topo-

logical defects in Ising model [70]. A detailed account of this mapping is given in Sec.

4.5.2.

The critical exponents of the phase transition between D (Z4) QD and Z4⊠Z2 TC which

is prescribed by the linear interpolation of the on-site transfer operators (see (4.44)) also

classify the phase transition in the Ising universality class. These two observations

suggest that the nature of phase transition between D (Z4) QD and Z4 ⊠ Z2 TC is

independent of the path one chooses provided that the path respects the Z4-invariance

of local tensor and it is a second-order phase transition which lies in the Ising universality

class.

D (Z4) QD and Z2 ⊠ Z1 TC

We now describe the phase transition between D (Z4) QD and Z2 ⊠Z1 TC as explained

in (4.36) and labeled as (II) in Fig. 4.13a. Although the anyons in Z4 ⊠ Z2 TC and

Z2 ⊠ Z1 TC have the same self and mutual statistics, they have different realizations.

The system undergoes a phase transition from D (Z4) QD to Z2 ⊠ Z1 TC phase as

we increase θTC,Z2 . As the critical point is approached the anyons {|1, ∗〉, |3, ∗〉} get

confined, and their confinement fractions vanish completely at the critical point. Fixed

points of the transfer operator spontaneously break the Z4 ⊠ Z1 symmetry to Z2 ⊠ Z1.

After the phase transition the anyon |0,−1〉 gets condensed to the vacuum. Overlaps
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Figure 4.15: Phase transitions (a) D (Z4) QD ↔ Z2 ⊠ Z1 TC and (b) D (Z4) QD
↔ Z4 ⊠ Z2 DS. Anyon tables at the lower corners in (a) and (b) define the color of
fractions as explained earlier for Fig. 4.10. Insets (i) and (ii) in (a) and (b) shows the
critical exponents β and ν of an order parameter and correlation length respectively.
Inset (iii) in (a) and (b) shows the scaling of first-excited state of transfer operator in
the vicinity of phase transition.

〈0, i|0,−i〉, 〈2, 1|2,−1〉, and 〈2, i|2,−i〉 become 1 and deep in the Z4 ⊠Z2 TC phase one

could have only four distinguishable anyons.

Overlaps which summarize all condensation and confinement fractions for the phase

transition between D (Z4) QD and Z2⊠Z1 TC are shown in Fig. 4.15a. Initial numerical

findings suggest a continuous phase transition which occurs at θc = 0.4483(5). The

scaling of the order parameter (〈1, i|1, i〉 or 〈0, 1|0,−1〉) gives a critical exponent β ∼ 1/8

as shown in Fig. 4.15a(i). We find the critical exponent of correlation length to be ν ∼ 1

(Fig. 4.15a(ii,iii)). Green lines in Fig. 4.15a(iii) represent topological excitations of the

transfer operator with domain walls which are constructed by the broken symmetry
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actions. These excitations determine the critical behavior and decisively close the gap

at the critical point. Again, the linear behavior of ξ−1 in Fig. 4.15a(iii) is a manifestation

of the fact that ν ∼ 1. Furthermore, the phase transition between D (Z4) QD and Z2⊠Z1

TC which is governed by linear interpolation of the on-site transfer operators also lies

in the Ising universality class.

It is possible to map the phase transition between D (Z4) QD and Z2 ⊠ Z1 TC to the

2D Ising model by explicitly breaking the symmetry. This can be achieved by inserting

a projector |0〉〈0| in the blue ring in (4.36). Although the insertion would preserve the

Z4 ⊠ Z4 symmetry of the transfer operator, the action would restrict symmetry broken

fixed points of the transfer operator from eight to four and the projector of Z2 ⊠Z1 TC

no longer commutes with the on-site tensor (black ring) of D (Z4) QD.

D (Z4) QD and Z4 ⊠ Z2 DS

Another interesting case is the phase transition between D (Z4) QD and Z4 ⊠ Z2 DS

model via the path defined in (4.37) and which is labeled as (III) in Fig. 4.13a. The

phase transition occurs at θc = 1
2 ln

(
1 +
√

2
)
. The critical behavior is governed by

vanishing confinement fractions of anyons {|0,±i〉, |1,±1〉, |2,±i〉, |3,±1〉} and by the

condensation of |2,−1〉 to the vacuum.

The numerical values of condensation and confinement fractions are shown in Fig. 4.15b.

Just like the case of Z4 ⊠ Z2 TC, the phase transition between D (Z4) QD and Z4 ⊠ Z2

DS can be mapped to the 2D Ising model (see Sec 4.5.2) and one can use this mapping

to extract the closed form of different fractions. Analytic results are represented by solid

lines in Fig. 4.15b. Not surprising but as an evidence of validity, the numerical findings

of the critical exponent β in Fig. 4.15b(i) and ν in Fig. 4.15b(ii,iii) also identify the

phase transition with the Ising universality class.

4.5.2 Ising model and topological phase transitions

Now we discuss a mapping between the partition function of classical Ising model and

the norm of vacuum state which is parametrized by the tuning variable θ. We will focus

our attention here on the phase transition between D (Z4) QD and Z4 ⊠Z2 TC, but the

description is generic enough to be applied in other cases.
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Classical Ising model

We begin by writing down the partition function in terms of Ising variables si assigned

to each vertex (Fig. 4.16a),

Z =
∑

s

∏

〈i,j〉
eβsisj . (4.50)

For later purposes, it will be convenient to interchangeably use binary variables bi =

{0, 1} and si = {−1, 1}, where si = (−1)bi , to express each Ising configuration. We use

the following graphical notation to represent Boltzmann weights on the horizontal and

vertical edges of square lattice.

i j
or

i

j
=





eβ if bi = bj

e−β otherwise
(4.51)

It is possible to construct a defective edge by inserting a Pauli-x between connecting

sites, which modify the Boltzmann weights as follows

=





e−β if bi = bj

eβ otherwise
(4.52)

We use here a blue line to indicate the presence of Pauli-x (or X) at an edge in (4.52).

Its presence at an edge switches the interaction from ferromagnetic to anti-ferromagnetic

while preserving the whole object as a valid partition function. Pauli-x at an edge also

denotes the symmetry action. It is possible to have a tensor network description of the

partition function where all the local tensors are invariant under the action of X on

all the legs. It also implies that a partition function with a string of X’s will remain

invariant under any continuous deformation in the string provided that the endpoints

remain fixed.

At this point, it is instructive to write down an analytic expression for the expectation

value of average magnetization per two sites.

∑

b

( )
∏

〈i,j〉
6=〈0,1〉

=
∑

s

(s0 + s1) eβ
∏

〈i,j〉
6=〈0,1〉

eβsisj

=
(
1− sinh−4 (2β)

)1/8

(4.53)

where the horizontal and vertical links in the product are expressed by an inclined edge.

The cross sign on edge indicates local order parameter Z on the vertices labeled 0 and
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(a)

(b) (c)

(d)

Figure 4.16: (a) Standard Ising model on a square lattice. The string of defective
edges shown by colored edges indicates the presence of Pauli-x in the link. An edge
with the diamond denotes an action corresponding to local order parameter. (b) The
norm of the vacuum |0, 1〉 constructed by contracting the bra and ket index. (c) More
descriptive illustration for the tensor network of vacuum with the local structure of
on-site tensors. (d) Ising model which emerged from the norm of vacuum.

1. Although, the link has negative weights, in analogy to (4.52), we define it as follows,

:=





(−1)bi eβ if bi = bj

0 otherwise.
(4.54)

Anyonic vacuum and excitations

An important object to inspect in order to analyze the norm of a quantum state is

the on-site transfer operator. We start by writing it pictorially for D (Z4) QD with

deformation.

=
3∑

k,l=0

=
3∑

k=0

, (4.55)

where each black circle in the sum with label k denotes Xk and X is the generator of Z4

with regular representation. The outline of circles specifies Hermitian conjugate. Red

bubbles represent deformation exp
(
θX2

)
. The last equality is possible since black and

red circles commute and the on-site tensors are isometric. The deformation modeled by

red bubble drive the system from D (Z4) QD to Z4 ⊠Z2 TC phase. Using (4.55) we can
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write the norm of vacuum as

〈0, 1|0, 1〉 =
3∑

ki,li=0

∏

rings

=
∑

t

∏

edges

, (4.56)

where the product is over all the rings (Fig. 4.16(b,c)) and by using (4.55) we can shrink

each ring to an edge with the following definition.

= tr
(
Xtie2θX2

Xtj

)

=





2(eθ + e−θ) if ti − tj = 0 (mod 4)

2(eθ − e−θ) if ti − tj = 2 (mod 4)

0 otherwise

(4.57)

Each edge can be identified as an interaction in Ising model on square lattice. In order

to be succinct we will write as . Since the Boltzmann weighs are zero if ti−tj = 1

(mod 2), we can write (4.56) as a sum over two copies of Ising model on square lattice

(Fig. 4.16b).

〈0, 1|0, 1〉 =
∑

ti=0,2

∏

〈i,j〉
+
∑

ti=1,3

∏

〈i,j〉
(4.58)

Terms in (4.50) behave analogous to (4.58). By identifying different combinations in

(4.51) and (4.57) with each other we can write

eβ = 2
(
eθ + e−θ

)
, e−β = 2

(
eθ − e−θ

)

which implies β = tanh−1
(
e−2θ

)
.

Now, consider the anyon excitation |0, i〉 which gets confined as the system approaches

the critical point. More precisely, the norm of |0, i〉 is zero in the Z4 ⊠ Z2 TC phase.

Norm of the excitation, 〈0, i|0, i〉, contains the ring which shrinks to the edge

. We can write the norm as

〈0, i|0, i〉 =
∑

t

∏

〈i,j〉
6=〈0,1〉

=
∑

t

( ) ∏

〈i,j〉
6=〈0,1〉

.
(4.59)



Anyon condensation and topological phase transitions 78

Standard
Ising

model i j i j
Norm of
vacuum

bi = bj eβ e−β (−1)bi eβ 2
(√
−1
)ti 2(eθ − e−θ) 2(eθ + e−θ) ti − tj = 0

bi 6= bj e−β eβ 0 0 2(eθ + e−θ) 2(eθ − e−θ) ti − tj = 2

0 0 0
ti − tj = 1
ti − tj = 3

Table 4.1: Comparison between the Boltzmann weights of standard Ising model(blue)
and two decoupled copies of Ising models(brown) on square lattice which emerged from
the norm of quantum vacuum.

The brown diamond indicates a charge which is given by Z := Z1 in the ket and bra

layer. Trace over each configuration on the edge is defined as follows

= tr
(
ZXtieθX2

ZeθX2
Xtj

)

=





2
(√
−1
)ti if ti − tj = 0 (mod 4)

0 otherwise.

(4.60)

We summarize the Boltzmann weight of all the configurations for two models in Tab.4.1.

It is clear from the table that an edge corresponds to the evaluation of magneti-

zation per site up to a weighting factor 2(eθ + e−θ). Using (4.53) for magnetization per

site and dividing by

2(eθ + e−θ) =
1

2

(
tanh1/2 β + tanh−1/2 β

)

, in order to compensate for the weighing factor we get an analytic expression for the

norm of |0, i〉.

〈0, i|0, i〉 =
2
(
1− sinh−4 2β

)1/8

tanh1/2 β + tanh−1/2 β
(4.61)

Excitation |2, 0〉 gets condensed to the vacuum in Z4 ⊠ Z2 TC phase. Rings

create a string of defective edges. In order to be consistent with notation used in (4.52),

we write as . Tab. 4.1 contains the Boltzmann weights for different

configurations of in column 6. Overlap of excitation |2, 1〉 with vacuum |0, 1〉
creates a semi-infinite string of edges (Fig. 4.16d). In order to get an analytic

expression for condensate fraction 〈0, 1|2, 1〉, we first map the model from 2D classical

Ising on square lattice to 1D quantum Ising chain. Kramers-Wannier duality of 2D

classical Ising manifest itself as 1D quantum Ising duality using disorder operators on

dual lattice.

τ z
i+1/2 =

∏

j≤i

σx
j , τx

i+1/2 = σz
i σ

z
i+1 (4.62)
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σx
i

(
τx

i+1/2

)
and σz

i

(
τ z

i+1/2

)
are Pauli matrices on (dual) square lattice. Using this trans-

formation, a semi-infinite domain wall created by a string of X’s (...XXX) translates

into point operator corresponding to magnetization per site on the dual lattice. Con-

densate fraction 〈0, 1|2, 1〉 can be written analytically as

〈2, 1|0, 1〉 =
(
1− sinh−4 2β∗

)1/8
, (4.63)

where β∗ is related to β by sinh 2β sinh 2β∗ = 1.

We have computed analytically two condensate fractions in (4.61) and (4.63). The rest

of non-zero but not constant overlaps can be proved equal to either of the two using

following identities.

= = (4.64)

= (4.65)

The equality holds for every value of θ along the phase transition. Analytic results

conforms exactly with the numerical data in Fig. 4.14a.

The norm of vacuum for the phase transition between D (Z4) QD and Z2 ⊠Z1 TC with

explicit symmetry breaking can also be mapped to classical Ising model where the Ising

variables have different Boltzmann weights. D (Z4) QD ↔ Z4 ⊠Z2 DS phase transition

also gives rise to an Ising model but the identification of Ising variables is subtle as the

local tensor network description of DS model breaks the lattice symmetry.

4.5.3 Phase transitions between toric codes and double semion model

The phase transition between toric codes and double semion model have been studied

using exact diagonalization in [71] and the findings indicate that the phase transition is

first-order on a 2D system. Here, we present our results regarding the phase transition

between the two models and explore the different possibilities which open up by realizing

these topological phase in the framework of Z4-invariant tensors.

Z4 ⊠ Z2 TC and Z4 ⊠ Z2 DS

We have already studied a phase transition between Z4 ⊠Z2 DS and Z4 ⊠Z2 TC which

is governed by linear interpolation of the on-site transfer operators (Fig. 4.10a). Using

different numerical probes, we characterized the phase transition to be first-order. As

the system approaches the transition point from the RG fixed point of Z4⊠Z2 DS phase,

the deconfined anyons {|1,±i〉, |3,±i〉} get confined. Similarly, after phase transition in
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Figure 4.17: Different fractions for the phase transition between DS and TC across
the line (III) in Fig. 4.13a with χ = 24. Anyon table at the top right defines the color
legend of overlaps. (i) Shows the correlation length ξ of the boundary phase. (ii) First-
excited state of the transfer operator computed using excitation ansatz. (iii) Behavior
of an SPT gauge-invariant in the vicinity of phase transition.

the Z4 ⊠Z2 TC phase the anyons {|1,±1〉, |3,±1〉} get deconfined while the anyon |2, 1〉
gets condensed to the vacuum.

It turns out that the boundaries of two phases, TC and DS model, exhibit a much

richer behavior. In addition to the first-order phase transition, we can also make a

continuous phase transition between the two models. There exists a multi-critical point

on θTC,Z2 = 0 hyperplane which is analytic and shared by four phases. A path through

it with endpoints in the Z4 ⊠ Z2 DS and Z4 ⊠ Z2 TC phase yields a second-order phase

transition. The continuous nature of phase transition is illustrated by the behavior of

condensation/decondensation and confinement/deconfinement fractions in Fig. 4.17a,

where the solid lines denote the closed form solutions. The path traversed in Fig. 4.17a

is along the line labeled as (III) in the phase diagram (Fig. 4.13a) and it is parametrized

as (θTC, θTC,Z2 , θDS) = (θ, 0, (θc − 1)θ/θc + 1), where θc = 1
2 ln(1 +

√
2).

The continuous nature of phase transition is also exhibited by the diverging correlation

length ξ as the system approaches critical point. Fig. 4.17a(i) shows ξ computed from

the fixed points of the transfer operator using channel operator. Correlation length of

the system computed from the gap of the transfer operator using excitation ansatz also

diverges (Fig. 4.17a(ii)). Since the phase transition lies in the Ising universality class,

we observe a linear scaling for ξ−1 = lnλ1 in the critical regime.
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Although, the boundary phases of TC and DS model have Z4 ⊠ Z2 symmetry, the

projective action of (X,X) and
(
I, X2

)
onto the virtual indices of boundary phase is

characteristically different for the two phases (also see Eqs. (4.23) and (4.30)). A

measure defined by the gauge invariant of the form

Q = Tr
(
σ1,1σ0,2σ

−1
1,1σ

−1
0,2

)
, (4.66)

where σg,g′ are the largest eigenvectors of dressed channel operator Fg,g′ (Fig. 4.9b).

The value of Q can be used to distinguish TC and DS phase by exploiting the distinct

nature of SPT order in their boundary phase [72]. Fig. 4.17a(iii) shows Q in the vicinity

of phase transition. Although the sharp behavior of Q around the critical point hides

the universal features of phase transition, the jump in its value can be used to determine

the position of the critical point.

Z2 ⊠ Z1 TC and Z4 ⊠ Z2 DS

In contrast to Z4⊠Z2, there does not exist a direct path between Z2⊠Z1 TC and Z4⊠Z2

DS on θTC = 0 hyperplane in Fig. 4.13a. However, a direct phase transition between

the two phases can be induced by linear interpolation of the on-site transfer operators.

Moving along the path which is traced by linear interpolation (see (4.44)) leads to a direct

transition (i.e., does not encounter an intermediate phase) between the two phases. The

phase transition is governed by the vanishing condensation/decondensation fractions

and enriched by an occurrence of spontaneous symmetry breaking in the fixed points

of the transfer operator. As the system moves from Z4 ⊠ Z2 DS towards Z2 ⊠ Z1 TC

phase, anyon |2,−1〉 gets de-condensed which is followed by the condensation of anyon

|0,−1〉 into the vacuum. Deconfined anyons {|1,±i〉, |3,±i〉} get confined as the system

is tuned towards the critical point in DS phase. After the phase transition we observe

the deconfinement of anyons {|0,±i〉|2,±i〉}.

Fig. 4.18a shows the overlap of anyonic excitations in the two phases. Phase transition

occurs at θc = 0.5. Diverging correlation length of the boundary phase as the system

approaches the critical point in Fig. 4.18a(i) is an indication of continuous phase tran-

sition. Critical exponent ν is obtained from the slope of boundary phase correlation

length ξ on the log-log plot as shown in Fig. 4.18a(ii) and we find that ν = 0.65(6).

Fig. 4.18a(iii) shows the scaling of ln〈0, i|0, i〉 (light blue) and ln〈0,−1|0, 1〉 (dark blue)

as a function of distance from the critical point on log-scale. From the slopes we get

β1 = 0.069(6) and β2 = 0.081(5). The values of the critical exponents identify the phase

transition with the Ashkin-Teller universality class.
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Figure 4.18: Different fractions along the phase transition between Z4 ⊠ Z2 DS and
Z2 ⊠ Z1 TC. Anyon table defines the legend of different fractions as explained earlier.
a(i, ii) illustrates the correlation length of the boundary phase for different bond di-
mension χ in the vicinity of the critical point. a(iii) shows the scaling condensation and
confinement fraction used for the computation of critical exponents β1 and β2. b(i) The
gap above the lowest energy state of transfer operator computed by using excitation
ansatz. b(ii) Almost the same value of critical exponent ν is obtained from the scaling
of correlation length computed by using the excitation ansatz.

The behavior of phase transition around the critical point is determined by the topo-

logical excitations created by the domain walls. As one move from Z2 ⊠Z1 TC towards

Z4 ⊠ Z2 DS, the broken symmetries
(
I, X2

)
and (X,X) get restored. The domain wall

excitations created by these symmetries decisively close the gap at the critical point.

Fig. 4.18b(i) shows the first excited state of the transfer operator. Green excitations

represent excited states which have been constructed by broken symmetry domain walls.

The slope of lnλ1 = ξ−1 on the log-log plot also gives the same critical exponent ν as

we obtained in Fig. 4.18a(ii).

Fig. 4.19 shows the distinct features of the dispersion relation of the transfer operator

at the data points in the vicinity of the phase transition. Since the transfer operator is
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Figure 4.19: Dispersion relation of the transfer operator at the data points in the
vicinity of phase transition in the Z4⊠Z2 DS and Z2⊠Z1 TC phase. The computations
have been performed for the bond dimension χ = 24.

Z4 ⊠ Z4 invariant, we can label each excitation of the transfer operator for the given k

as λg′,α′

g,α , where (g, g′) is a label for the conjugacy class and (α, α′) is a label for an irrep

of Z4 ⊠ Z4. It is important to note that the different species of anyonic particles in the

TC and DS phase can be labeled by (g, α).

As the system is tuned from the DS phase towards the critical point, bosonic excitations

get condensed to the vacuum, and this property is crucial in determining the behavior of

the system. Remarkably as first suggested in [13], that condensation of bosonic anyons is

manifested in the excitation spectrum of the transfer operator. The low lying excitations

labeled as λb
I in Fig. 4.19a are identified with the condensation of bosons. Furthermore,

the excitations labeled as λ0,i
0,i and λ2,i

2,i represent the deconfinement of e and em anyons

respectively.

Similarly, on the other side of the critical point in Z2 ⊠ Z1 TC phase, the behavior of

the system is characterized by the condensation of magnetic anyons (labeled as λm
I in

Fig. 4.19b). Excitation labeled as λ1,i
1,i and λ1,−i

1,−i manifest the deconfinement of semions

and their conjugates.

Unitary equivalence between Z4 ⊠ Z2 DS and Z2 ⊠ Z1 TC

The existence of critical point θc to be at exactly 0.5 and the equivalence of different

fractions on the two sides of θc (Fig. 4.18a) points to a deeper structure in the transfer

operator T as these fractions are a manifestation of the spectral properties of the transfer

operator. It turns out that the transfer operators at the RG fixed point of Z4 ⊠ Z2 DS

and Z2 ⊠ Z1 TC phase can be transformed into each other by a unitary U which has

a finite bond dimension. The local action of unitary on the on-site transfer operators

implies the following relation between the transfer operators on the two sides of the
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critical point.

UT(θ)U † = T(1− θ), (4.67)

where U is a unitary and θ models the deformation which is prescribed by linear interpo-

lation. Furthermore, it has been tested numerically that the eigenvalues of the transfer

operator satisfy σ(T(θ)) = σ(T(1− θ)), where the eigenvalues have been calculated for

finite transfer operators with open boundary conditions.

Here, we give an MPO construction of a unitary which transform the transfer operators

of Z4 ⊠ Z2 DS and Z2 ⊠ Z1 TC into each other. It is helpful for later purposes to first

write down the local tensors which represent the RG fixed points of two phases. In the

case of Z4 ⊠ Z2 DS model

, =


 {I}a=0,b=0 {X2Z2}a=0,b=1

{Z2}a=1;b=0 {X2}a=1;b=1


 (4.68)

Green ring is an MPO projector for Z4 ⊠ Z2 DS applied on D (Z4) QD (black ring). In

later usage, we will drop the subscripts in matrix notation. Similarly, for Z2 ⊠ Z1 TC

,
a

b
=


I + Z2 0

0 I− Z2


 (4.69)

Moreover, the on-site transfer operators or the double tensors of two models have the

same representation as given in (4.68) and (4.69). The transfer operator constructed by

blocking the double tensors, E(θ) = θEDS + (1− θ)ETC, can be interpreted as a sum of

alphabetic strings where each alphabet is either DS or TC double tensor. And the local

tensor u of the desired MPO unitary U is expected to swap the double tensor of Z4 ⊠Z2

DS with the double tensor of Z2 ⊠ Z1 TC. Local tensor u should act to substitute the

double tensor of DS with the double tensor of TC and vice-versa.

Motivated by the construction of discriminating string order parameters for topological

phases in [73], we start by writing the local tensor description of MPO U .

u =


 I⊗

(
I +X2

)
I⊗

(
I−X2

)

X ⊗
(
X3 −X

)
X ⊗

(
X3 +X

)


 , (4.70)

where the top (bottom) index is identified with the row (column) index of the matrix

and the arrow head points in the direction of column index. Now, we show why (4.70) is

the right description of u by showing its action on the on-site transfer operators. With
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u defined in (4.70), its action on Z4 ⊠ Z2 DS tensor is

=




X+ Z2X+ X− −Z2X−

Z2X+ X+ Z2X− −X−

X− Z2X− X+ −Z2X+

−Z2X− −X− −Z2X+ X+



, (4.71)

where X± = I ±X2. Although, it is not very clear in above form, it is more insightful

to understand the action by a unitary transformation. Consider a unitary M with the

following definition,

:=
1

2




−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1




(4.72)

where the join of top(bottom) indices correspond to row(column) index of the matrix.

By applying M to (4.71), we obtain

=




Z+ 0 0 0

0 Z+X
2 0 0

0 0 Z− 0

0 0 0 Z−X2




(4.73)

where Z± = I±Z2. Matrix entries across the main diagonal correspond to the four blocks

(or fixed points since each block can be identified with a fixed point) of Z2 ⊠Z1 TC (see

(4.25)). MPO projectors (blue and green rings) in (4.68) and (4.69) commutes with the

black MPO of D (Z4) QD, so the action of u on the DS tensor can be summarized as

= (4.74)

where,

=




I 0 0 0

0 X 0 0

0 0 X2 0

0 0 0 X3



. (4.75)
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Now, we consider the action of u on the local tensor of Z2 ⊠ Z1 TC.

=




X+Z+ X−Z+ 0 0

X−Z− X+Z− 0 0

0 0 X+Z− X−Z−

0 0 X−Z+ X+Z+




(4.76)

In order to study the structure of Z4 ⊠ Z2 DS blocks, again we define a unitary

:=
1√
2




1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1




(4.77)

By doing a unitary transformation on (4.76),

=




I X2Z2 0 0

Z2 X2 0 0

0 0 I X2Z2

0 0 Z2 X2




(4.78)

The two blocks are completely identical and correspond to one of the symmetry broken

fixed point of Z4 ⊠ Z2 DS model. Similar to (4.74), the action of u on Z2 ⊠ Z1 tensor

with the local tensor of D (Z4) QD produces the local tensor of Z4 ⊠ Z2 DS model.

= (4.79)

Furthermore, from the action of u in (4.74) and (4.79), we can also verify that the

following relation also holds between u and the on-site transfer operators of Z4 ⊠Z2 DS

and Z2 ⊠ Z1 TC.

u uTC

u

=
DS

u
,

u uDS

u

=
TC

u
,

(4.80)
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where,

DS = , TC = (4.81)

In order for the relation in (4.67) to hold, we insert u at one end of the transfer operator

and by using (4.80) and by zipping u to the other end of the transfer operator we can

achieve the global action of U as required.

4.5.4 Important features of Z4 phase diagram

Here we discuss some of the generic features of the phase diagram of Z4-invariant tensors

which we mapped in Fig. 4.13.

First, we consider the θDS = 0 hyperplane. The plane is characterized by four phases.

The origin lies in D (Z4) QD and the other three corners correspond to the Z4 ⊠Z2 TC,

Z2 ⊠ Z1 TC and Z2 ⊠ Z2 TP. The phase transitions across the lines (I) and (II) in Fig.

4.13 lie in the Ising universality class as already discussed (Fig. 4.14,4.15a). Critical

exponents of the phase transitions between Z4 ⊠ Z2 TC ↔ Z2 ⊠ Z2 TP and Z2 ⊠ Z1

TC ↔ Z2 ⊠ Z2 TP on θDS = 0 hyperplane also classify the phase transition in the

Ising universality class. Moreover, numerical tests of phase transitions between points

in different phases on this hyperplane (away from the multi-critical regime) indicate that

all the phase transitions on this hyperplane can be identified with the Ising universality

class.

θTC = 0 hyperplane is characterized by D (Z4) QD, Z2⊠Z1 TC, Z4⊠Z2 DS, and Z2⊠Z2

TP. The phase transition across the line labeled as (III) between D (Z4) QD and Z4⊠Z2

DS can be mapped to the Ising model (Fig. 4.15b). On the other hand, phase transitions

Z4 ⊠ Z2 DS ↔ Z2 ⊠ Z2 TP and Z2 ⊠ Z1 TC ↔ Z2 ⊠ Z2 TP on θTC = 0 plane across

lines (VI) and (VII) have the same critical exponents but they do not map to the Ising

universality class. The critical exponents are β1 = 0.04(1), β2 = 0.23(4), and ν = 1.

In case of θTC,Z2 = 0 hyperplane, we again have four distinct phases and there exists

a multi-critical point at θ =
(

1
2 ln(1 +

√
2), 0, 1

2 ln(1 +
√

2)
)

which is shared by the

boundaries of four phases. The multi-critical point vanishes for the values θTC,Z2 > 0.

The phase transitions across the lines labeled as (I), (III), and (IV) in Fig. 4.13 has

already been discussed earlier with an explicit mapping to the 2D Ising model in case

of (I) (see Sec. 4.5.2). Phase transitions on this plane are analytic. Exact mapping in

terms of Ising variables is not known but the analytic expressions of order parameters

(condensation and confinement fractions) suggest that every phase transition on this

plane can be mapped to the Ising model.
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Figure 4.20: (a) θDS = 1 hyperplane of the phase diagram which we constructed in
Fig. 4.13.(b) Anyon table define the color of fractions which have been used for filling
the RGB value of each point on the plane in (a). (c) Scaling of 〈0, i|0, i〉 and 〈0, 1|2,−1〉
for values of φ between 0 and π/2. (d) Change in the value of β’s for different φ’s.

An interesting feature of the phase diagram is a continuous change in the universality

class of phase transitions across the θDS = 1 hyperplane (Fig. 4.20a). The plane is

characterized by Z4 ⊠Z2 DS and Z2 ⊠Z2 TP. As mentioned above, the phase transition

across the line (V) maps to Ising model with critical exponent of order parameter β± =

1/8, on the other hand the critical exponents of the order parameters across the line (VI)

are different. We observe a continuous change in the value of β’s as one move across

the critical regime on θDS = 1 hyperplane. Let (θTC, θTC,Z2) = t (cosφ, sinφ) be the

parametrization of lines passing through the origin of θDS = 1 hyperplane. Fig. 4.20c

shows the scaling of order parameters (i.e. 〈0, i|0, i〉 and 〈0, 1|2,−1〉) in the critical regime

for φ = [0, π/2]. Critical exponents β± computed from the slope of order parameters on

a log-log plot are given in Fig. 4.20d. It is important to emphasize at this point that

the universal features of the phase transition (i.e. the values of critical exponents) do

not depend on the direction one chooses to approach the critical point.

4.5.5 Phase diagrams of toric codes and double semion model

We now examine the behavior of phase transitions which can be obtained by further

deforming the toric codes and double semion model down to the trivial phases.
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Figure 4.21: Phase diagrams of topologically trivial phases which can be induced by
continuous deformations on Z4 ⊠ Z2 TC(a), Z2 ⊠ Z1 TC(b), and Z4 ⊠ Z2 DS(c). The
corresponding anyon table below each of the phase diagram defines the colors of overlaps
(condensation+confinement fractions) which have been used to depict and distinguish
different phases. χ = 16 has been used for the computation of fractions using iMPS
algorithm.

Z4 ⊠ Z2 Toric code

In the case of Z4 ⊠Z2 toric code, an action of the form defined in (4.39) on the physical

indices of on-site tensors can induce a phase transition to either Z4 ⊠Z4 TP or Z2 ⊠Z2

TP by spontaneously enhancing or reducing the symmetry of the transfer operator fixed

points. The deformation is parametrized by two variables (θ1, θ2). At (high-θ1, low-

θ2) the system is in Z4 ⊠ Z4 TP, whereas at (low-θ1, high-θ2) the deformation acts

to give Z2 ⊠ Z2 TP. Motion towards the Z4 ⊠ Z4 TP from Z4 ⊠ Z2 TC leads to the

confinement of anyons |∗,−1〉 which is followed by the condensation of {|1, 1〉, |3, 1〉}
to the vacuum. Increase in θ2 at low-θ1 confines anyons {|1,±1〉, |3,±1〉}. The phases

which can be realized by the deformation as a function of (θ1, θ2) can be illustrated by

plotting certain fractions which can sufficiently distinguish the phases (Fig. 4.21a).

We find that away from the multi-critical regime, the phase transitions at the interface

of Z4 ⊠Z2 TC and the two trivial phases in Fig. 4.21a lie in the Ising universality class.

Z2 ⊠ Z1 Toric code

The phase diagram of Z2⊠Z1 TC can be studied by the deformation in (4.40). The phase

transition from Z2 ⊠ Z1 TC to Z1 ⊠ Z1 TP is accomplished by confinement of anyons

|2, ∗〉. The charge excitations are condensed in Z1 ⊠ Z1 TP. On the other hand, as the

system approaches the critical point from Z2 ⊠ Z1 towards Z2 ⊠ Z2 TP a spontaneous
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Figure 4.22: Phase transition between DS model and Z4 ⊠ Z4 TP phase across the
black line in Fig. 4.21c. The main panel shows the behavior of different anyonic
excitations. The sharp behavior of fractions in (i) is an indication of first-order phase
transition. (ii) Shows that the correlation length remains finite at the transition point.
Extrapolated value of the correlation length ξ at the transition point θ1 = 0.5830 has
been obtained by a quadratic fit.

restoration of a broken symmetry leads to the condensation of anyons |2,±1〉, while the

excitations {|0,±i〉, |2,±i〉} get confined. The phase diagram which is unfolded by the

deformation is shown in Fig. 4.21b. At θ1 = 0, the phase transition between Z2 ⊠ Z1

TC and Z2 ⊠ Z2 TP can be mapped to the Ising model. Furthermore away from the

multi-critical regime, the boundaries between Z2⊠Z1 TC and the two trivial phases can

be described by the phase transitions which lie in the Ising universality class.

Z4 ⊠ Z2 Double semion model

Now, we explain how Z4 ⊠ Z2 DS model can be deformed into TPs and describe the

properties of corresponding phase transitions. The deformation can be modeled by the

action in (4.41). Different phases which can be realized as a function of (θ1, θ2) are

plotted in Fig. 4.21c. The four corners of the plane correspond to Z4 ⊠ Z2 DS, D (Z4)

QD, Z2 ⊠ Z2 TP, and Z4 ⊠ Z4 TP.

It is only in the vicinity of D (Z4) QD that Z4 ⊠Z2 DS shares a boundary with Z4 ⊠Z4

TP. (θT
1 , θ

T
2 ) = (0.5830, 0.3313) is one the transition points between DS and Z4 ⊠Z4 TP.

The phase transition along the path θ2 = θ1 − (θT
1 − θT

2 ), marked by the black line in

Fig. 4.21c, is a first-order phase transition (Fig. 4.22). On the other hand, the phase

transitions from Z4⊠Z2 DS to D (Z4) QD across the horizontal axis and between Z4⊠Z2

DS and Z2 ⊠ Z2 TP across the vertical axis lie in the Ising universality class.
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4.6 Summary

Condensation and confinement fraction of anyons can be used as order parameters to

extract the universal features of topological phase transitions. Different patterns of

symmetry breaking in the fixed points of the transfer operator can be used to label

distinct topological phases. Furthermore, the techniques developed within the framework

of tensor networks are robust enough to be reliably used for the study of quantum phase

transitions between topologically trivial and non-trivial phases.

The phase diagram of Z4-invariant tensors exhibits some remarkable features. Aside

from the occurrence of first-order phase transitions, we have observed a variety of

continuous phase transitions which lie in different universality classes. Moreover, the

boundaries of topological phases allow for phase transitions where the universality class

of phase transition could change continuously.

The class of Z4-invariant tensors enables a unified approach to study the toric code and

the double semion model. The phase boundaries of toric code and double semion model

not only support the existence of continuous phase transition with different universality

classes but also allow for the possibility of first-order phase transition.



Chapter 5

Toric code and double semion

spin liquids

Magnetic behavior of the materials around us is an example of emergent phenomena

which results from interactions among constituents of the system at the microscopic

scale. One of the most fundamental but a recent insight is that the spin degrees of

freedom are not only responsible for the existence of ordered magnetic phases like ferro

and antiferromagnets, they can also give rise to exotic phases which defy our conventional

explanations [74]. The unsatisfiability of constraints imposed by the interactions (or

more precisely local antiferromagnetic interactions) leads to a frustrated quantum spin

system. The presence of frustration (which happens to occur on geometries with high

coordination numbers like triangular or kagome lattice) prohibits the appearance of local

order among the spin degrees of freedom and system remains in a disordered state at

zero temperature. These phases are termed as quantum spin liquids [18], where the word

liquid is meant to emphasize the invariance of the state under the actions of the group

SU(2) and lattice symmetries.

In this chapter, we study the spin liquid phases of the toric code and the double semion

model in the framework of ZN -invariant tensors. The spin liquid phases of the two

topological phases have the same ground state degeneracy on the torus and the same

topological entanglement entropy correction, but the elementary excitations of the two

model are different (i.e., they have different self and exchange statistics). In the gapped

Z2 or the toric code spin liquid phase the anyonic character of spinons and visons is

identified with the elementary particles of the toric code model. Similarly, in the double

semion spin liquid phase, the anyonic features are determined by the fundamental par-

ticles of the double semion model. The motivation is to apply the insights from these

studies in the later chapter and the future work to establish the gapped/gapless and

92
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spin liquid nature (whether it is toric code or double semion) for the ground state of

Heisenberg antiferromagnet on the kagome lattice conclusively.

This chapter has been organized as follows. Firstly in Sec. 5.1, we study the phase dia-

gram of Z2 spin liquids on the kagome lattice using the formalism of Z2-invariant tensors

with SU(2) symmetry. In Sec. 5.2, we extend our studies from Z2 to Z4-invariant ten-

sors which allows us to study the toric code and double semion spin liquids in a unified

framework. We analyze the condensation/decondensation and confinement/deconfine-

ment of anyons at the phase boundaries of the spin liquid phases. In Sec. 5.3, we present

our findings regarding the entanglement properties of semionic resonating valence bond

state which defines the most important point in the spin liquid phase of the double

semion model.

5.1 Gapped Z2 spin liquids

We start this section by giving the Z2-invariant tensor network description of distinct

phases. In the later subsections, we describe phase transitions and study the whole

phase diagram.

5.1.1 Description of topologically distinct phases using Z2-invariant

tensors

Topologically distinct phases which could be realized by Z2-invariant tensors in the

presence of SU(2) symmetry on the kagome lattice include the gapped Z2 spin liquid

phase, the valence bond crystal phase, and the spinon doped trivial phase.

Gapped Z2 spin liquid phase

Z2 spin liquid (SL) is a disordered phase of the system, and it enables the most straight-

forward realization of quantum matter with a non-trivial topological order in physical

systems [75–77]. From the conceptual point of view, the simplest way to understand

gapped Z2 SL on the kagome lattice is by analyzing the nearest neighbor resonating

valence bond (RVB) wavefunction.

Resonating valence bond state as we have already discussed in Sec. 2.4.2 is a superposi-

tion of nearest neighbor singlet coverings. It was first used by Anderson [78] to study the

properties of quantum spin systems. Here we slightly modify the earlier tensor network
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construction of RVB wavefunction, in particular, the tensor E, so that later we could

easily construct the tensor network of spinon doped phase.

E = =





σβ2β3 β1 = 2

σβ3β1 β2 = 2

σβ1β2 β3 = 2

1 β1 = β2 = β3 = 2

0 otherwise,

(5.1)

where β1, β2, β3 ∈ {0, 1, 2, 3}, and the matrix σ = diag


 1√

2


0 −1

1 0


 , 0, 1


. The 3-

legged tensor E which is placed inside each triangle of the kagome should be interpreted

as the sum of seven configurations.

• In three configurations, there is a singlet on one of the edges of the triangle and

the third vertex is in the state |2〉.

• The three vertices of the triangle form a product state |222〉 in one configuration.

• And in the remaining three configurations there is a broken singlet embedded as

|33〉 on one of the edges of the triangle and the third vertex is in the state |2〉.

The addition of the three configurations corresponding to the broken singlets in the

definition of tensor E is not necessary for the tensor network construction of the RVB

state but will be used for the tensor network construction of spinon doped phase. The

definition of on-site tensor PRVB remains the same as given in (2.16), i.e.

PRVB = =





δβ1p β2 = 2

δβ2p β1 = 2

0 otherwise,

(5.2)

where p ∈ {0, 1}.

Here we note that since on-site tensor PRVB discard the information about source triangle

of the singlet, and so the resulting coverings are not orthogonal. An approach to locally

ensure the orthogonality of singlets in the tensor network framework was introduced in

[17]. By attaching a label of the triangle with the spin at each site, we can obtain the

coverings of dimers which are orthogonal to each other. Triangle labels can be attached



Toric code and double semion spin liquids 95

Figure 5.1: (a) The graphical representation of the kagome lattice. Each vertex
represents a spin-1/2 particle. Arrowheads oriented in a clockwise fashion specify the
direction of singlets. (b) We use the medial graph of the kagome (the hexagonal lattice)
for the tensor network representation of RVB and the other states in this chapter.
Vertices of the hexagonal lattice represent the 3-legged vertex tensor given in (5.1).
Each dashed box represents a unit cell of the tensor network. (c) Translation invariant
description is given by the unit tensor which has been obtained by collating the three
physical indices as one index. (d) The resulting tensor network which has been obtained
by using the blocking defined in (c).

with the spins by modifying the tensor in (5.2) as,

P⊥ = =





δβ1p β2 = 2, q = L

δβ2p β1 = 2, q = R

0 otherwise

(5.3)

where p ∈ {0, 1} and q ∈ {L,R}. The resulting quantum state corresponds to the

Rokhsar and Kivelson (RK) point of the quantum dimer model [79]. Furthermore we

can describe an action which enables us to discard the triangle information from dimer

continuously. By acting with := |+〉〈+|+λ|−〉〈−|, where |±〉 := 1√
2
(|L〉 ± |R〉), on

the dimer index at each site, we can interpolate between the spaces of orthogonal dimer

and non-orthogonal singlet coverings. The on-site tensor

P (λ) = , (5.4)

gives PRVB and P⊥ at λ = 0 and λ = 1 respectively and system remains in the gapped

spin liquid phase for any value of λ between 0 and 1.

Valence bond crystal

The crystallization of singlet coverings in the spin liquid phase leads to a product state of

singlets called valence bond crystal (VBC). Although the VBC state is SU(2) invariant,

it breaks the lattice symmetries. The smallest unit cell of VBC state with long-range

order contains 6 sites on the kagome lattice (Fig. 5.2).
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Tensor network representation of the valence bond crystal state can be obtained by

defining tensors,

PL = =





δβ1p β2 = 2

0 otherwise,

PR = =





δβ2p β1 = 2

0 otherwise,

(5.5)

where the tensors PL and PR pick a singlet from the left and right pointing triangles

respectively, and an arrowhead on the virtual index points to the center of the triangle

which contains the singlet. It is important to note here that

PRVB = PL + PR, (5.6)

where PRVB is defined in (5.2).

Now for the 6-site VBC configuration given in Fig. 5.2b, we can define the on-site tensors{
P [i]

}6

i=0
for the six sites in the unit cell as

P [a] := PL

P [b] := PR

(5.7)

where a ∈ {1, 2} and b ∈ {3, 4, 5, 6}.

Spinon doped phase

A spinon doped trivial phase which breaks the SU(2) symmetry but preserves the lattice

symmetries can be given by a product state of spinons. Tensor network representation

of spinon doped phase in terms Z2-invariant tensors can be obtained by using terms

corresponding to broken singlets in the vertex tensor E as defined in (5.1). By placing

an on-site tensor Pdoped at each physical site,

Pdoped = =





1 β1 = 2, β2 = 3

1 β1 = 3, β2 = 2

0 otherwise,

(5.8)

we get a product state of |+〉. It is important to note here that the tensor network

description of spinon doped phase like the previous constructions of RVB and VBC

states is also Z2-invariant since the spinons have been added as broken singlets.
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Figure 5.2: (a) Pictorial representation of 6-site VBC state on the kagome lattice. Red
lines denote singlets. Labels ‘L’ and ‘R’ specify the left and right pointing triangles.
Dashed boxes define the unit cell. (b) Unit cell for the translation invariant tensor
network representation of 6-site VBC. Vertices of the hexagonal lattice represent the
3-legged vertex tensor as defined in (5.1).

5.1.2 Topological phase transitions

Now we describe an approach to induce phase transitions from the gapped SL to VBC

and spinon doped phase along the simplest trajectories as prescribed by the linear in-

terpolation of on-site tensors.

Z2 spin liquid and valence bond crystal

The on-site tensor PL (PR ) picks a singlet from the left (right) pointing triangle, and

as we noted earlier in (5.6), the tensor PRVB can be written as a sum of PL and PR.

This fact can be used to parametrize the on-site tensor in a way that breaks the lattice

symmetries but can drive the system from topologically non-trivial SL phase to the VBC

phase. We parametrize the on-site tensors as,

P [a] (θf ) := PL + (1− θf )PR

P [b] (θf ) := (1− θf )PL + PR,
(5.9)

where a ∈ {1, 2} and b ∈ {3, 4, 5, 6}.

Using the definition of vertex tensor as given in (5.1), and the on-site tensors
{
P [i](θf )

}6

i=0

as parameterized above, we can interpolate between the SL and the VBC phase by freez-

ing the superposition of all the singlet coverings to one covering. At θf = 0, all the on-site

tensors are equal to PRVB, and the system realizes nearest neighbor RVB state, while at

θf = 1, the state of the system is given by the 6-site VBC.

Z2 spin liquid and spinon doped phase

The doping of the spin liquid state with broken singlets can drive a phase transition

which leads to the trivial phase of polarized spins. It can be achieved by simply adding
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the tensor P
doped

as defined in (5.8) to the on-site tensor PRVB as

P (θd) = PRVB +
θd√

2
Pdoped. (5.10)

By tuning θd, we can drive the system between the gapped SL and spinon doped trivial

phase.

Composition of different phase transitions

After describing the interpolations from Z2 SL to VBC and spinon doped trivial phases,

here we compose these phase transitions to get an enriched phase diagram. The addition

of doping term (5.8) to the on-site tensors in (5.9) gives a two-parameter family of

wavefunctions,

P [i] (θf , θd) = P [i] (θf ) +
θd√

2
Pdoped, (5.11)

where i ∈ {1, 2, ..., 6}. The extremal properties of the on-site tensors
{
P [i](θf , θd)

}6

i=0

are as follow

• At (θf , θd) = (0, 0), P [i] = PRVB ∀i, and system is in the topologically non-trivial

Z2 SL phase. It realizes nearest neighbor RVB sate. Since the topological structure

of Z2 spin liquid is derived from the underlying theory of D (Z2) quantum double

namely the toric code model, the fundamental excitations {|vac〉, |spinon〉, |vison〉,
|bound state〉} (which can be identified with the pair of a conjugacy class and an

irrep of Z2) are deconfined at the RVB point.

• At (θf , θd) = (1, 0), the on-site tensors in (5.11) are equivalent to the description of

on-site tensors in (5.9) and the system realizes a VBC state. The string operation

on the entanglement degrees of the tensor network which leads to the creation of

vison in the SL phase acts trivially on the vacuum in the VBC phase. This implies

that the visons are condensed in the valence bond crystal phase. On the other

hand, the action of operators which lead to the creation of spinon and the bound

state of a spinon and a vison annihilate the vacuum, so the spinons and the bound

states are confined in the VBC phase.

• At (θf , θd) = (0,∞), the Pdoped term in (5.11) dominates the behavior of on-site

tensors and the system realizes a product state where the spinons are condensed.

On the other hand in contrast to the VBC, in the spinon doped phase, the visons

and the bound states are confined.
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Figure 5.3: Log of the correlation length ξ of the system as the function of θf and θd.
ξ has been computed by using the iMPS algorithm with bond dimension ξ = 16. The
system breaks the SU(2) and lattice symmetries at every point in the phase diagram
except across the red lines (I) and (II), where only one of those two symmetries are
broken.

5.1.3 Phase diagram of Z2 spin liquid

Tensor network descriptions of the phase transitions, as given above, between topolog-

ically non-trivial and trivial phases preserve the Z2-invariant structure of local tensors.

The Z2-invariance of local tensors can be used to systematically study the condensation

and confinement of anyonic excitations as we tune the system from one topological phase

to another.

We start by analyzing the correlation length ξ of the system as the function of tuning

variables (θf , θd) by using iMPS algorithm (Fig. 5.3) . The phase boundaries can be

defined by the lines of diverging correlation length.

As the system is tuned from the Z2 SL to VBC phase at θd = 0 (i.e., across the line (I)

in Fig. 5.3), the system undergoes a phase transition. In the SL phase, the behavior of

the phase transition in the critical regime is determined by the correlation length which

corresponds to the condensation of vison. On the other hand near the critical point

in the VBC phase, the dominant contribution to the correlation length comes from the

deconfinement of spinons (Fig. 5.4a).

Similarly, the phase transition between Z2 SL and spinon doped phase at θf = 0 (i.e.,

across the line (II) in Fig. 5.3) is driven by the condensation of spinons. In the vicinity

of phase transition in the SL phase, the largest correlation length is identified with the

condensation of spinons. The correlation length which corresponds to the deconfinement
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of visons determine the behavior of the system in the critical regime of the spinon doped

phase (Fig. 5.4b).
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Figure 5.4: (a) Correlation length of anyonic excitations for the phase transitions
across the lines marked as (I) and (II) in Fig. 5.3. Correlation lengths have been
computed from the fixed points of the transfer operator by using the iMPS algorithm.

It is important to be emphasized here that since the topological structure of Z2 spin liquid

is derived from the underlying theory of D (Z2) quantum double namely the toric code

model [7], the phase transitions we have described are characterized by the spontaneous

symmetry breaking in the fixed points of the transfer operator and topologically trivial

and non-trivial phases of Z2 theory realizes different patterns of symmetry breaking in

the fixed points of the transfer operator. In the Z2 SL phase, the fixed points of the

transfer operator have Z2 ⊠ Z1 symmetry. On the other hand, in VBC (spinon doped)

trivial phase the fixed points of the transfer operator enhance (break) the symmetry to

Z2 ⊠ Z2 (Z1 ⊠ Z1).

The quantum states realized by the on-site tensors in (5.11) for (θf , θd) 6= 0 break

either the SU(2), the lattice, or both symmetries. The order parameters corresponding

to these symmetries do not encounter any critical behavior as the system undergoes

different topological phase transitions (5.5). So the phase transitions are indeed driven

by the condensation of anyons.

5.2 Spin liquid phases of toric code and double semion

model

The canonical way to describe toric code (TC) and double semion (DS) model is by

using the language of loop patterns [64]. We begin this section by giving the Z4-invariant

tensor network of TC and DS model where the physical indices have the interpretation

of closed loop patterns on the hexagonal lattice. Furthermore, there exists a map with
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local action M1⊗M2 to associate each loop patterns on the honeycomb lattice to singlet

coverings on the kagome lattice via arrow representation [80, 81]. By applying the map

to the Z4-invariant local tensors, we get the descriptions of TC and DS SLs. In the later

subsection we present our findings regarding different anyonic fractions and map out the

phase diagram of spin liquids.

5.2.1 Description of topologically distinct phases using Z4-invariant

tensors

The most important example of a spin liquid state with the toric code topological order

is the RVB state. Similarly, we can also construct a spin liquid state with double

semion topological order and call it semionic resonating valence bond state [65]. The

constructions of TC and DS models using Z4-invariant tensors that are motivated by

the symmetry properties of the boundary phases are given in Sec. 4.3. Here, we again

start by defining the on-site tensor of D (Z4) quantum double to get the representation

in the language of loop patterns (see Sec. 4.1.6).

,where
b

a
= δabX

a (5.12)

and a, b ∈ {0, 1, 2, 3}. The indices on the inside (outside) of the ring correspond to

the physical (virtual) degrees of freedom. To later get the closed loop patterns on the

physical indices, we assume X :=
∑3

i=0 i
g|g〉〈g| is the generator of Z4 with diagonal

representation. Now we apply the following deformation (green MPO) on the physical
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indices of the on-site tensor in (5.12).

= ,where =





(|0〉v + |2〉v) 〈0|p a = 0, b = 0

(|0〉v + C|2〉v) 〈0|p a = 1, b = 1

(|1〉v + |3〉v) 〈1|p a = 0, b = 1

(|1〉v + C|3〉v) 〈1|p a = 1, b = 0

, (5.13)

Arrowhead points in the direction of index b. Subscripts p (v) indicate the physical

(virtual) indices on the inside (outside) of the ring. The dimension of each local physical

space is 2, and by interpreting the basis vectors |0〉 and |1〉 as having a vacuum and

string on the physical site, we get the superpositions of closed loop patterns.

The on-site tensor in (5.13) is parametrized by a complex variable C. And for every

value of C, the description only allow patterns of closed loops on the physical level. The

on-site tensor in (5.13) realizes the following quantum states.

• At C = −1, the on-site tensor realizes the TC model where the boundary phase

has Z2 ⊠ Z1 symmetry. Locally the on-site tensor in (5.13) is equal to the sum

of configurations in Fig. 4.6. The description gives us a TC on the physical level

from two copies of the TC on the virtual level.

• At C = 1, the on-site tensor realizes DS model with the boundary phase having

Z4 ⊠ Z2 symmetry. Furthermore, the on-site tensor is equal to the sum of string

configurations in Fig. 4.7.

• At C = 0, the on-site tensor realizes a topologically trivial phase where the bound-

ary phase has Z2 ⊠ Z2 symmetry.

Now, to get the spin liquid state, we need a map between loop patterns and the singlet

coverings. The map can be obtained via arrow representation of loop patterns and by

fixing a reference configuration [65, 80, 82]. Pictorially the on-site tensor can be written

as

. (5.14)

The green component is defined in (5.13) and M1 ⊗M2 is the local action of the map

between loop patterns and singlet coverings on a (3 + 3)-site cell. The black tensor has

been defined by modifying the definition of on-site tensor in (5.3).
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, where =





δβ1p β2 = 2, qin = q = L

δβ2p β1 = 2, qin = q = R

0 otherwise

, (5.15)

:= |+〉〈+|+λ|−〉〈−|, and |±〉 := 1√
2
(|L〉 ± |R〉).

5.2.2 Phase diagram of the toric code and double semion spin liquids

Now we examine the behavior of the phase diagram of quantum states realized by on-

site tensor in (5.14) for the possible values of C by analyzing the behavior of anyonic

fractions. To map out the phase diagram, we consider the following three fractions.

1. In the toric code phase, the anyon |0, i〉 is identified with the charged anyon e.

The quantity 〈0, i|0, i〉 measures the deconfinement of e.

2. The overlap 〈1, i|1, i〉 quantifies the deconfinement of semion in the double semion

phase. It should be noted that the semions are confined in the toric code and

trivial phase.

3. The overlap 〈0, 1|0, 2〉, characterizes the condensation of anyon |0, 2〉 and non-zero

only in Z2 ⊠ Z2 trivial phase.

The three fractions as the function of C are shown in Fig. 5.6 and they are sufficient

to label the distinct topological phases. The on-site tensor in (5.14) realizes quantum

states of dimer coverings (Fig. 5.6a) at λ = 1 and singlet coverings (Fig. 5.6b) at λ = 0.

The qualitative features of these two phase diagrams are similar. The TC spin liquid is

separated from the DS spin liquid by an intermediate valence bond crystal phase. The

behavior of all the non-zero anyonic fractions across the line marked as (II) in Fig. 5.6

are shown in Fig. 5.7.

5.3 Entanglement properties of double semion spin liquid

As we discussed earlier in Sec. 3.1.2, the entanglement spectrum, and boundary Hamil-

tonians contain useful information to characterize the topological order of the given

phase.
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Figure 5.6: Overlaps of anyonic excitation 〈1, i|1, i〉, 〈0, 1|2, 1〉, and 〈0, i|0, i〉 are la-
beled by the red, green and blue colors respectively as also indicated in the anyon table.
(a) A projection of the phase diagram of orthogonal dimer coverings on the complex
plane C containing toric code and double semion point at C = −1 and at C = 1 re-
spectively. (b) Phase diagram of spin liquids with RVB and semionic RVB points. The
behavior of the system along the three trajectories labeled as (I), (II), and (III) have
been examined in greater detail in the next chapter (see Figs. 6.7,6.8).
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RVB state and the phase transition along the path between toric code, and the double
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the path between toric code and RVB state. The rightmost plot connect semionic RVB
state with the double semion model.
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5.3.1 Entanglement spectrum

Topological correction to the entanglement entropy is the same for the ground states in

the TC and DS spin liquids but their entanglement spectrum shows different features.

Here, we compute the entanglement spectrum for the different points along the inter-

polation between semionic RVB and semionic dimer states in the spin liquid phase of

the DS model (Fig. 5.8). Furthermore, we label each of the eigenstate with the spin

quantum number S. The eigenstates in the bosonic (semionic) sectors exhibit only the

integer (half-integer) spin. A defining feature of the entanglement spectrum of the DS

spin liquid is that in the half integer spin sector the minimum of the dispersion is at

k = ±π/2 which is different from the TC spin where the minimum is at k = 0 [16, 17, 83].
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Figure 5.8: Entanglement spectrum of four topologically degenerate ground states at
different points in the double spin liquid computed on an infinite cylinder with perimeter
Nv = 6. The endpoints correspond to the semionic RVB (λ = 0) and semionic dimer
state (λ = 1). The top (bottom) panel corresponds to the bosonic (semionic) ground
states.

5.3.2 Boundary Hamiltonians

Now we briefly present our results for the boundary Hamiltonian of semionic RVB

state in the four topological sectors, i.e., vacuum, semion, anti-semion, and boson.

We discussed boundary Hamiltonian in Sec. 3.1.2 and it has been defined as Hb :=
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− ln(
√
σLσR

√
σL), where

√
σLσR

√
σL is related to the reduced density matrix ρA of the

quantum state |ψ〉 on an infinite cylinder with the finite perimeter Nv.

To be able to compute the boundary Hamiltonian on an infinite cylinder with perimeter

Nv = 6 we use the tensor network description of semionic RVB state from [65, 82].

Pictorially the segment of the tensor network of |ψsemRVB〉 can be written as,

|ψsemRVB〉 = (5.16)

The red and blue squares form a unit tensor of the tensor network. Green circles indicate

color tensors that are necessary for the weighting factor of singlet coverings. Before we

describe the boundary Hamiltonians, for the purpose of convenience, we define two op-

erators and set the notation for basis operators that act on two-and three-level systems.

Let

P :=
(
I + T + T 2 + T 3 + T 4 + T 5

)

and

Q :=
(
I + T 2 + T 4

)
.

Where T is the generator of translation that does a circular shift on the cylinder in the

vertical direction. And let



σI =


1 0

0 1


 , σx =


0 1

1 0


 , σy =


 0 i

−i 0


 , σz =


1 0

0 −1








be the set of spin-1/2 Pauli matrices which act on the color degrees (green indices) of

the tensor network and we define

{x := diag (σx/2, 0) , y := diag (σy/2, 0) , z := diag (σz/2, 0)

p := |0〉〈2|, p†, m := |1〉〈2|, m†,

D := diag(1, 1,−2)/6, I = diag(1, 1, 1)/3}

to be the set of basis matrices for the 3-level (blue and red) indices of the tensor network

in (5.16).

Using the definition of projectors P and Q and the definitions of basis matrices for the
2- and 3-level systems, the computed boundary Hamiltonian of |ψsemRVB〉 in the vacuum
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sector is

Hvac.
b =3.56σI − 1.12σz+

0.15 (Q (D1)) σI + 0.15 (Q (D2)) σz + 0.13 (Q (D1)) σz + 0.11D6σI +

0.49 (Q (D2D4 + D2D5)) σz + 0.48 (Q (D4D5 + D5D6 + D1D5) σz) +

0.29 (ip3m4 − im3p4 + ip5m6 − im5p6 + h.c) σx + 0.28 (m4p5 − p4m5 + h.c) σy

− 0.25
(
Q
(

p†
1p2 + m†

1m2 + h.c
))

σI − 0.22
(

m1m†
6 + m†

2m3 + p1p†
6 + p2p†

3 + h.c
)

σI

− 0.22
(

p4p†
5 + m4m†

5 + h.c
)

σz + 0.18 (m1p2 − p1m2 + h.c) σy + 0.15
(
Q
(

p1p†
2 + m1m†

2 + h.c
))

σz+

0.13
(

p†
4p5 + m4m†

5 + h.c
)

σI + 0.13
(

p†
1p6 + p2p†

3 + m1m†
6 + m2m†

3 + h.c
)

σz+

0.19D1D3D5σz + 0.18 (Q (D1D3D6)) σz + 0.18 (im1D5p6 + ip1D5m6 + im2p3D4 − ip2m3D4 + h.c) σx+

0.18 (Q (D1D3D4 + D1D5D6 + D2D3D6 + D3D4D6)) σz + 0.18 (Q (D2D3D4)) σz + 0.17D2D4D6σz+

0.13 (ip1m2D3D4 + ip1m2D5D6 − im1p2D3D4 − im1p2D5D6 + h.c) σx+

0.17 (Q (D1D2D4D5D6)) σI + 0.16 ((D1D2D3D4D5)) σI + 0.12 (P (D1D2D3D5D6)) σz+

0.28D1D2D3D4D5D6σI + ...

(5.17)

Similarly, the boundary Hamiltonians in the semionic sectors are

Hsem.
b = Hsem.

b =

3.54σI − 0.73σz

− 0.80 (PD1) σz + 0.12 (Q (D1)) σI +

0.28 (ip3m4 − im3p4 − ip5m6 + im5p6 + h.c) σx + 0.27 (im4p5 − ip4m5 + h.c) σy

0.26
(
Q
(

m†
1m2 − m1m†

2 + p†
1p2 − p1p†

2

))
σI + 0.22

(
ip†

4p5 − im4m†
5 + h.c

)
σz+

0.22
(

p†
2p3 − p2p†

3 + p1p†
6 − p†

1p6 + m†
2m3 − m2m†

3 + m1m†
6 − m†

1m6

)
σI+

0.17
(

m3p4 − m†
3p†

4 + m5p6 − m†
5p†

6 + p3m4 − p†
3m†

4 + p5m6 + p†
5m†

6

)
σy+

0.17
(

−p4m5 + p†
4m†

5 − m4p5 + m†
4p†

5

)
σx + 0.14

(
−m2p3 + m†

2p†
3 + p2m3 − p†

2m†
3

)
σy+

0.14 (im1p6 + ip1m6 + h.c) σy − 0.13 (Q (D1D3)) σz − 0.11 (Q (D2D5 + D2D3 + D1D2)) σz+

0.26D2D4D6σz + 0.25 (Q (D1D2D4 + D2D4D5 + D4D5D6)) σz+

0.24 (Q (D1D4D5 + D1D3D4 + D3D4D5)) σz + 0.23D1D3D5σz+

0.18 (ip1D5m6 − im1D5p6 − im2p3D4 + ip2m3D4 + h.c) σx+

0.17 (Q (D1D3D5D6)) σz + 0.16 (Q (D2D3D5D6 + D1D2D3D6 + D1D2D5D6 + D2D3D4D6)) σz

0.13 (−ip1m2D3D4 + im1p2D3D4 + ip1m2D5D6 − im1p2D5D6) σx

0.17 (Q (D1D2D4D5D6)) σI − 0.16 (Q (D1D2D3D4D5)) σI+

− 0.28D1D2D3D4D5D6σI ...

(5.18)
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And for the bosonic sector

Hbos.
b = 3.56σI − 1.12σz+

0.15 (Q (D1)) σI + 0.15 (Q (D2)) σz + 0.13 (Q (D1)) σz + 0.11D6σI +

0.49 (Q (D2D4 + D2D5)) σz + 0.48 (Q (D2D3 + D3D4 + D3D5)) σz+

0.29 (ip3m4 + ip5m6 − im3p4 − im5p6 + h.c) σx + 0.28 (p4m5 − m4p5 + h.c) σy

− 0.22
(

m1m†
6 + m2m†

3 + p†
2p3 + p†

1p6

)
σI + 0.22

(
m4m†

5 + p†
4p5

)
σz+

0.18 (m1p2 − p1m2 + h.c) σy + 0.15
(
Q
(

m1m†
2 + p1p†

2 + h.c
))

σz

− 0.13
(

m4m†
5 + p†

4p5 + h.c
)

σI + 0.13
(

p1p†
6 + p2p†

3 + m†
1m6 + m2m†

3 + h.c
)

σz+

0.19D1D3D5σz + 0.18 (Q (D1D3D6)) σz + 0.18 (ip1D5m6 − im1D5p6 + h.c) σx+

0.18 (Q (D3D5D6)) σz + 0.18 (ip2m3D4 + im2p3D4 + h.c) σx+

0.18 (Q (D1D5D6 + D1D4D6 + D1D2D4)) σz + 0.18 (Q (D1D2D6)) σz + 0.17D2D4D6σz

− 0.25
(
Q
(

p†
1p2m†

1m2 + h.c
))

σI+

0.13
(

im1p2D3D4 + ip†
1m†

2D3D4 + im1p2D5D6 + ip1m2D5D6 + h.c
)

σx+

0.17 (Q (D2D3D4D5D6)) σI + 0.16 (Q (D1D2D3D4D5)) σI+

− 0.12 (Q (D1D2D3D5D6 + D1D2D4D5D6)) σz+

0.28D1D2D3D4D5D6σI ...

(5.19)

We give the leading terms of the boundary Hamiltonian where the magnitude of the

coefficients is greater than 0.1. The subscript numbers are the labels for the site where

the operator acts non-trivially. The last operator acts on the color degrees of the tensor

network. To be compact, we have omitted the presence of I in each term. The terms of

the boundary Hamiltonians have been ordered by the number of non-trivial operators

(i.e., first the one body terms, second the two body terms, and so on). Due to finite

size effects, it is hard to say conclusively about the locality of boundary Hamiltonian.

We observe the presence of three body terms that act non-trivially on the color degree

of freedom and create local singlets. Furthermore, we also find the existence of spin

up/down hopping terms in the boundary Hamiltonian. The coefficients of similar terms

in four topological sectors are slightly different which is a manifestation of finite size

effects.

5.4 Summary

The formalism of tensor network states and the framework of anyon condensation not

only enable the study of topological phase transitions in D (Z4) quantum doubles as we

did in the previous chapter but this approach is robust enough to map the phase diagram
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of Z2 spin liquid. Furthermore, we have presented in this chapter our preliminary findings

regarding the spin liquid of the DS model using the framework of Z4-invariant tensors.



Chapter 6

Spin liquid ansatzes for the

ground state of Heisenberg

antiferromagnet

Our understanding of the nature of the ground state of Heisenberg antiferromagnet

(HAF) on the kagome lattice has evolved continuously over the period of last three

decades. Although there is a growing consensus that the ground state of HAF is a

gapped spin liquid with Z2 or toric code topological order [20, 21, 77]. But, the gapped

and Z2 spin liquid nature of the ground state wavefunction are still not completely

established [84, 85] and the recent studies in [86], and [87] suggest that the ground state

wavefunction lies in a gapless spin liquid phase. Furthermore, the gapped spin liquid

phase of the double semion model has also been proposed as a contender for the ground

state of HAF on the kagome [65, 88, 89].

The difficulty of the HAF problem on the kagome has served as the benchmark for

remarkable innovations in different numerical strategies such as density matrix renor-

malization group (DMRG). However, an essential side-effect of these approaches is the

presence of an exceedingly large number of variables used to parametrized the variational

manifold. The description of the ground state in terms of these parameters because of

their vast number eludes our comprehension of the wavefunction. The goal of this chap-

ter is to develop the description for the ground state of HAF with as few parameters as

possible in the spin liquid phases of toric code and double semion model.

This chapter has been organized as follows. In Sec. 6.1 we develop two very simple (i.e.,

these ansatzes are parametrized by few variables) variational ansatzes for the ground

state of HAF on the kagome lattice in the gapped Z2 (i.e., toric code) spin liquid phase.

110



Spin liquid ansatzes for the ground state of HAF 111

In Sec. 6.2 we present our findings regarding a variational ansatz in the double semion

spin liquid phase. Lastly in Sec. 6.3, we make a digression to a separate but important

topic to analyze the geometric structure of reduced density matrices for the Heisenberg

model on the square lattice.

6.1 Gapped Z2 spin liquid ansatzes for the ground state of

HAF on the kagome lattice

In this section, we construct two ansatzes for finding the ground state of HAF on the

kagome lattice. We give the tensor network description of the ansatzes and present

our findings regarding the ground state energies and correlation lengths within the two

variational manifolds.

6.1.1 Variational ansatz of resonating valence bond states with 3rd

neighbor singlets

A good starting point, to construct a ground state wavefunction which lies in the gapped

Z2 spin liquid phase, is to consider the resonating valence bond (RVB) state. RVB

wavefunction preserves all the lattice symmetries, and it has been shown rigorously that

the nearest neighbor RVB wavefunction on the kagome lattice exhibits the toric code

topological order [16, 17].

RVB wavefunction is a linear superposition of 1st neighbor singlet coverings and has the

energy density that is approximately -0.3931 for the Heisenberg interaction. The energy

density of RVB state is fairly large compared to the results of DMRG computations, but

it is important to note that the variational manifold in the case of DMRG is characterized

by an extremely large number of variables.

We show here that a simple modification in the tensor network description of RVB state

allows for 3rd neighbor singlets in the singlet covering. Furthermore, it is possible to

weight singlet coverings appropriately depending on the presence of 3rd neighbor singlets

(Fig. 6.1a). The resulting ansatz parametrized by only one variational parameter allows

for a considerably lower energy per site.

To describe the tensor network of the ansatz, we start by placing two copies of vertex

tensor (see (2.15)) inside each triangle of the kagome. We modify the on-site tensor P
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Figure 6.1: (a) A singlet covering containing 1st neighbor (light red) and 3rd neighbor
(dark red) singlets on the kagome lattice. (b) Tensor network representation of the
variational ansatz. Black and red lines represent two copies of vertex tensors. (c) Unit
tensor containing three physical sites.

as follows,

P (λ) := = + + λ

(
+

)
, (6.1)

where δ = |0〉〈0|+|1〉〈1|, and σ = 1√
2
(|0〉〈1|−|1〉〈0|). Black and red virtual indices of

on-site tensor P (λ) contract with the two copies of the vertex tensor (Fig. 6.1(b,c)).

The black lines with a bend on the RHS represent an identity map and project singlets

from the virtual to the physical layer. Wiggly lines denote singlets, and the arrowheads

indicate the orientation of the singlets.

The resulting family of states generated by the tensor network description in (6.1) as a

function of variational parameter λ can be written as,

|ψ(λ)〉 =
∑

σ∈C

(
λ2
)k(σ)

|σ〉. (6.2)

C is the set of singlet coverings such that each singlet covering contains only 1st and the

3rd neighbor singlets and

k(σ) = No. of 3rd neighbor pairings in the singlet covering σ.

The set of states generated by (6.2) preserves the lattice symmetries and the states are

SU(2)-invariant. The results of optimization on the variational manifold as a function

of λ using iMPS algorithm for different bond dimensions χ are shown in Fig. 6.2a.

Furthermore, the smooth change in the value of correlation length ξ in Fig. 6.2b shows

that the quantum states |ψ(λ)〉 for low values of λ also lies in the spin liquid phase with

Z2 topological order.
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Figure 6.2: (a) Energy per site for the Heisenberg interaction Si.Sj as a function of
λ. The value of energy per site is optimal at λ = 0.59. (b) Correlation length as the
function of λ.

6.1.2 Simplex variational ansatz of resonating valence bond states with

long range singlets

Here we describe the variational ansatz of simplex RVB states. The ansatz can be

understood as an extension of the one proposed by Poiblanc et al. in [83]. The extension

which has become possible due to the improvements in tensor network algorithms for

infinite systems systematically allows for long-range singlets in the singlet covering.

The variational ansatz

Heisenberg Hamiltonian on the kagome, H =
∑

〈i,j〉 Si.Sj can be expressed in terms

of three body positive operators, P 3/2 which act on the kagome triangles. P 3/2 are

projectors onto the spin-3/2 subspace of
(

1
2

)⊗3
and H in terms of P 3/2 takes the form,

H =
3

2

∑

(ijk)

(
P

3/2
(ijk) −

1

2
I

)
. (6.3)

The above description of Hamiltonian reduces our goal to the problem of finding the

quantum state which lies in the null space of every projector. H is a frustrated Hamil-

tonian as any two projectors P 3/2 which act on the left- and right-pointing triangles on

the kagome and share a single vertex do not commute.

As in the case of the previous ansatz, the initial point of construction is the 1st neighbor

RVB state. It has been pointed out in the earlier studies by Elser et al. in [80, 90]

that a quarter of triangles in each covering are ‘defective’ (i.e., the covering does not

assign any singlet to the triangle). The action of the projector P 3/2 on a singlet covering

is such that it annihilates the covering except in the case when it acts on a defective
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triangle. The action of P 3/2 on the defective triangles can be understood from the

following decomposition,

P 3/2 =
1

3

(
I +R+R2

)
, (6.4)

where R is a generator of the cyclic group Z3, and its action on three spins produces a

cyclic rotation. The action of P 3/2 on a defective triangle can be pictorially written as,

3 ,

where red lines denote singlets, and the projector P 3/2 acts on the triangle shaded gray.

The resulting state, after the application of P 3/2 projectors on the RVB wavefunction,

contains coverings with next nearest neighbor singlets. And the repeated application of

P 3/2 projectors effectively gives singlet coverings with long-range singlets.

Moreover, the variational ansatz of simplex RVB states developed by Poiblanc et al. [83]

involves an application of operator

Q⊲(α) =
∏

(ijk)∈⊲

(
I− αP 3/2

ijk

)
(6.5)

onto a tuned RVB wavefunction |ψRVB(β)〉. Q⊲(α) acts on the right pointing triangles

and parameter β in the RVB wavefunction optimizes the probability of finding the left

pointing triangles defective. An optimization with respect to only two variables α and

β can give states |Q⊲(α⋆)|ψRVB(β⋆)〉 in Z2 spin liquid phase with an energy density of

−0.418 for Heisenberg Hamiltonian which is fairly close to the DMRG results.

A natural way to extend the simplex ansatz is to allow for the possibility of states with

higher entanglement but within a variational manifold that is characterized by only a

few parameters. That can be achieved by cascading the actions of Q operators onto the

left and right pointing triangles. The resulting set of wavefunctions can be represented

as

|ψ(α)〉 = Q⊲(αn)...Q⊲(α3)Q⊳(α2)Q⊲(α1) |ψRVB〉 . (6.6)

Here, we choose n to be odd because of a substantial advantage in numerical computa-

tions using tensor networks. The above ansatz allows for a state with a singlet covering

where a singlet could extend up to n sites for a given n. Furthermore, by adjusting

α = (α1, α2, ...αn) it is possible to assign an appropriate weight to the singlet covering

containing long range singlets. To be concrete, in the rest of this section, we study the

family of wavefunctions in (6.6) for n = 3 and 5.
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Tensor network description

Tensor network description of variational ansatz in (6.6) essentially involves the applica-

tion of Q (α) = Q⊲(αn)...Q⊲(α3)Q⊳(α2)Q⊲(α1) on the RVB wavefunction. Q (α) can be

represented as a tensor product operator or projected entangled pair operator (PEPO).

The bond dimension of Q (α) as a PEPO increases by a factor of four for every appli-

cation of Q⊳ on the left pointing triangles of the kagome.

Figure 6.3: (a) Tensor network of resonating valence bond states. (b) Tensor network
of resulting state obtained by the application of Q(α) on the RVB wavefunction. Blue
layer represents Q(α) as a PEPO. (c) Unit tensor of simplex variational ansatz.

Results of numerical studies

Now we present our findings regarding variational optimization for simplex ansatz in

(6.6). The results are given for the two implementations of Q (α).

1. Q(α) = Q⊲(α3)Q⊳(α2)Q⊲(α1). The bond dimension of the PEPO is 4, the total

bond dimension of resulting unit tensor (Fig. 6.3c) is D = 3 × 4 = 12. The vari-

ational optimization has been performed for the exact tensor network description

of the wavefunction.

2. Q(α) = Q⊲(α5)..Q⊳(α2)Q⊲(α1). The bond dimension of Q(α) as PEPO is 16, and

so the bond dimension of the unit tensor is D = 3×16 = 48. The results have been

computed for the approximate tensor network description of the wavefunction.

1. Exact tensor network description of the wavefunction

For Q(α) = Q⊲(α3)Q⊳(α2)Q⊲(α1), the variational ansatz, |ψ(α)〉 = Q (α) |ψRVB〉, in

general breaks the flip symmetry (which exchanges the left and right pointing triangles

into each other) of the lattice. But the state with minimum energy state happens to

restore that symmetry. The convex hull of the data points in Fig. 6.4a has a minimum at

zero splitting. Due to the effects of finite size bond dimension used in the approximation

of fixed points in the iMPS algorithm, there is small splitting in the energies on the
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different edges of the unit tensor (Fig. 6.4b). The splitting goes away with increasing

χ, and we get an energy per site of -0.4335(2).
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Figure 6.4: (a) ∆ is the difference in the energy per site of left and right pointing trian-
gles. The convex hull of the data points for optimization over three parameter manifold
of states. α⋆ is the point of minimum energy and α⋆ = (0.9390, 0.8493, 0.3964) for
χ = 24. (b) Scaling of energy per edge vs the bond dimension χ. The legend of the
curves has been defined by the markers on the edges of the triangles at the lower left
corner.

Correlation lengths of anyonic excitations along the trajectory with endpoints consisting

of RVB and optimal energy state remain finite. The behavior of correlation lengths shows

that optimal energy point is in the Z2 spin liquid phase. And the anyons of Z2 spin

liquid remain deconfined along the whole interpolation. The dominant correlation length

along the whole interpolation is associated with the spinon (Fig. 6.4).
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Figure 6.5: Computations have been made by using iMPS algorithm with bond di-
mension χ = 48. (a) Correlation lengths of anyonic excitations of Z2 spin liquid as a
function of α. At α = 0, the system is in RVB state and at α = 1 the system is in
the optimal energy state. (b) Confinement fraction of anyonic excitations for different
values of α.
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2. Approximate tensor network description of the wavefunction

For Q(α) = Q⊲(α5)..Q⊳(α2)Q⊲(α1), we get an approximate PEPO representation of

Q(α) by using higher order singular value decomposition as in [91]. Pictorially,

, (6.7)

where D = 16 and D̃ = 4 are the original and cut-off bond dimensions respectively.

Original(approximated) PEPO are indicated by think(thin) blue tensor.

Again we see the restoration of flip symmetry at the optimal energy point from the

convex hull of data points (Fig. 6.6a). The optimization over the variational manifold

of five parameters gives an energy density of -0.4338(3) (Fig. 6.6b). Furthermore it can

be shown that the point with optimal energy is in the Z2 spin liquid phase and it is

gapped (Fig. 6.6(c,d)).
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Figure 6.6: (a) Convex hull of the data points for optimization over the five parameter
manifold of states. The value of α̃⋆ = (0.8992, 0.7343, 0.9147, 0.7568, 0.2987). (b)
The scaling of mean energy per edge vs the bond dimension χ. (c,d) Anyon-anyon
correlations lengths and the behavior of confinement fractions along the same trajectory
between RVB and optimal energy point for χ = 48.
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6.2 Variational ansatz for the ground state of HAF in dou-

ble semion spin liquid phase

Before we proceed to the description of variational ansatz, we analyze the behavior of

Heisenberg interaction energy along a path which connects the spin liquids of toric code

and double semion model.

6.2.1 Energy density between toric code and double semion spin liq-

uids

We examine the interaction energy per edge for the Heisenberg Hamiltonian for the

phase transition across the trajectory marked as (II) in Fig. 5.7b. The unit triangle

contains 6-sites and comprise of 4 kagome triangles. Fig. 6.7 shows the continuous

change in the interaction energy on the edges as the system is tuned from RVB state to

semionic RVB state. At θ = 0 (RVB point), the energy is the same on all the edges of the

lattices, and the state preserves all the lattice symmetries. In the valence bond crystal

phase the lattice symmetries are broken. Furthermore, at θ = 1 (semionic RVB point),

although the quantum state lies in a topologically non-trivial phase, it still breaks the

lattice symmetries.
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lattice. The unit tensor contains 4 × 3 = 12 edges and four triangles of the kagome.
Each subplot shows the behavior of interaction energy on the three edges of the triangle
across (II) in Fig. 5.6.
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The behavior of energy per site across the three trajectories in Fig. 5.6b indicate min-

imum energy at the RVB point. Moreover, the splitting in the energy of left and right

hexagons is lowest for the RVB state (Fig. 6.8). Although the energy density of normal

RVB is better compared to semionic RVB in the following subsection, we see that the

simplex extension of semionic RVB gives better energy density.
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Figure 6.8: (a) Energy per site for the Heisenberg interaction across the three paths
in Fig. 5.6b. (b) Splitting in the energy density of the two hexagons of the kagome.

6.2.2 Semionic simplex resonating valence bond states

We start by reviewing that the unit tensor in (5.14) provides the representation of

semionic RVB state |ψsemRVB〉 at C = 1. As in the case of (6.6), it is intuitive to

consider the ansatz of the form

|ψ(α)〉 = Q⊲(αn)...Q⊲(α3)Q⊳(α2)Q⊲(α1) |ψsemRVB〉 . (6.8)

But the bond dimension for the translation invariant tensor network description of

semionic RVB state is too large, and with the available numerical techniques, Q is re-

stricted to be of the form Q⊲(α1). Here we apply the simplex ansatz originally developed

for normal RVB states in [83]. The ansatz we consider has the form

|ψ(α, β)〉 = Q⊲(α) |ψsemRVB(β)〉 . (6.9)

The parameter β in |ψsemRVB(β)〉 optimizes the probability of left pointing triangles to be

defective in the given singlet covering. The tensor network description of |ψsemRVB(β)〉
is the same as the one given in (5.14) with the modified definition of vertex tensor for
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the right pointing tirangles.

E′(β) = =





σβ2β3 β1 = 2

σβ3β1 β2 = 2

σβ1β2 β3 = 2

1− β β1 = β2 = β3 = 2

0 otherwise,

(6.10)

where β1, β2, β3 ∈ {0, 1, 2}, and the matrix σ = diag


 1√

2


0 −1

1 0


 , 0


.

The results for the variational optimization overs α and β in (6.9) are given in Fig. 6.9.

The optimal energy density we get here is not good in comparison to the ones we got

for variational ansatzes in (6.2) and (6.6). But it is important to note here the optimal

energy density of semionic simplex RVB ansatz is better in comparison to the normal

simplex RVB ansatz. The optimization over Q⊲(α) |ψRVB(β)〉 gives an energy density of

−0.418 [83].
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Figure 6.9: (a) Optimization of the two parameters variational ansatz of semionic
simplex RVB states. The optimal energy point is at α = 0.52 and β = 1.0. The
extrapolated value of optimal energy density is −0.4196. (b) Interpolation between DS
dimer point and semionic simplex optimal energy point. Eigenvalues γ of the transfer
operator for the different anyonic sectors in the ket and bra layer of the infinite cylinder
with Nv = 6. Largest (2nd largest) eigenvalues in different sectors are indicated by solid
(dashed) lines.

6.3 Convex polytopes and HAF on the square lattice

In this section, we discuss a slightly different topic of the convex polytopes of the reduced

density matrices. The model we study here is HAF on a square lattice with the first

nearest neighbor and second nearest neighbor interactions in the presence of a magnetic
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field. The goal is to analyze the geometric structure of reduced density matrices which

are obtained from a tensor network ansatz for the ground state of the Hamiltonian.

Before we proceed further it is important to note that fundamental insights to utilize

the geometric structure of reduced density matrices in the tensor networks context were

made by Verstraete et al. in [92]. Later Zauner et al. in [93] rigorously investigated

those ideas by studies related to symmetry breaking in classical and quantum systems.

Chen et al. did similar studies in [94] with a focus on symmetry protected topological

phases.

6.3.1 Geometry of reduced density matrices

The reduced density matrices form a convex set, and there is a very useful conse-

quence of the convexity property: given a collection of observables {A1, A2, ...An},
the set of points which are associated with the expectation values of the observables

{Tr(A1ρ),Tr(A2ρ), ...Tr(Anρ)} is also convex.

Consider a system defined on a lattice Λ with a Hamiltonian which is a sum of local

operators, H =
∑

x∈Λ h
[x]. Then the problem of finding the ground of H can be reduced

to the optimization problem over the set of reduced density matrices,

min
{ρ[x]}

∑

x∈Λ

Tr
(
h[x]ρ[x]

)
. (6.11)

The above version of the energy minimization problem is known as the quantum marginal

problem [95]. And it is important to note that the optimization has to be performed over

the set of valid reduced density matrices σ that is there exists a global density matrix σ

such that Trx(σ) = ρ[x] for every x. Now, if H has the translation symmetry (i.e., the

non-trivial action of h[x] is independent of x) then the optimization in (6.11) over a set

of reduced density matrices can be restricted to a single reduced density matrix ρ,

ρ0 = arg min
ρ

Tr (hρ), (6.12)

and ρ is subjected to be a valid reduced density matrix.

If each local term has a further structure, i.e., h =
∑n

i=1 Jihi is a sum of competing terms,

then the set of points S := {Tr(h1ρ),Tr(h2ρ), ...Tr(hnρ)} form a convex set. Further-

more, the set of points {Tr(h1ρ0),Tr(h2ρ0), ...Tr(hnρ0)} over the solutions ρ0(J1, J2, ..Jn)

in (6.12) form a convex envelop within S [92].
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Figure 6.10: Top view of the tensor network of the variation ansatz for the ground
state of HAF on a square lattice. Arrowheads denote the orientation of the singlets.

6.3.2 Geometric structure of tensor network ansatz - HAF on the

square lattice

We begin by first writing down the Hamiltonian,

H = J1

∑

〈i,j〉
Si.Sj + J2

∑

〈〈i,j〉〉
Si.Sj + h

∑

i

Sz (6.13)

The first two terms correspond to the first- and second nearest neighbor interactions.

The third term explicitly breaks the SU(2) symmetry of the Hamiltonian.

The ground state of H at the Heisenberg point (J2 = 0, h = 0) has been studied to

exhibit Néel phase, and Didier Poilblanc showed it in [96] that a tensor network ansatz

with only one variational parameter can give an excellent description of the ground

state wavefunction. The variational ansatz can be constructed by starting with nearest

neighbor resonating valence (RVB) state on a square lattice (Fig. 6.10) and by doping

the RVB wavefunction by spinons with opposite polarity on the lattice sites A and B.

The addition of doping term to RVB wavefunction breaks the physical SU(2) symmetry,

but the well-defined orientation of spinons preserve the U(1) symmetry.

The tensor network description of the wavefunction can be given be defining on-site

tensors for the A and B lattice sites,

A(γ) := = P

( )
+ γ ,

B(γ) := = P

( )
− γ

(6.14)

The bubble in center denote the physical index or particle, and the open ends specify

the virtual indices or particles. Red lines indicate a maximally entangled state (i.e., the

virtual particles at the end are bounded as 1√
2

(|00〉+ |11〉)). Black bubbles on the RHS

indicate particles in the state |2〉. Blue arrows with up and down orientation denote

physical particle in the state |0〉 and |1〉 respectively. The operator P acts on the four

virtual legs, and it is defined as P := (I+R+R2 +R3), where R is the generator of the
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cyclic group Z4, and it produces a rotation in the anti-clockwise direction. Pictorially

the action of R can be given as,

R

( )
= . (6.15)

The tensor network of the ansatz is obtained by the putting on-site tensors on the

lattices sites and joining the virtual indices of on-sites with a singlet tensor which could

be denoted as :=


0 −1

1 0


. The resulting tensor network is shown in Fig. 6.10.

By tuning the value of γ, one can get a very good approximation of the ground state at

the Heisenberg point.

The definition of on-site tensors in (6.14) only allow for the possibility of nearest neighbor

(NN) singlet pairings in the RVB wavefunction. Wang et al. have shown in [97] that the

tensor network description of the NN RVB wavefunction can be appended very simply

to allow for the possibility of long-range singlet pairings.

A(c) = B(c) := P

(
+ c + c + c

)
. (6.16)

The definition of P , and by putting on-site tensors together as in Fig. 6.10 one can

get an RVB state with long-range singlets. The first term on the RHS generate the NN

singlet pairings. The last three terms allow for long-range singlets between the lattice

sites A and B. Due to the orientation of arrows the ansatz (6.16) only allow for the

singlet pairings between A and B lattice sites. By optimizing the variational ansatz in

(6.16) as a function of c, Wang et al. were able to get a variational description of the

ground state of H at (J1 = 0.5J2, h = 0) point.

Now we combine the two ansatzes in (6.14) and (6.16), and analyze the structure of

reduced density metrics for the resulting ansatz.

A = P

(
+ c1 + c2 + c3

)
+ γ1 + γ2 ,

B = P

(
+ c1 + c2 + c3

)
+ γ1 − γ2

(6.17)

Five variables parameterize the variational manifold. We compute the expectation value

of observables E1 = 〈Si.Si+1〉, E2 = 〈Si.Si+2〉 and M = 〈Sz〉 for random states within

the five parameter variational manifold. The 3D plot containing the expectation values

of these observables gives a projection of the set of reduced density matrices. The convex

hull of the data points gives a convex polytope (Fig. 6.11). The states on the surface of

the polytope correspond to the ground state of the H. Red data point of the surface of

the polytope represents the Néel state (i.e., the optimal energy state which have been
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Figure 6.11: (a) Three different views of the convex polytope generated from a data
set of more than 50,000 points. The expectation values have been computed by iMPS
algorithm (b) Sliced views of the polytope in (a) for different values of J2.

computed from the spinon doping ansatz of Didier Poiblanc in 6.14). The blue data

point corresponds to the gapless spin liquid ansatz of Wang et al. in (6.16).

Although, there is a need for further analysis, and as suggested in [93] we also observe

the appearance of a ruled surface1. The ruled surface is most visible in Fig. 6.11a(iii)

1A ruled surface is a surface which could be traced by moving a line in an ambient space.
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between the blue point and the rightmost line on the polytope. The ruled surface signifies

the presence of explicit symmetry breaking in the Hamiltonian.

6.4 Summary and outlook

An efficient (requires a few variational parameters) description for the ground state of

HAF of the kagome lattice in Z2 spin liquid phase can be obtained by using tensor net-

works. Furthermore, the analysis of the geometric structure of reduced density matrices

enables a new way to the explore different features of the many-body Hamiltonians.

One obvious difficulty in studying the double semion spin liquid as ansatz for the ground

state of HAF is that the local tensor description of the variational ansatz would require a

large bond dimension. As an outlook, this difficulty can be resolved by the development

of new local tensor approximation strategies which preserve the virtual Z4 symmetries

while doing the truncations.



Chapter 7

Conclusions and outlook

The approach to analyze the entanglement structure of a quantum many-body system

by dividing the wavefunction into local tensors as formulated by the tensor network

framework is a robust method for studying quantum phase transitions which include

both topologically trivial and nontrivial phases of matter. Besides enabling the usage

of other remarkable probes such an anyon-anyon correlation functions, tensor networks

also offer a natural way to examine the condensation and confinement of anyons and

allow us to extract the universal features of topological phase transitions.

The set of Z4-invariant tensors includes the phases of D (Z4) quantum doubles, the toric

code model, the double semion model, and trivial phases. The different tensor network

realizations of these phases can be labeled by different patterns of symmetry breaking

in the fixed points of the transfer operator. The phase diagram of Z4-invariant tensors

exhibits a rich variety of behavior. The phase transitions from D (Z4) quantum double

to the toric code, to the double semion model, and to a trivial phase (i.e., the Z2 ⊠ Z2

trivial phase) are continuous and typically lie in the Ising universality class. The phase

boundaries of the toric code and double semion model allow for the first-order phase

transitions. However, it is also possible to induce continuous phase transitions between

the toric code and double semion model which could lie either in the Ising universality

class or the universality class of the Ashkin-Teller model. Typically, the Ising universality

class characterizes the phase transitions from the toric code model to the trivial phases.

A first-order phase transition has also been observed between the double semion model

and the Z4 ⊠ Z4 trivial phase. We also observe a continuous change in the universality

of the phase transitions across the phase boundaries of the double semion model and

Z2 ⊠ Z2 trivial phase.

By enriching the topological structure (i.e., the G-invariance of local tensors) with phys-

ical symmetries such as SU(2) enable the study of quantum spin liquids. In the case

126
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of Z2-invariant tensors, while also considering physical symmetries (i.e., the lattice and

the spin rotation symmetries), the phase diagram contains the gapped spin liquid phase,

the valence bond crystal phase and the spinon doped phase. The spin liquid phase

preserves all the physical symmetries, the valence bond crystal phase breaks the lattice

symmetries, and the spinon doped phase breaks the SU(2) symmetry. However, the

anyon condensation governs the phase transitions from the gapped Z2 spin liquid phase.

The condensation of visons drives the system from the spin liquid to the valence bond

crystal phase. On the other hand, the condensation of spinons induces phase transition

to a spinon doped phase. The behavior of the system at the phase boundaries can-

not be explained by the conventional local order parameters associated with the broken

symmetries.

Furthermore, by enhancing the topological structure of local tensors from Z2 to Z4, we

can study the spin liquid states of toric code and double semion model in a unified

framework. Gapped spin liquid with the double semion topological order is unusual in

the sense that it carries anyonic excitations and also preserves the spin symmetries but

breaks the lattice symmetry. As an outlook, the systematic investigation of toric code

and double semion spin liquid could potentially settle the strongly debated question

regarding the true topological nature of the ground state of Heisenberg antiferromagnet

(HAF) on the kagome lattice.

Tensor networks not only make the backbone of the numerical techniques but they also

further the construction of variational ansatzes for the ground state wavefunction with

a very compact description. The variational ansatz of resonating valence bond states

with third neighbor singlets by using only one real parameter give an energy density of -

0.4275 for the ground state of HAF which is fairly close to the energy density from DMRG

calculations that is -0.4385. Moreover, tensor networks framework allows for a systematic

increase of entanglement (i.e., by increasing the bond dimension) which in turn also

increase the computational complexity of the variational ansatz. Only a few variables

parametrize the extended ansatz of simplex resonating valence bond states which include

highly entangled wavefunctions. The optimization over the three-parameter family of

simplex resonating valence bond states gives an energy density of -0.4335(2) which has

a relative difference of about 1% with state of the art DMRG results. Furthermore, it

can be shown that optimal energy state from the three parameters variational ansatz

lies in the gapped Z2 spin liquid and the spinon gap is finite.

As a concluding remark, tensor network framework offer a promising endeavor for the

simulation of quantum systems on classical hardware, and the success of this field does

not rely upon the reliable implementation of a large-scale quantum computer.
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